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Abstract
We prove an analog of the disintegration theorem for tracial von Neumann algebras in the setting of elementary
equivalence rather than isomorphism, showing that elementary equivalence of two direct integrals of tracial factors
implies fiberwise elementary equivalence under mild, and necessary, hypotheses. This verifies a conjecture of Farah
and Ghasemi. Our argument uses a continuous analog of ultraproducts where an ultrafilter on a discrete index set is
replaced by a character on a commutative von Neumann algebra, which is closely related to Keisler randomizations
of metric structures. We extend several essential results on ultraproducts, such as Łoś’s theorem and countable
saturation, to this more general setting.
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2 D. Gao and D. Jekel

1. Introduction

1.1. Motivation

Our results are motivated by the problem of classifying tracial von Neumann algebras up to elementary
equivalence. Elementary equivalence is a central notion in model theory, which means that two ob-
jects have the same first-order theory. An equivalent characterization that is more familiar to operator
algebraists follows from the Keisler-Shelah theorem: Two tracial von Neumann algebras M and N are
elementarily equivalent (written 𝑀 ≡ 𝑁) if and only if there is some ultrafilter U on some index set
such that the ultrapowers 𝑀U and 𝑁U are isomorphic.

Von Neumann [von49] showed that a von Neumann algebra with separable predual can be decom-
posed as a direct integral 𝑀 =

∫ ⊕

Ω
𝑀𝜔 𝑑𝜔 over some measure space Ω such that the center 𝑍 (𝑀) ⊆ 𝑀

agrees with 𝐿∞(Ω) ⊆
∫ ⊕

Ω
𝑀𝜔 𝑑𝜔, and hence reduced the classification of separable von Neumann

algebras to that of factors. In the case where the von Neumann algebra admits a faithful normal tracial
state, the factors are either matrix algebras or II1 factors. The classification of factors, even in the II1 case,
is an extremely challenging task. While Murray and von Neumann distinguished group von Neumann
algebras 𝐿(𝐺) for free groups versus amenable groups, it was not until the work of McDuff that infinitely
many non-isomorphic II1 factors were shown to exist [McD69a, McD69b]. Recent breakthroughs
have classified von Neumann algebras associated to large classes of groups using deformation/rigidity
techniques (see, for example, [IPV13, CIOS23]), but are still very far from general II1 factors.

Through the study of ultrapowers and later the introduction (officially) of continuous model theory for
von Neumann algebras in [FHS14a], there was growing interest in classification of von Neumann algebras
up to elementary equivalence, and many of the developments paralleled the early history of classification
up to isomorphism. Farah, Hart and Sherman showed that property Gamma is axiomatizable, and hence,
amenable von Neumann algebras and free group von Neumann algebras are not elementarily equivalent
[FHS14b, §3.2.2]; preservation of Gamma under elementary equivalence also follows from the earlier
work of Fang, Ge and Li [FGL06, Corollary 5.2]. Boutonnet, Chifan and Ioana showed that McDuff’s
family of II1 factors are not elementarily equivalent [BCI17]; see also [GH17]. In the non-Gamma
setting, the first examples proved to be non-elementarily equivalent were given in [CIKE23], and further
examples were obtained in [KP23].

However, the more fundamental question about the analog of von Neumann’s disintegration theorem
for elementary equivalence was not fully addressed (and similarly, there is not much written about
classification of tracial von Neumann algebras with nontrivial center in practice, except for [CQT24]).
Farah and Ghasemi showed, in general, that the theory of a direct integral is uniquely determined by the
theories of the integrands [FG24, Corollary 3.8] (see also [BIT24, Theorem 18.3]). In the case where
the integral is over an atomless probability space, this also follows from the work of Ben Yaacov on
randomizations of metric structures [Ben13].

Our goal in this paper is to establish a converse recovering the theory of the integrands from the
theory of the integral for tracial von Neumann algebras, which was conjectured by Farah and Ghasemi
in an earlier version of [FG24]. In other words, we will show that the integrands in the direct integral can
be recovered up to elementary equivalence if the integral is known up to elementary equivalence. After
the first draft of this paper appeared, Ben Yaacov, Ibarlucía and Tsankov added a general version of this
result to their systematic treatment of direct integrals, affine logic and continuous logic; see [BIT24,
Theorem 20.13].

1.2. Results

We require a slight technical hypothesis to rule out different multiplicities of the same factor occurring
in the diffuse part of the measure space in the direct integral decomposition. For example, suppose
that (Ω, 𝜇) is diffuse (i.e., has no atoms) and (𝑀𝜔)𝜔∈Ω are a measurable field of pairwise non-
elementarily equivalent tracial factors. Let (Ω̃, 𝜇̃) = (Ω�Ω, 1

2 𝜇⊕
1
2 𝜇), and consider the measurable field

(𝑁𝜔)𝜔∈Ω̃ on Ω̃ consisting of two copies of (𝑀𝜔)𝜔∈Ω. Then it follows from [FG24, Corollary 3.8] that
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Ω
(𝑀𝜔 , 𝜏𝜔) 𝑑𝜇(𝜔) is elementarily equivalent to

∫
Ω̃

𝑁𝜔 𝑑𝜇̃(𝜔) �
∫
Ω
(𝑀𝜔 ⊕ 𝑀𝜔 , 1

2𝜏𝜔 ⊕ 1
2𝜏𝜔) 𝑑𝜇(𝜔),

but there is no measurable isomorphism (Ω, 𝜇) → (Ω�Ω, 1
2 𝜇⊕

1
2 𝜇) exhibiting elementary equivalence

fiberwise because in Ω, all the elementary equivalence classes are distinct, but in Ω̃, there are two copies
of each elementary equivalence class. Hence, there is an unavoidable ambiguity due to the different
possibly multiplicities of each elementary equivalence class over the underlying measure space. To rule
out such examples, we add an assumption of ‘infinite multiplicity’ of each fiber in the direct integral
decomposition.

Given a probability space (Ω, 𝜇) and a mapping F from Ω into some space Ω′, we say that (Ω, 𝜇, 𝐹)
is stable under tensorization with 𝐿∞[0, 1], if there is a measurable isomorphism Φ : (Ω, 𝜇) →

(Ω⊗ [0, 1], 𝜇⊗Leb) such that 𝐹 ◦𝜋1◦Φ = 𝐹, where 𝜋1 is the first coordinate projection (see Lemma 4.6
for equivalent characterizations of this property). Note that the example in preceding paragraph created
Ω̃ by tensorizing Ω with a two-point space. Of course, the measure space Ω in a direct integral
decomposition can be expressed as a direct sum of an atomic one and an atomless (diffuse) one, and
we only want to assume stability under tensorization for the diffuse part. Hence, our main result can
be stated as follows; note that the converse to Theorem A follows from [FG24, Corollary 3.8]. See also
Remark 4.7 for what happens without the stability assumption.

Theorem A. Let (Ω1, 𝜇1) and (Ω2, 𝜇2) be standard Borel probability spaces, and let (𝑀, 𝜏) =∫ ⊕

Ω1
(𝑀𝜔 , 𝜏𝜔) 𝑑𝜇1 (𝜔) and (𝑁, 𝜎) =

∫ ⊕

Ω2
(𝑁𝜔 , 𝜎𝜔) 𝑑𝜇2 (𝜔) be direct integrals of separable tracial fac-

tors. Suppose that the diffuse part of each decomposition is stable under tensorization with 𝐿∞[0, 1].
If (𝑀, 𝜏) ≡ (𝑁, 𝜎), then there exists an isomorphism of probability spaces (i.e., a measure-preserving
map with measurable inverse up to null sets) 𝑓 : Ω1 → Ω2 such that (𝑀𝜔 , 𝜏𝜔) ≡ (𝑁 𝑓 (𝜔) , 𝜏 𝑓 (𝜔) ) for
almost every 𝜔 ∈ Ω1.

To give a simple example, we can obtain continuum many non-elementarily equivalent tracial von
Neumann algebras with diffuse center as follows. Let P and Q be two non-elementarily equivalent II1
factors. Let 𝑀𝑐 be the direct integral over [0, 1] where the fibers on [0, 𝑐] are P and the fibers on (𝑐, 1]
are Q. Theorem A shows that 𝑀𝑐 and 𝑀𝑐′ are not elementarily equivalent for 𝑐 ≠ 𝑐′.

Our approach is based on constructing the ‘ultrafibers’ out of a direct integral (𝑀, 𝜏) =∫ ⊕

Ω
(𝑀𝜔 , 𝜏𝜔) 𝑑𝜇(𝜔) associated to characters on 𝐿∞(Ω). While it is not possible to obtain the fiber

(𝑀𝜔 , 𝜏𝜔) canonically as a C∗-quotient of M since a point evaluation is not necessarily well defined on
𝐿∞(Ω), we can obtain a C∗-quotient corresponding to each character on 𝐿∞(Ω). If Ω was a discrete
measurable space I, so that 𝐿∞(Ω) = ℓ∞(𝐼) for the index set I, then a character would always be given
by an ultrafilter on I, and then our ultrafiber would reduce to the ultraproduct of (𝑀𝑖 , 𝜏𝑖)𝑖∈𝐼 with respect
to this ultrafilter. As we will see, there is no need to assume that M is a direct integral in the classical
sense; we can replace 𝐿∞(Ω) by any central von Neumann subalgebra N of a tracial von Neumann alge-
bra M, and so obtain an ultrafiber of M over N for any character on N (see §2.1). The possibility of this
construction was already implicit in Wright’s 1954 work on the quotients of AW∗-algebras by maximal
ideals [Wri54]. See also [SS08, §A.3]. The ultrafibers studied here also closely relate with Keisler and
Ben Yaacov’s work on randomizations of structures [Kei99, Ben13]. Indeed, on careful inspection, the
ultrafibers are exactly the fibers in the canonical realization of [Ben13, Theorem 3.11]. Hence, our work
gives a more operator-algebraic approach to randomizations for tracial von Neumann algebras.

Note in addition that [BIT24] developed direct integrals in the non-separable setting more gen-
erally by relating affine logic with continuous logic and in particular showed the existence of direct
integral decompositions for arbitrary (including non-separable) tracial von Neumann algebras [BIT24,
Corollary 29.10]. See [BIT24, §9] for a discussion of combining direct integrals and ultraproducts. See
also [BIT24, §20] for a general version of the result on unique distribution of theories, which works
for affine theories that are simplicial. As our goal is to present these results for an operator algebraic
audience, we focus here on the separable case.

Although here we argue using ultrafibers in order to minimize the model theory background needed
to understand the proof, we also point out another, more model-theoretic way to prove Theorem A in the
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4 D. Gao and D. Jekel

diffuse case using Ben Yaacov’s disintegration theorem [Ben13, Theorem 3.32]. Ben Yaacov’s theorem
deals with a two-sorted structure with an auxiliary sort representing the probability space used in the
randomization (for instance, the space (Ω, 𝜇) in a direct integral decomposition). Thus, to apply this
result, one seeks to upgrade the plain structure of a tracial von Neumann algebra into a structure with an
auxiliary sort for the center, which is a commutative tracial von Neumann algebra and hence corresponds
to a probability space. The key point for this approach (which distinguishes tracial von Neumann algebras
from certain other metric structures) is that the center is a definable set and the center-valued trace is a
definable function, which follows from Dixmier averaging as in [FHS13, Lemma 4.2]. Hence, the new
upgraded structure is definable in terms of the plain tracial von Neumann algebra structure. From this,
one can deduce that the center-valued interpretations of formulas are definable functions by similar
reasoning as [Ben13, Lemma 3.13]. We also remark that the disintegration result in [BIT24, Theorem
20.13] holds in greater generality, including situations where the fiberwise interpretations of formulas
cannot be expressed as definable functions with respect to the original language in any sense; such
definability is thus a stronger conclusion that requires stronger hypotheses.

The special case of Theorem A when all the fibers are the same, so that the direct integral over Ω
reduces to 𝐿∞(Ω, 𝜇)⊗𝑀 , is of particular note.

Corollary B. Let (𝑀, 𝜏𝑀 ) and (𝑁, 𝜏𝑁 ) be II1 factors, and let (Ω, 𝜇) be a standard Borel probability
space. If 𝐿∞(Ω, 𝜇)⊗(𝑀, 𝜏𝑀 ) ≡ 𝐿∞(Ω, 𝜇)⊗(𝑁, 𝜏𝑁 ), then (𝑀, 𝜏𝑀 ) ≡ (𝑁, 𝜏𝑁 ).

This is related to the problem, which has become known as Ozawa’s question due a discussion on
MathOverflow, of whether 𝐿∞(Ω, 𝜇)⊗𝑀 � 𝐿∞(Ω, 𝜇)⊗𝑁 implies 𝑀 � 𝑁 in general (this is an exercise
if we assume that M and N are separable); our result solves the analogous question for elementary
equivalence. In fact, we are able to give a simpler and more ‘algebraic’ proof of Corollary B than
the general case. In other words, we will be able to prove it from C∗-algebraic manipulations of
our generalized ultraproducts once we know that the Keisler–Shelah characterization of elementary
equivalence works for generalized ultrapowers (see Proposition C below).

Now let us briefly describe the generalized ultraproduct construction in the case of ultrapowers. It is
well known that ultrafilters on a (discrete) index set I are equivalent to pure states on ℓ∞(𝐼). From this
point of view, there is no need to restrict I to be a discrete measurable space. Thus, for a measure space
(Ω, 𝜇), we can consider a pure state U on 𝐿∞(Ω, 𝜇) as an ‘ultrafilter on a measure space’. Given a
tracial von Neumann algebra (𝑀, 𝜏), the ultrapower 𝑀U can then be defined in an analogous way. Take
the tracial state U ◦ (id ⊗𝜏) on the 𝐿∞(Ω, 𝜇)⊗𝑀 , and let 𝑀U be the algebra generated by the GNS
construction of this trace, which is a C∗-quotient of 𝐿∞(Ω, 𝜇)⊗𝑀 . This 𝑀U is a special case of the
ultrafiber construction described above; namely, it is the ultrafiber of 𝐿∞(Ω, 𝜇)⊗𝑀 associated to the
character U on 𝑁 = 𝐿∞(Ω, 𝜇). To give a short proof of Corollary B, we only need the following fact,
which allows us to extend the Keisler-Shelah characterization of elementary equivalence to the setting
of ultrapowers over measure spaces.

Proposition C. Let U be a pure state on 𝐿∞(Ω, 𝜇) for some measure space, and let (𝑀, 𝜏) be a tracial
von Neumann algebra. Then 𝑀U ≡ 𝑀 .

For Theorem A, we generalize this ultrapower construction by replacing 𝐿∞(Ω, 𝜇) inside 𝐿∞(Ω, 𝜇) ⊗
𝑀 with a general 𝑁 ⊆ 𝑀 such that N is contained in the center of M (for instance, N could be 𝐿∞(Ω, 𝜇)
inside a direct integral M). One of the key ingredients for all our results is the following analog of Łoś’s
theorem in this setting, which is closely related to [Ben13, Theorem 3.19]. We hope that our proof will
make the result accessible to operator algebraists.

Theorem D (Łoś theorem for ultrafibers). Let (𝑀, 𝜏) be a tracial von Neumann algebra, and let
𝑁 ⊆ 𝑍 (𝑀). Let 𝐸 : 𝑀 → 𝑁 be the trace-preserving conditional expectation. For each n-variate
formula 𝜙, let 𝜙𝑀

𝐸 be the N-valued interpretation of 𝜙 on elements of M using E in place of the trace
(see §3.2).
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Let U be a pure state on N and let 𝑀/𝐸,U = 𝑀/𝐼U be the ultrafiber (see §2.1). Let 𝑥 ∈ 𝑀𝑛 and let
𝜋𝐸,U : 𝑀 → 𝑀/𝐸,U be the quotient map. Then for each formula 𝜙, we have

𝜙𝑀 /𝐸,U
(𝜋𝐸,U (𝑥)) = U [𝜙𝑀

𝐸 (𝑥)] .

In §5, we point out that, while these generalized ultraproducts are a useful tool, they do not necessarily
produce new objects. Indeed, if we assume the continuum hypothesis, then we can show by standard
techniques that each ultrafiber of a measurable field (𝑀𝜔 , 𝜏𝜔) can be realized as a discrete ultraproduct
of some sequence of elements (𝑀𝜔𝑛 , 𝜏𝜔𝑛 ).

It is natural to ask to what extent these results generalize beyond the tracial setting – that is, to von
Neumann algebras with faithful normal states. Theorem D certainly applies for general metric structures,
and hence for von Neumann algebras with states as axiomatized in [Dab19], [AGHS25, §5]. Theorem A
relies on the fact that the center of ultraproducts is the ultraproduct of the center (see Proposition 2.8
and the proof of Proposition 4.3); this will fail for type III0 von Neumann algebras (see [AGHS25,
Fact 8.5]). There may also be difficulty in the type II∞ setting due to the lack of axiomatizability of this
class [AGHS25, Proposition 8.3]. However, we expect that the result will hold if the algebras and states
in the direct integral decomposition are tracial or III𝜆 for 𝜆 > 0.

We close with a word of motivation on why the notions from continuous model theory, such as
formulas, types and theories, are important for the study of operator algebras (other than for proving
Theorem A). Indeed, since complete theories correspond to elementary equivalence classes, which in
turn can be characterized in terms of ultraproducts, one might ask what we gain from formalizing the
notion of theories through sentences. One reason is to provide a topology; since complete theories can be
expressed as characters on a certain real C∗-algebra of sentences, the space of complete theories comes
with a natural weak-∗ topology. This topology can be characterized by the fact that the theory of an ultra-
product

∏
U 𝑀𝑖 is the ultralimit of the theories of 𝑀𝑖 . If we look at things purely in terms of elementary

equivalence classes (defined in terms of isomorphic ultrapowers), the topology could only be described
in terms of sequences or nets by using the condition Th(

∏
U 𝑀𝑖) = limU Th(𝑀𝐼 ), and it is not trans-

parent what the open sets are, why this condition defines a topology, why the space is Hausdorff, etc.
However, after defining theories properly using sentences, we obtain a compact metrizable space of com-
plete theories, which is actually crucial for proving Theorem A in the diffuse case. The key point is that
𝜔 ↦→ Th(𝑀𝜔) is a measurable map from the underlying probability space into the space of theories with
its Borel 𝜎-algebra, that is, Th(𝑀𝜔) is a random variable in the space of complete theories, and we show
that the distribution of Th(𝑀𝜔) is uniquely determined if

∫
Ω

𝑀𝜔 is given up to elementary equivalence.

1.3. Notation

We assume familiarity with C∗-algebras and von Neumann algebras. For background, refer to [AP16,
Tak79, Bla06, BO08]. We recall the following terminology and notation:
◦ A tracial von Neumann algebra is a pair (𝑀, 𝜏) where M is a (necessarily finite) von Neumann

algebra and 𝜏 is a faithful normal tracial state.
◦ An embedding of tracial von Neumann algebras is a trace-preserving ∗-homomorphism. Often M

and N have a preferred trace in context, and an embedding 𝑀 → 𝑁 will still be assumed to be
trace-preserving even if 𝜏 is not written explicitly.

◦ ‖·‖ signifies the operator norms on a von Neumann algebra or more generally a 𝐶∗-algebra.
◦ ‖·‖2,𝜙 denotes the 2-norm with respect to a given state 𝜙 – namely, ‖𝑥‖2,𝜙 = 𝜙(𝑥∗𝑥)1/2. In particular,

when a tracial state is given by context, then ‖·‖2 will denote its associated 2-norm.
◦ 𝑍 (𝑀) denotes the center of a von Neumann algebra M.
◦ 𝑀sa denotes the set of self-adjoint elements.
◦ 𝑀+ denotes the set of positive elements.
◦ 𝑈 (𝑀) denotes the set of unitary elements.
◦ (𝑀)1 denotes the unit ball of M with respect to operator norm.
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We also briefly recall a definition of direct integrals for tracial von Neumann algebras. Although
von Neumann’s work defines direct integrals of von Neumann algebras based on direct integrals of the
underlying Hilbert spaces, the direct integral can also be described directly in terms of algebra elements,
thanks to the axiomatic characterizations of tracial von Neumann algebras as tracial C∗-algebras whose
unit ball is complete in ‖·‖2 [AP16, Proposition 2.6.4]. This development is more suited to our purposes
and consistent with the general definition for metric structures used in [FG24, BIT24].

Definition 1.1 (Measurable fields of tracial von Neumann algebras). Let (Ω, 𝜇) be a probability space
(i.e., a measure space with 𝜇(Ω) = 1). Let (𝑀𝜔 , 𝜏𝜔) be a collection of separable tracial von Neumann
algebras indexed by 𝜔 ∈ Ω. A section is a function 𝑓 : Ω →

⊔
𝜔∈Ω 𝑀𝜔 with 𝑓 (𝜔) ∈ 𝑀𝜔 . Let (𝑒𝑛)𝑛∈N

be a sequence of sections such that

1. 𝑒1(𝜔) = 1.
2. For each 𝜔, (𝑒𝑛 (𝜔))𝑛∈N is dense in (𝑀𝜔)1 with respect to ‖·‖2,𝜏𝜔 .
3. For each n-variable ∗-polynomial p, the function 𝜔 ↦→ 𝜏𝜔 [𝑝(𝑒1 (𝜔), . . . , 𝑒𝑛 (𝜔))] is measurable.

Then we say that (𝑀𝜔 , (𝑒𝑛 (𝜔))𝑛∈N)𝜔∈Ω is a measurable field of (separable) tracial von Neumann
algebras.

Definition 1.2. Continue the same setup as Definition 1.1.

1. A section 𝑓 : 𝜔 →
⊔

𝜔∈Ω 𝑀𝜔 is measurable if 𝜔 ↦→ 𝜏𝜔 (𝑒𝑛 (𝜔) 𝑓 (𝜔)) is measurable for each 𝑛 ∈ N.
2. A section 𝑓 : 𝜔 →

⊔
𝜔∈Ω 𝑀𝜔 is bounded if 𝜔 ↦→ ‖ 𝑓 (𝜔)‖ is bounded.

3. A simple section is a section of the form
∑𝑛

𝑗=1 𝜆 𝑗1𝑆 𝑗 (𝜔)𝑒𝑛 (𝜔) where 𝜆 𝑗 ∈ C and (𝑆 𝑗 )
𝑛
𝑗=1 is a

measurable partition of Ω.

Fact 1.3. Continue the same setup as Definition 1.1.

1. If (𝑆 𝑗 )
𝑚
𝑗=1 is a measurable partition of Ω and 𝑝 𝑗 is a non-commutative ∗-polynomial in n vari-

ables, then
∑𝑚

𝑗=1 1𝑆 𝑗 (𝜔)𝜏𝜔 [𝑝 𝑗 (𝑒1(𝜔), . . . , 𝑒𝑛 (𝜔))] is a measurable section, so in particular, simple
sections are measurable.

2. If f is a measurable section, then 𝜔 ↦→ ‖ 𝑓 (𝜔)‖𝜏𝜔 ,2 is measurable since

‖ 𝑓 (𝜔)‖𝜏𝜔 ,2 = sup
𝑛∈N

1𝑒𝑛 (𝜔)≠0
|𝜏𝜔 ( 𝑓 (𝜔)𝑒𝑛 (𝜔)) |

‖𝑒𝑛 (𝜔)‖2,𝜏𝜔
.

Hence, by polarization, 𝜔 ↦→ 𝜏𝜔 ( 𝑓 (𝜔)
∗𝑔(𝜔)) is measurable whenever f and g are measurable

sections.
3. If f is a measurable section, then 𝜔 ↦→ ‖ 𝑓 (𝜔)‖ is measurable since

‖ 𝑓 (𝜔)‖ = sup
𝑛,𝑚

1𝑒𝑛 (𝜔)≠01𝑒𝑚 (𝜔)≠0
|𝜏𝜔 (𝑒𝑛 (𝜔)

∗ 𝑓 (𝜔)𝑒𝑚(𝜔)) |

‖𝑒𝑛 (𝜔)‖𝜏𝜔 ,2‖𝑒𝑚(𝜔)‖𝜏𝜔 ,2
,

and 𝜏𝜔 (𝑒𝑛 (𝜔)
∗ 𝑓 (𝜔)𝑒𝑚(𝜔)) = 𝜏𝜔 ( 𝑓 (𝜔) [𝑒𝑚(𝜔)𝑒𝑛 (𝜔)

∗]) is measurable by (1) and (2).
4. If 𝑓𝑛 are measurable sections, f is a section, and lim𝑛→∞ ‖ 𝑓𝑛 (𝜔) − 𝑓 (𝜔)‖𝜏𝜔 ,2 = 0 for a.e. 𝜔, then f

is a measurable section.
5. Every bounded measurable section is a pointwise-‖·‖2 limit of simple sections 𝑓𝑛 such that

sup𝜔 ‖ 𝑓𝑛 (𝜔)‖ ≤ sup𝜔 ‖ 𝑓 (𝜔)‖. Indeed, by rescaling, assume without loss of generality that
‖ 𝑓 (𝜔)‖ ≤ 1. Then define 𝑚(𝜔, 𝑛) recursively with 𝑚(𝜔, 1) = 1 and

𝑚(𝜔, 𝑛 + 1) =

{
𝑛 + 1, if ‖𝑒𝑛+1 (𝜔) − 𝑓 (𝜔)‖2,𝜏𝜔 < ‖𝑒𝑚(𝜔,𝑛) (𝜔) − 𝑓 (𝜔)‖2,𝜏𝜔
𝑚(𝜔, 𝑛), else.

Then 𝑓𝑛 (𝜔) := 𝑒𝑚(𝜔,𝑛) (𝜔) is a simple section and ‖ 𝑓𝑛 (𝜔) − 𝑓 (𝜔)‖2,𝜏𝜔 → 0.
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6. Bounded measurable sections form a ∗-algebra under pointwise multiplication. To show closure
under products, let f and g by bounded measurable sections and let 𝑓𝑛 and 𝑔𝑛 be approximating
sequences of simple sections as in (6). Then 𝑓𝑛𝑔𝑛 is a measurable section by (1). We also have
‖ 𝑓𝑛 (𝜔)𝑔𝑛 (𝜔) − 𝑓 (𝜔)𝑔(𝜔)‖𝜏𝜔 ,2 → 0 for each 𝜔, so 𝑓 𝑔 is measurable by (5). Closure under addition
and adjoint are left to the reader.

Definition 1.4 (Direct integrals of tracial von Neumann algebras). Let (Ω, 𝜇) and (𝑀𝜔 , (𝑒𝑛 (𝜔))𝑛∈N)𝜔∈Ω

be as in Definition 1.1. The direct integral is the pair (𝑀, 𝜏) given as follows:

1. M is the set of bounded measurable sections modulo equality almost everywhere.
2. The ∗-algebra operations on M are defined pointwise on Ω.
3. The norm on M is given by ‖ 𝑓 ‖ = esssup𝜔∈Ω ‖ 𝑓 (𝜔)‖.
4. The trace 𝜏 is given by 𝜏( 𝑓 ) =

∫
Ω
𝜏𝜔 ( 𝑓 (𝜔)) 𝑑𝜇(𝜔).

To see that (𝑀, 𝜏) is a tracial von Neumann algebra via [AP16, Proposition 2.6.4], one first checks
it is a C∗-algebra with the norm given by the essential supremum as above, which is immediate once
we know that 𝜔 ↦→ ‖ 𝑓 (𝜔)‖ is measurable for each 𝑓 ∈ 𝑀 . Then 𝜏 is faithful since 𝜏( 𝑓 ∗ 𝑓 ) = 0
implies that 𝜏𝜔 ( 𝑓 (𝜔)

∗ 𝑓 (𝜔)) = 0, and hence, 𝑓 (𝜔) = 0 almost everywhere. Finally, for completeness
of the unit ball in ‖·‖2,𝜏 , suppose that 𝑓𝑛 is Cauchy in ‖·‖2,𝜏 . Take a subsequence 𝑓𝑛(𝑘) such that∑

𝑘 ‖ 𝑓𝑛(𝑘) − 𝑓𝑛(𝑘+1) ‖
2
2,𝜏 < ∞, and observe that 𝑓𝑛(𝑘) (𝜔) converges in ‖·‖2,𝜏𝜔 almost everywhere to

some 𝑓 (𝜔). By Fact 1.3 (5), f is measurable. It also follows from standard measure-theory arguments
that 𝑓𝑛 → 𝑓 in ‖·‖2,𝜏 .

We remark that the set of measurable sections, and hence the direct integral, can depend on the
choice of 𝑒𝑛 (𝜔). However, as in [BIT24, Remark 8.13], if two sequences (𝑒𝑛 (𝜔))𝑛∈N and (𝑒′𝑛 (𝜔))𝑛∈N
are measurable with respect to each other, then a bounded section f is measurable with respect to (𝑒𝑛)𝑛∈N
if and only if it is measurable with respect to (𝑒′𝑛)𝑛∈N in light of Fact 1.3 (5) and (4), and hence, the
direct integrals are the same.

1.4. Organization

The rest of the paper is organized as follows:

◦ §2 explains the construction of ultrafibers and ultraproducts associated to pure states on a commutative
von Neumann algebra, and how to deduce Corollary B from Proposition C.

◦ §3 describes the N-valued interpretation of formulas for some 𝑁 ⊆ 𝑍 (𝑀) and proves Theorem D.
◦ §4 defines the distribution of theories and shows that it can be recovered when a tracial von Neumann

algebra is given up to elementary equivalence, thus proving Theorem A.
◦ §5 shows that under continuum hypothesis, an ultrafiber associated to a separable direct integral will

in fact be isomorphic to an ultraproduct over the natural numbers of some of the fibers.
◦ §6 applies the ultrafiber construction to ultraproducts of random matrix algebras. This gives a new

way of making a ‘deterministic selection’ of elements in an ultraproduct representing the large-n limit
of random matrix models, which sidesteps measurability problems inherent in the study of ultralimits.

2. Ultrafibers and generalized ultrapowers

2.1. Construction of ultrafibers

As motivation, we recall the relationship between ultrafilters on discrete sets and characters. A character
on a commutative (unital) C∗-algebra is a multiplicative linear functional into the complex numbers. It
is a standard fact that characters are equivalent to pure states, or extreme points in the spaces of states
(positive linear functionals of norm 1).

For an ultrafilter U on an index set I, the ultralimit limU defines a character on 𝑙∞(𝐼). If U ≠ V , then
there is a set 𝐴 ⊆ 𝐼 with 𝐴 ∈ U but 𝐴 ∉ V , so limU 1𝐴 = 1 but limV 1𝐴 = 0, whence the map U ↦→ limU

https://doi.org/10.1017/fms.2025.10066 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10066


8 D. Gao and D. Jekel

is injective. In fact, it is also surjective, for if 𝜎 is a character on 𝑙∞(𝐼), then 𝜎 must send any projection
to either 0 or 1. As such, it is easy to verify that

U = {𝐴 ⊆ 𝐼 : 𝜎(1𝐴) = 1}

is an ultrafilter. For this ultrafilter, clearly limU 1𝐴 = 𝜎(1𝐴) for any projection 1𝐴 in ℓ∞(𝐼). As
projections densely span a von Neumann algebra, we see that limU = 𝜎. Therefore, we shall use
ultrafilters on I and characters on 𝑙∞(𝐼) interchangeably and use the same symbol to denote both. We
shall further generalize to use U and V to denote characters on arbitrary commutative von Neumann
algebras.
Definition 2.1. Let M be a finite von Neumann algebra, 𝑁 ⊆ 𝑍 (𝑀) be a subalgebra of its center,
𝐸 : 𝑀 → 𝑁 be a normal, tracial, faithful conditional expectation, and U be a character on N. The
ultrafiber of M w.r.t. E and U , denoted by 𝑀/𝐸,U , is given by

𝑀/𝐸,U = 𝑀/𝐼𝐸,U ,

where 𝐼𝐸,U is the closed ideal given by

𝐼𝐸,U = {𝑥 ∈ 𝑀 : U (𝐸 (𝑥∗𝑥)) = 0}.

𝑀/𝐸,U shall always be regarded as equipped with the faithful tracial state 𝜏𝐸,U given by

𝜏𝐸,U (𝑥 + 𝐼𝐸,U ) = U (𝐸 (𝑥)).

Consider the case where M is a direct sum ⊕𝑖∈𝐼 𝑀𝑖 of tracial von Neumann algebra (𝑀𝑖 , 𝜏𝑖) over
some index set I; suppose 𝑁 = ℓ∞(𝐼) and 𝐸 : 𝑀 → 𝑁 is given by application of the trace on each
direct summand. Suppose U is the character given by the ultralimit associated to an ultrafilter on I,
which we shall also denoted by U . Then it is easy to verify that 𝑀/𝐸,U =

∏
U 𝑀𝑖 . Hence, the ultrafiber

construction generalizes the classical ultraproducts. We remark here that although our primary interest
is in tracial von Neumann algebras, it is important in Definition 2.1 not to assume that M admits a
faithful tracial state; indeed, if M had a faithful tracial state, then so would N, but if I is an uncoutable
discrete set, then ℓ∞(𝐼) does not have a faithful state.
Proposition 2.2. (𝑀/𝐸,U , 𝜏𝐸,U ) is a tracial von Neumann algebra. Furthermore, any element of norm
1 in 𝑀/𝐸,U can be lifted to an element of norm 1 in M.

The proof follows similar lines as the proof that classical ultraproducts are tracial von Neumann
algebras in [AP16, Proposition 5.4.1]. We recall two ingredients from classical von Neumann algebra
theory.
Lemma 2.3. Let N be a commutative von Neumann algebra, U be a character on N, 𝑓 ∈ 𝑁 . For any
𝜖 > 0, there exists a projection 𝑝 ∈ 𝑁 s.t. U (𝑝) = 1 and ‖ 𝑓 𝑝 − U ( 𝑓 )𝑝‖∞ ≤ 𝜖 .
Proof. Let Ω be the spectrum of N, and we shall regard f as a continuous function on Ω. Then there
exists an open neighborhood 𝑂 ⊆ Ω of U s.t. | 𝑓 (𝑡) − U ( 𝑓 ) | ≤ 𝜖 whenever 𝑡 ∈ 𝑂. As clopen sets form a
basis of topology for Ω, O can be chosen to be clopen. Letting 𝑝 = 1𝑂 concludes the proof. �

Lemma 2.4. Let M be a finite von Neumann algebra, 𝑁 ⊆ 𝑍 (𝑀) be a subalgebra of its center,
𝐸 : 𝑀 → 𝑁 be a normal, tracial, faithful conditional expectation. Then ‖𝑥‖𝐸,2,∞ = ‖𝐸 (𝑥∗𝑥)‖1/2

∞

defines a norm on M and (𝑀)1 is complete under ‖ · ‖𝐸,2,∞.
Proof. That ‖ · ‖𝐸,2,∞ defines a norm is an easy exercise. To prove completeness, we let {𝜑𝑖}𝑖∈𝐼 be a
maximal collection of normal states on N with disjoint supports. Then

∑
𝑖∈𝐼 supp(𝜑𝑖) = 1, so the direct

sum of the GNS representations of M, associated with 𝜑𝑖 ◦ 𝐸 ,

𝜋 =
⊕
𝑖∈𝐼

𝜋𝜑𝑖◦𝐸
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is a faithful normal representation. Thus, a uniformly dense subset of positive linear functionals on M
is of the form

𝜙(𝑥) =
∑
𝑖∈𝐼0

𝜑𝑖 (𝐸 (𝑦𝑖𝑥)),

where 𝐼0 ⊆ 𝐼 is a finite subset and 𝑦𝑖 ∈ 𝑀+ is supported on supp(𝜑𝑖).
Now, let (𝑥𝑛) ⊆ (𝑀)1 be a Cauchy sequence under ‖ · ‖𝐸,2,∞. For any finite subset 𝐼0 ⊆ 𝐼 and 𝑦𝑖 ∈ 𝑀+

supported on supp(𝜑𝑖), we have∑
𝑖∈𝐼0

𝜑𝑖 (𝐸 (𝑦𝑖 (𝑥𝑛 − 𝑥𝑚)
∗(𝑥𝑛 − 𝑥𝑚))) ≤

∑
𝑖∈𝐼0

‖𝑦𝑖 ‖∞𝜑𝑖 (𝐸 ((𝑥𝑛 − 𝑥𝑚)
∗(𝑥𝑛 − 𝑥𝑚)))

≤
∑
𝑖∈𝐼0

‖𝑦𝑖 ‖∞‖𝑥𝑛 − 𝑥𝑚‖
2
𝐸,2,∞

→ 0

as 𝑛, 𝑚 → ∞. Hence, as ‖𝑥𝑛‖∞ ≤ 1 for all n, we see that 𝑥𝑛 → 𝑥 in the strong∗ topology for some
𝑥 ∈ (𝑀)1.

We claim that ‖𝑥𝑛 − 𝑥‖2
𝐸,2,∞ → 0 to conclude the proof. For any 𝜖 > 0, there exists 𝑁 > 0 s.t.

‖𝑥𝑛 − 𝑥𝑚‖
2
𝐸,2,∞ ≤ 𝜖 whenever 𝑛, 𝑚 ≥ 𝑁; that is, ‖𝐸 ((𝑥𝑛 − 𝑥𝑚)

∗(𝑥𝑛 − 𝑥𝑚))‖∞ ≤ 𝜖 . As 𝑥𝑚 → 𝑥
in the strong∗ topology, (𝑥𝑛 − 𝑥𝑚)

∗(𝑥𝑛 − 𝑥𝑚) → (𝑥𝑛 − 𝑥)∗(𝑥𝑛 − 𝑥) in the strong∗ topology. As E is
normal, we have 𝐸 ((𝑥𝑛 − 𝑥𝑚)

∗(𝑥𝑛 − 𝑥𝑚)) → 𝐸 ((𝑥𝑛 − 𝑥)∗(𝑥𝑛 − 𝑥)) in the strong∗ topology, whence
‖𝐸 ((𝑥𝑛 − 𝑥)∗(𝑥𝑛 − 𝑥))‖∞ ≤ 𝜖 ; that is, ‖𝑥𝑛 − 𝑥‖2

𝐸,2,∞ ≤ 𝜖 whenever 𝑛 ≥ 𝑁 . The concludes the proof. �

Proof of Proposition 2.2. Let 𝑞 : 𝑀 → 𝑀/𝐸,U = 𝑀/𝐼𝐸,U be the natural quotient map. We claim that
𝑞((𝑀)1) is complete under ‖ · ‖𝜏𝐸,U ,2. Granted the claim, then as 𝑞((𝑀)1) is contained in (𝑀/𝐸,U )1 and
contains all elements of the latter space of operator norm strictly smaller than 1, consequently dense in
the latter space under ‖ · ‖𝜏𝐸,U ,2, we must have 𝑞((𝑀)1) = (𝑀/𝐸,U )1 and it is complete. Whence, it is a
tracial von Neumann algebra with 𝜏𝐸,U a faithful, normal, tracial state, by [AP16, Proposition 2.6.4].

To prove the claim, we let (𝑥𝑛) ⊆ 𝑞((𝑀)1) be a Cauchy sequence under ‖ · ‖𝜏𝐸,U ,2. By taking a
subsequence if necessary, we may assume ‖𝑥𝑛 − 𝑥𝑛+1‖𝜏𝐸,U ,2 ≤ 2−(𝑛+1) . We shall construct by induction
a sequence (xn ) ⊆ (𝑀)1, with 𝑞(xn ) = 𝑥𝑛 and ‖xn − xn+1 ‖𝐸,2,∞ ≤ 2−𝑛. We start with an arbitrary
x1 ∈ (𝑀)1 with 𝑞(x1) = 𝑥1. Now, assume xn up to some n have been constructed, let yn+1 ∈ (𝑀)1 be
arbitrarily chosen with 𝑞(yn+1) = 𝑥𝑛+1. Since,

U (𝐸 ((xn − yn+1)
∗(xn − yn+1))) = ‖𝑥𝑛 − 𝑥𝑛+1‖

2
𝜏𝐸,U ,2 ≤ 2−2(𝑛+1)

by Lemma 2.3, there exists a projection 𝑝 ∈ 𝑁 s.t. U (𝑝) = 1 and

‖𝐸 ((xn − yn+1)
∗(xn − yn+1))𝑝‖∞ ≤ 2−2𝑛.

Let xn+1 = 𝑝yn+1 + (1 − 𝑝)xn . Since both yn+1 and xn have operator norms bounded by 1,
xn+1 ∈ (𝑀)1 as well. We have

‖xn − xn+1 ‖
2
𝐸,2,∞ = ‖𝐸 ((xn − xn+1)

∗(xn − xn+1))‖∞

= ‖𝐸 ((𝑝xn − 𝑝yn+1)
∗(𝑝xn − 𝑝yn+1))‖∞

= ‖𝐸 ((xn − yn+1)
∗(xn − yn+1))𝑝‖∞

≤ 2−2𝑛.
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We also have

U (𝐸 ((xn+1 −yn+1)
∗(xn+1 −yn+1))) = U (𝐸 (((1− 𝑝)xn − (1− 𝑝)yn+1)

∗((1− 𝑝)xn − (1− 𝑝)yn+1)))

= U ((1 − 𝑝)𝐸 ((xn − yn+1)
∗(xn − yn+1)))

= 0,

where in the final equality, we used that U (𝑝) = 1 and therefore U (1− 𝑝) = 0. Thus, xn+1 −yn+1 ∈ 𝐼𝐸,U
and 𝑞(xn+1) = 𝑞(yn+1) = 𝑥𝑛+1. This concludes the inductive construction.

By Lemma 2.4, xn → x for some x ∈ (𝑀)1 in ‖ · ‖𝐸,2,∞. Let 𝑥 = 𝑞(x). We shall show that 𝑥𝑛 → 𝑥
in ‖ · ‖𝜏𝐸,U ,2 to conclude the proof of the claim. Indeed,

‖𝑥𝑛 − 𝑥‖2
𝜏𝐸,U ,2 = U (𝐸 ((xn − x)∗(xn − x)))

≤ ‖𝐸 ((xn − x)∗(xn − x))‖∞

= ‖xn − x‖𝐸,2,∞

→ 0.

This proves the claim. �

Definition 2.5 (Generalized ultrapowers). Let (𝑀, 𝜏) be a tracial von Neumann algebra, A be an abelian
von Neumann algebra, and U be a character on A. The generalized ultrapower of M with respect to U ,
denoted by 𝑀U , is given by

𝑀U = (𝐴 ⊗ 𝑀)/𝐸,U ,

where 𝐸 : 𝐴 ⊗ 𝑀 → 𝐴 is given by 𝐸 = Id ⊗ 𝜏. We shall denote the canonical trace on 𝑀U by 𝜏U . The
map that sends 𝑥 ∈ 𝑀 to the element represented by 1𝐴 ⊗ 𝑥 in 𝑀U is a trace-preserving embedding and
shall be called the diagonal embedding.

Remark 2.6. Consider the case where 𝐴 = ℓ∞(𝐼), where I is an index set and U is the character
given by the ultralimit associated to an ultrafilter on I, which we shall also denote by U . Then 𝑀U ,
as defined here, is easily seen to be the same as the ordinary ultrapower of M with respect to U . The
diagonal embedding is also the same map as in the ordinary case. Hence, this construction generalizes
the ordinary ultrapowers.

2.2. Factoriality and centers

The center of 𝑀/𝐸,U behaves as one would expect based on the case of ultraproducts over discrete index
sets [FHS13, Corollary 4.3]. To set up the proof, we first recall the center-valued trace and the Dixmier
averaging theorem.

Theorem 2.7. (Generalized Dixmier averaging theorem [Dix81, III.5, Cor. of Thm. 1]) Let M be a finite
von Neumann algebra with center 𝑍 (𝑀). Then there is a unique normal, faithful, tracial conditional
expectation 𝐸 : 𝑀 → 𝑍 (𝑀), called the center-valued trace. Furthermore, for each 𝑥 ∈ 𝑀 , there
exists a sequence 𝑥𝑖 , where each 𝑥𝑖 is a finite convex combination of unitary conjugates of x, such that
𝑥𝑖 → 𝐸 [𝑥] in ‖·‖∞.

Now the center of the ultrafiber can be evaluated as follows.

Proposition 2.8. Let M be a finite von Neumann algebra, 𝑁 ⊆ 𝑍 (𝑀) be a subalgebra of its center,
𝐸 : 𝑀 → 𝑁 be a normal, tracial, faithful conditional expectation, and U be a character on N. Let
𝜋𝐸,U : 𝑀 → 𝑀/𝐸,U be the canonical projection map. Then

𝑍 (𝑀/𝐸,U ) = 𝜋𝐸,U (𝑍 (𝑀)) � 𝑍 (𝑀)/𝐸 |𝑍 (𝑀 ) ,U .

In particular, if 𝑁 = 𝑍 (𝑀) and E is the center-valued trace, then 𝑀/𝐸,U is a factor.
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Proof. First, we show that 𝑍 (𝑀/𝐸,U ) = 𝜋𝐸,U (𝑍 (𝑀)). It is immediate that 𝜋𝐸,U (𝑍 (𝑀)) ⊆ 𝑍 (𝑀/𝐸,U )
since 𝜋𝐸,U is a ∗-homomorphism. Conversely, suppose that 𝑥 ∈ 𝑍 (𝑀/𝐸,U ), and fix x ∈ 𝑀 with
𝜋𝐸,U (x) = 𝑥. Let 𝐸0 : 𝑀 → 𝑍 (𝑀) be the center-valued trace. By the generalized Dixmier averaging
theorem, there is a sequence

x𝑖 =
1
𝑛𝑖

𝑛𝑖∑
𝑗=1

u𝑖, 𝑗x𝑖u
∗
𝑖, 𝑗

of convex combinations of unitary conjugates of x such that x𝑖 → 𝐸0(x) ∈ 𝑍 (𝑀) in norm. Since
𝜋𝐸,U (u𝑖, 𝑗 ) ∈ 𝑈 (𝑀/𝐸,U ) and 𝜋𝐸,U (x) = 𝑥 ∈ 𝑍 (𝑀/𝐸,U ), we see that 𝜋𝐸,U (u𝑖, 𝑗xu

∗
𝑖, 𝑗 ) = 𝜋𝐸,U (x).

Hence, 𝜋𝐸,U (x𝑖) = 𝜋𝐸,U (x), and so 𝜋𝐸,U (𝐸0 (x)) = 𝑥, which implies that 𝑥 ∈ 𝜋𝐸,U (𝑍 (𝑀)) as desired.
Next, we give an isomorphism 𝜋𝐸,U (𝑍 (𝑀)) � 𝑍 (𝑀)/𝐸 |𝑍 (𝑀 ) ,U . First, note that 𝐸 |𝑍 (𝑀 ) is a faithful

normal conditional expectation from 𝑍 (𝑀) onto N, and so 𝑍 (𝑀)/𝐸 |𝑍 (𝑀 ) ,U is well defined. Two elements
x and y in 𝑍 (𝑀) represent the same element of 𝑍 (𝑀)/𝐸 |𝑍 (𝑀 ) ,U if and only if 𝐸 ((x − y)∗(x − y)) = 0
if and only if x and y represent the same element in 𝑀/𝐸,U . Hence, there is a well-defined injective
∗-homomorphism 𝑍 (𝑀)/𝐸 |𝑍 (𝑀 ) ,U → 𝑀/𝐸,U , and its image is clearly equal to 𝜋𝐸,U (𝑍 (𝑀)).

In the case that 𝑁 = 𝑍 (𝑀), then 𝑍 (𝑀)/𝐸 |𝑍 (𝑀 ) ,U � C since U is a pure state on 𝑍 (𝑀), and hence
𝑍 (𝑀/𝐸,U ) � C, so 𝑀/𝐸,U is a factor. �

2.3. Proof of Corollary B from Proposition C

Now we are ready to give a short proof of Corollary B showing that if M and N are II1 factors
and 𝑀 ⊗ 𝐿∞[0, 1] ≡ 𝑁 ⊗ 𝐿∞[0, 1], then 𝑀 ≡ 𝑁 . We state it here in a slightly more general form.
The only ingredients needed are the Keisler–Shelah theorm for ordinary ultraproducts, the generalized
ultraproduct construction and Proposition C which shows that M is elementarily equivalent to each of
its generalized ultrapowers, which we will be proven later in Proposition 3.20.

Proposition 2.9. Let M and N be II1 factors. Let A and B be diffuse commutative tracial von Neumann
algebras. If 𝑀⊗𝐴 ≡ 𝑁⊗𝐵, then 𝑀 ≡ 𝑁 .

Proof of Proposition 2.9 / Corollary B. Since 𝐴⊗𝑀 ≡ 𝐵⊗𝑁 , the Keisler–Shelah theorem implies that
𝐴 ⊗ 𝑀 ≡ 𝐵 ⊗ 𝑁 admit isomorphic ultrapowers. In particular, there exists a character U on some abelian
von Neumann algebra C s.t. there exists a trace-preserving isomorphism 𝜋 : (𝐴 ⊗ 𝑀)U → (𝐵 ⊗ 𝑁)U .
Since M is a factor, 𝑍 (𝐴 ⊗ 𝑀) = 𝐴, so by Proposition 2.8, the center of (𝐴 ⊗ 𝑀)U is 𝐴U . Similarly,
𝑍 ((𝐵 ⊗ 𝑁)U ) = 𝐵U . Hence, 𝜋 must restrict to a trace-preserving isomorphism between 𝐴U and 𝐵U . We
may thus identify these algebras via 𝜋.

Let V be any character on 𝐴U = 𝐵U . Let E denote the center-valued trace of (𝐴 ⊗ 𝑀)U as well as
the center-valued trace of (𝐵 ⊗ 𝑁)U . We again identify the two algebras via 𝜋 and note that the 𝜋 must
also preserve the center-valued trace. Hence, we must have

[(𝐴 ⊗ 𝑀)U ]/𝐸,V = [(𝐵 ⊗ 𝑁)U ]/𝐸,V .

Note that (𝐴 ⊗ 𝑀)U is, by definition, a quotient of 𝐶 ⊗ 𝐴 ⊗ 𝑀 . Let the natural quotient map be
𝑞 : 𝐶 ⊗ 𝐴 ⊗ 𝑀 → (𝐴 ⊗ 𝑀)U . Then,

[(𝐴 ⊗ 𝑀)U ]/𝐸,V = (𝐶 ⊗ 𝐴 ⊗ 𝑀)/𝑞−1 (𝐼𝐸,V ).

We also have

𝑞−1 (𝐼𝐸,V ) = {𝑥 ∈ 𝐶 ⊗ 𝐴 ⊗ 𝑀 : V (𝐸 (𝑞(𝑥∗𝑥))) = 0}.
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It follows from Dixmier averaging as in the proof of Proposition 2.8 that 𝐸 ◦ 𝑞 = 𝑞 ◦ (Id⊗ Id⊗ 𝜏). Since
q restricts to a *-homomorphism 𝐶 ⊗ 𝐴 → 𝐴U , we see that V ◦ 𝑞 |𝐶⊗𝐴 is a character on 𝐶 ⊗ 𝐴. Hence,

𝑞−1 (𝐼𝐸,V ) = 𝐼Id⊗Id⊗𝜏,V◦𝑞 .

But this means [(𝐴 ⊗ 𝑀)U ]/𝐸,V = 𝑀V◦𝑞 . Similarly, [(𝐵 ⊗ 𝑁)U ]/𝐸,V is a generalized ultrapower of
N as well. Hence, M and N admit generalized ultrapowers that are isomorphic, and so 𝑀 ≡ 𝑁 by
Proposition C and the transitivity of elementary equivalence. �

3. Łoś’s theorem and elementary equivalence

3.1. Model theory background

To state and prove Łoś’s theorem in this section, we must first review some background from continuous
model theory, including formulas, sentences and theories. As this section is largely for readers who are
less familiar with model theory, we aim to give minimal working definitions of the concepts for tracial
von Neumann algebras, rather than completely general and proper definitions. Unlike [BBHU08], we
do not aim to describe metric structures in general. Unlike [FHS14a], we do not need to prove that
tracial von Neumann algebras fit into the general framework of metric structures (i.e., that they can
be axiomatized in some metric language) since this has already been done. Hence, we can avoid the
technicalities of setting up the sorts or domains, and defining the addition, multiplication, and adjoint
functions on these domains, that were used in [FHS14a], by simply working on the unit ball. We remark
that another axiomatization was given in [BIT24, Proposition 29.4] which works entirely on the unit ball
and uses a universal C∗-algebra to define the function symbols. For further background on continuous
model theory, especially for tracial von Neumann algebras, refer to [BBHU08, FHS14a, Gol23, Jek23,
Har23, GH23].

Formulas in continuous logic are analogous to formulas in classical first-order logic – that is,
expressions composed of basic statements by applying quantifiers (for all, there exists) and connectives
(and, or, not, if/then, etc.). The basic statements depend on the category of objects that we are working
with. The signature gives the operations and relations for the category, which are used to generate the
corresponding language, the set of formulas. For instance, for fields, there are binary operations + and
×, 0-ary operations (constant symbols) 0 and 1, and the relation =, so a basic statement in variables x
and y might be 𝑥 · (𝑦 + 𝑧) = 𝑥 + 𝑦. Then first-order statements for fields are obtained using quantifiers
and connectives. In continuous model theory, we make the following changes:

◦ Instead of true/false-valued predicates, we consider real-valued predicates.
◦ Instead of logical operations that input and output true/false values, the connectives are continuous

functions R𝑘 → R.
◦ Instead of ∀ and ∃, the quantifiers are sup and inf.

Definition 3.1. Let X be an infinite set. Formulae in the language of tracial von Neumann algebras with
variables from the set X are all formal expressions constructed recursively as follows:

1. A basic formula is an expression of the form 𝜑 = Re tr(𝑝(𝑥1, . . . , 𝑥𝑛)) and 𝜑 = Im tr(𝑝(𝑥1, . . . , 𝑥𝑛))
are formulae, for any ∗-polynomial p in variables 𝑥1, . . . , 𝑥𝑛 from X.

2. If 𝜑𝑖 is a formula for all 1 ≤ 𝑖 ≤ 𝑛 and if 𝑓 : R𝑘 → R is continuous, then 𝜑 = 𝑓 (𝜑1, · · · , 𝜑𝑘 ) is a
formula.

3. If 𝜑 is a formula and 𝑦 ∈ 𝑋 , then sup𝑦 𝜑 and inf𝑦 𝜑 are formulas.

Example 3.2. An example of a formula would be

𝜑 = inf
𝑧
(exp(sup

𝑦
Re tr(𝑥𝑦 − 𝑧3)) − Im tr((𝑧 + 𝑥)4).
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When we evaluate this formula in a particular tracial von Neumann algebra M, the suprema and infima
will be taken over the unit ball.

In a formula, each occurrence of a variable is either free or bound to a quantifier sup or inf. In basic
formulas, all occurrences of variables are free, and when applying connectives, the freeness or boundness
of each occurrence of a variable is preserved. When applying sup𝑦 or inf𝑦 , all free occurrences of the
variable y inside the formula become bound to the new quantifier, and the freeness or boundness of
the others remains unchanged. It is possible that some variable occurs multiple times in a formula and
one occurrence is bound to a quantifier while another occurrence is not – for instance, if we wrote
𝜏(𝑥) − sup𝑥 𝜏(𝑥𝑦). However, in this case, we could rename the bound occurrence of x as z and use
the equivalent expression 𝜏(𝑥) − sup𝑧 𝜏(𝑧𝑦). Thus, we will always assume that our formulas have a
distinct variable name associated to each quantifier. Moreover, we will usually list the free variables as
arguments for each formula, so that

𝜑(𝑥1, . . . , 𝑥𝑛)

will usually denote a formula whose free variables are {𝑥1, . . . , 𝑥𝑛}, and more generally a formula whose
free variables are a subset of {𝑥1, . . . , 𝑥𝑛}.

Just like non-commutative polynomials, formulas for tracial von Neumann algebra are formal ex-
pressions, but they can be evaluated on particular elements in a particular von Neumann algebra M by
plugging in operators into the non-commutative polynomials and evaluating the suprema and infima
over the unit ball of M. (In fact, one can define formulas with quantifiers sup𝑥∈(𝑀 )𝑟

and inf𝑥∈(𝑀 )𝑟 for
each 𝑟 > 0; but by a change of variables 𝑥 ↦→ 𝑥/𝑟 , this can be transformed into a supremum or infimum
over the unit ball, hence here we only consider the unit ball.)

Definition 3.3 (Interpretation of formulas). Let 𝜑(𝑥1, . . . , 𝑥𝑛) be a formula for tracial von Neumann
algebras. Let M = (𝑀, 𝜏) be a tracial von Neumann algebra. Then the interpretation of 𝜑 in M is the
mapping 𝜙M : 𝑀𝑛 → R described as follows:

◦ If 𝜑(𝑥1, . . . , 𝑥𝑛) = Re tr(𝑝(𝑥1, . . . , 𝑥𝑛)) is a basic formula, then 𝜑M(𝑥1, . . . , 𝑥𝑛) = 𝜏(𝑝(𝑥1, . . . , 𝑥𝑛));
that is, we evaluate the polynomial on the given 𝑥1, . . . , 𝑥𝑛 ∈ 𝑀 .

◦ If 𝜑 = 𝑓 (𝜑1, . . . , 𝜑𝑘 ) for a connective 𝑓 : R𝑘 → R, where 𝜑𝑖 = 𝜑𝑖 (𝑥1, . . . , 𝑥𝑛), then

𝜑M (𝑥1, . . . , 𝑥𝑛) = 𝑓 (𝜑M(𝑥1, . . . , 𝑥𝑛), . . . , 𝜑
M
𝑘 (𝑥1, . . . , 𝑥𝑛)).

◦ If 𝜑(𝑥1, . . . , 𝑥𝑛) = sup𝑦 𝜓(𝑥1, . . . , 𝑥𝑛, 𝑦), then

𝜑M (𝑥1, . . . , 𝑥𝑛) = sup
𝑦∈𝑀1

𝜓M (𝑥1, . . . , 𝑥𝑛, 𝑦).

Example 3.4. Consider the formula 𝜑(𝑥) = sup𝑦 tr((𝑥𝑦 − 𝑦𝑥)∗(𝑥𝑦 − 𝑦𝑥))1/2. Then

𝜑M (𝑥) = sup
𝑦∈(𝑀 )1

‖𝑥𝑦 − 𝑦𝑥‖2.

Then 𝜑M (𝑥) = 0 if and only if 𝑥 ∈ 𝑍 (𝑀).

A formula in (𝑥1, . . . , 𝑥𝑛) expresses certain information about M and 𝑥1, . . . , 𝑥𝑛. If there are no
free variables, the formula is called a sentence, and its interpretation in M expresses certain first-order
information about M itself. This information is what we refer to as the theory of M. Note that in
discrete logic, the theory of some object M is the set of all sentences in the language that are true for M.
Since our sentences take real values, we describe the theory of M as the functional that assigns a real
value to each sentence. More precisely, we use the following definition.
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Definition 3.5.
◦ A sentence is a formula with no free variables.
◦ Denoting the set of sentences by S , the theory of M is the map Th(M) : S → R, 𝜑 ↦→ 𝜑M.
◦ Two tracial von Neumann algebras M and N are elementarily equivalent, written M ≡ N , if

Th(M) = Th(N ), or in other words, 𝜑M = 𝜑N for all sentences 𝜑.
◦ An embedding 𝜄 : 𝑀 → 𝑁 of tracial von Neumann algebras is said to be elementary if

𝜑𝑁 (𝜄(𝑥1), . . . , 𝜄(𝑥𝑛)) = 𝜑𝑀 (𝑥1, . . . , 𝑥𝑛) for all formulas 𝜑.
In order to better describe the topology for the space of complete theories and to make the above

definitions amenable to functional analysis, we will first describe how the set of formulas and the set
of sentences in particular can be completed to a real C∗-algebra, and the theory of M corresponds to a
character on this C∗-algebra.

Let F𝑋 denote the set of formulas with free variables contained in the set X. We observe that since
addition and multiplication are continuous functions R2 → R, they can be applied as connectives
to formulas. This implies that F𝑋 is an algebra over R. In order to obtain a C∗-algebra, we need a
(semi)norm.
Definition 3.6. For a formula 𝜑(𝑥1, . . . , 𝑥𝑛) for tracial von Neumann algebras, the uniform seminorm is
given by

‖𝜑‖𝑢 := sup{|𝜑M (𝑥1, . . . , 𝑥𝑛) | : M = (𝑀, 𝜏), 𝑥1, . . . , 𝑥𝑛 ∈ (𝑀)1},

where we take the supremum over all tracial von Neumann algebras (𝑀, 𝜏) as well as 𝑥1, . . . , 𝑥𝑛.
It is easy to show by induction that ‖𝜑‖𝑢 < ∞ for every formula 𝜑 (this is a special case of Lemma 3.12

below). One starts with the basic formulas tr(𝑝(𝑥1, . . . , 𝑥𝑛)) and then shows that boundedness is
preserved when applying connectives and quantifiers. Similarly, it is an exercise to check that for
formulas 𝜑 and 𝜓 and 𝑐 ∈ R,

‖𝜑 + 𝜓‖𝑢 ≤ ‖𝜑‖𝑖 + ‖𝜓‖𝑢

‖𝑐𝜑‖𝑢 = |𝑐 |‖𝜑‖𝑢

‖𝜑𝜓‖𝑢 ≤ ‖𝜑‖𝑢 ‖𝜓‖𝑢

‖𝜑2‖𝑢 = ‖𝜑‖2
𝑢 .

Definition 3.7. Fix a countable index set I (for instance, 𝐼 = N). Let F𝑋 be the set of formulas 𝜑 with
variables in 𝑋 � 𝐼 such that the free variables of 𝜑 are contained in X and the bound variables of 𝜑
are contained in I. Thus, for instance, F∅ is the set of sentences with variables in I. Then let P𝑋 be
the separation-completion of F𝑋 with respect to the uniform norm. The elements of P𝑋 are called
definable predicates with free variables in X.
Lemma 3.8. P𝑋 is a commutative real C∗-algebra. Moreover, for each tracial von Neumann algebra
M, there is a unique ∗-homomorphism Th(M) : P∅ → R such that Th(M) (𝜑) = 𝜑M for sentences 𝜑.

The fact that P𝑋 is a commutative real C∗-algebra follows from the inqualities mentioned above.
The fact that evaluation 𝜑 ↦→ 𝜑M gives a ∗-homomorphism on the algebra of sentences is immediate
from the definition of the interpretation, specifically how it behaves on connectives. Since clearly
|𝜑M | ≤ ‖𝜑‖𝑢 , this mapping extends to a ∗-homomorphism on P∅. While above we defined Th(M) as
a linear functional on S , it also defines a linear functional on P∅, and we will denote this functional
also by Th(M) since there is little risk of confusion.
Proposition 3.9.
1. If M is a tracial von Neumann algebra, then Th(M) is a character on P∅.
2. Conversely, every character on P∅ is equal to Th(M) for some M.
3. If M =

∏
U M𝑖 for some ultrafilter U on an index set I, then Th(M) = limU Th(M𝑖) with respect

to the weak-∗ topology.
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This proposition is well-known in continuous model theory, so we merely sketch the proof in an
expository way. We already explained why (1) is true. For point (3), we use Łoś’s theorem, which shows
that for all sentences 𝜑,

𝜑M = lim
U

𝜑M𝑖 .

Because sentences give a ‖·‖𝑢-dense subset of P∅ by construction, it follows that 𝜑M = limU 𝜑M𝑖 for
all 𝜑 ∈ P∅, and thus, Th(M) = limU Th(M𝑖) in the weak-∗ topology.

Finally, for (2), recall by Gelfand duality that P∅ � 𝐶 (X ;R), where X is the space of characters on
P∅ with the weak-∗ topology, which is a compact Hausdorff space. We also have by definition of the
uniform norm that

‖𝜑‖𝑢 = sup
M

| Th(M) [𝜑] |.

Generally, if Y is a subset of a compact Hausdorff space X and if

‖ 𝑓 ‖𝐶 (X ;R) = sup
𝑦∈Y

| 𝑓 (𝑦) | for 𝑓 ∈ 𝐶 (X ;R),

then Y must be dense in X . Therefore, in our case, the points in X of the form Th(M) must be dense
in X . However, by point (2), they also form a closed set, and hence, they are all of X , meaning that
every character on P∅ is of the form Th(M).

The statement above that points of the form Th(M) give a closed set is essentially a functional-
analytic viewpoint on the compactness theorem in continuous logic [BBHU08, Theorem 5.8]. We close
by recalling a basic fact about separability.

Lemma 3.10. Let X be a countable set of variables. The real C∗-algebra P𝑋 of formulas in the language
of tracial von Neumann algebras with free variables from X is separable. Hence, the unit ball in the
dual with the weak-∗ topology is metrizable, and the space of characters with the weak-∗ topology
is metrizable. In particular, the space of theories of tracial von Neumann algebras is compact and
metrizable.

Proof. Consider rational polynomial formulas defined in a similar way to formulas, except that

◦ The basic formulas are Re tr(𝑝(𝑥1, . . . , 𝑥𝑛)) and Im tr(𝑝(𝑥1, . . . , 𝑥𝑛)) where p is a non-commutative
∗-polynomial with coefficients in Q[𝑖].

◦ The connectives are polynomial functions R𝑘 → R with rational coefficients.

The set of rational polynomial formulas is countable if the underlying set of variables is countable.
The rational polynomials in variables 𝑋 � 𝐼 are dense in the space of all formulas with respect to
‖·‖𝑢 . To show this, one proceeds by induction on the complexity of the formula. For the base case,
it suffices to approximate the coefficients of each non-commutative ∗-polynomial by elements of Q[𝑖]
and estimate the uniform norm of the difference. For applying a connective f to formulas 𝜙1, . . . ,
𝜙𝑘 , recall by the Stone-Weierstrass theorem that f can be uniformly approximated by a polynomial on
[−‖𝜑1‖𝑢 , ‖𝜑1‖𝑢] × · · · × [−‖𝜑𝑘 ‖𝑢 , ‖𝜑𝑘 ‖𝑢]. The case of applying a quantifier is immediate since

‖sup
𝑦

𝜑(𝑥1, . . . , 𝑥𝑛, 𝑦) − sup
𝑦

𝜓(𝑥1, . . . , 𝑥𝑛, 𝑦)‖
𝑢

≤ ‖𝜙(𝑥1, . . . , 𝑥𝑛) − 𝜓(𝑥1, . . . , 𝑥𝑛)‖𝑢 .

Hence, rational polynomial formulas are dense in the space of formulas. The same holds when we restrict
to formulas where the free variables are in X and the bound variables are in I. This shows separability
of P𝑋 since this is the separation-completion of the space of such formulas. Since P𝑋 is separable, the
weak-∗ topology on the unit ball in the dual space is metrizable, and hence also the space of states and
the space of characters are metrizable. �
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3.2. Operator-valued interpretations of formulas

In order to understand the theory of a direct integral 𝑀 =
∫
Ω

𝑀𝜔 𝑑𝜇(𝜔), we must study the fiberwise
evaluation

𝜑𝑀𝜔 (𝑥1 (𝜔), . . . , 𝑥𝑛 (𝜔))

for a formula 𝜑 on 𝑥1, . . . , 𝑥𝑛 ∈ 𝑀 , which (we will see) is a measurable function on Ω. More generally,
since we are interested in non-separable von Neumann algebras such as ultraproducts, we want to replace
𝐿∞(Ω) by a von Neumann subalgebra 𝑁 ⊆ 𝑍 (𝑀), and still make sense of ‘fiberwise evaluation’ of a
formula with respect to N. This leads to the definition of N-valued interpretations of formulas; we show
below in Lemma 3.17 that this agrees with the fiberwise evaluation in the case that M is a direct integral.

For (2) below, we recall that multivariable continuous function calculus is well defined on any
commutative C∗-algebra. For (3), we recall that every bounded family of self-adjoint elements in a
commutative von Neumann algebra has a supremum.

Definition 3.11 (N-valued interpretation of formulas). Let M be a finite von Neumann algebra,
𝑁 ⊆ 𝑍 (𝑀) be a subalgebra of its center, and 𝐸 : 𝑀 → 𝑁 be a normal, faithful, tracial conditional
expectation. For formulas 𝜑 in the language of tracial von Neumann algebras in variables from a set X,
we define the N-valued interpretation 𝜑𝑀

𝐸 (𝑥1, . . . , 𝑥𝑛) as follows, by induction on the complexity of 𝜑.
Here, we write 𝑥 = (𝑥1, . . . , 𝑥𝑛).

1. If 𝜑 = Re 𝜏(𝑝(𝑥)) for some *-polynomial p, then 𝜑𝑀
𝐸 (𝑥) = Re(𝐸 (𝑝(𝑥))). Similarly, if 𝜑 =

Im 𝜏(𝑝(𝑥)) for some *-polynomial p, then 𝜑𝑀
𝐸 (𝑥) = Im(𝐸 (𝑝(𝑥))).

2. If 𝜑 = 𝑓 (𝜑1, · · · , 𝜑𝑘 ) where 𝑓 : R𝑙 → R is a connective (i.e., a continuous function), then
𝜑𝑀
𝐸 (𝑥) = 𝑓 ((𝜑1)

𝑀
𝐸 (𝑥), · · · , (𝜑𝑛)

𝑀
𝐸 (𝑥)), where f is applied in the sense of continuous functional

calculus.
3. If 𝜑 = sup𝑦 𝜙(𝑥, 𝑦), then 𝜑𝑀

𝐸 (𝑥) = sup𝑦∈(𝑀 )1 𝜓𝑀
𝐸 (𝑥, 𝑦). Similarly, if 𝜑 = inf𝑦 𝜙(𝑥, 𝑦), then 𝜑𝑀

𝐸 (𝑥) =
inf𝑦∈(𝑀 )1 𝜓𝑀

𝐸 (𝑥, 𝑦).

We remark that in the case that 𝑁 = C and 𝐸 = 𝜏 is a faithful, normal, tracial state, then 𝜑𝑀
𝐸 reduces

to the usual interpretation 𝜑𝑀 (Definition 3.3). As in that case, one can show by induction that the
N-valued interpretation of every formula is bounded on the unit ball (𝑀)𝑛1 , which is used in (3) above
to show that the supremum exists in N.

Lemma 3.12. Let M be a finite von Neumann algebra, 𝑁 ⊆ 𝑍 (𝑀) be a subalgebra of its center,
𝐸 : 𝑀 → 𝑁 be a normal, faithful, tracial conditional expectation, and 𝜑 be a formula with n free
variables. Then there exists 𝐶 > 0 s.t. ‖𝜑𝑀

𝐸 (𝑥)‖
∞
≤ 𝐶 for all 𝑥 ∈ (𝑀)𝑛1 . Furthermore, C can be chosen

independent of M, N and E.

Proof. The case where 𝜑(𝑥) = Re tr(𝑝(𝑥)) or Im tr(𝑝(𝑥)) follows by expanding the polynomial p
termwise and using the triangle inequality and submultiplicativity of the operator norm. Next, suppose
that 𝜑 = 𝑓 (𝜑1, . . . , 𝜑𝑘 ) for some continuous 𝑓 : R𝑘 → R. Since each of the 𝜑 𝑗 ’s is bounded by
some constant, the output 𝑓 (𝜑1, . . . , 𝜑𝑘 ) will also be bounded, by the spectral mapping property for
continuous functional calculus. Finally, suppose that 𝜑(𝑥) = sup𝑦 𝜓(𝑥, 𝑦). Clearly, if ‖𝜓𝑀

𝐸 (𝑥, 𝑦)‖ ≤ 𝐶

for all y, then ‖𝜑𝑀
𝐸 (𝑥)‖ ≤ 𝐶 as well. �

A key ingredient for our version of Łoś’s theorem, as well as for handling other examples and
applications, is the fact that when 𝜑 = sup𝑦 𝜙(𝑥, 𝑦), there is a single y that realizes the supremum
sup𝑦∈(𝑀 )1

𝜓𝑀
𝐸 (𝑥, 𝑦) within error 𝜖 uniformly (i.e., in operator norm). In the case of a direct integral,

this means that 𝑦(𝜔) gets within 𝜖 of the supremum on almost every fiber simultaneously. A similar
statement is given in [Ben13, Lemma 3.13] for randomizations.

Proposition 3.13. Let M be a finite von Neumann algebra, 𝑁 ⊆ 𝑍 (𝑀) be a subalgebra of its center,
𝐸 : 𝑀 → 𝑁 be a normal, faithful, tracial conditional expectation, and 𝜑 = sup𝑦 𝜓(𝑥, 𝑦) where 𝜙 is a
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formula with 𝑛 + 1 free variables. Then for any 𝑥 = (𝑥1, · · · , 𝑥𝑛), tuple of elements of M, and 𝜖 > 0,
there exists 𝑦 ∈ (𝑀)1 such that

𝜓𝑀
𝐸 (𝑥, 𝑦) ≥ 𝜑𝑀

𝐸 (𝑥) − 𝜖 in 𝑁sa.

This property emerges from the ability to paste elements of the von Neumann algebra using partitions
of unity on the commutative algebra. Recall that a projection-valued measure (PVM) over von Neumann
algebra N is a collection {𝑒𝑖}𝑖∈𝐼 of pairwise orthogonal projections in N which sum up to 1. The
relationship between projection-valued measures and operator-valued interpretations of formulas is as
follows. This is parallel to the locality property for randomizations [Ben13, Definition 3.12].

Lemma 3.14. Let M be a finite von Neumann algebra, 𝑁 ⊆ 𝑍 (𝑀) be a subalgebra of its center,
𝐸 : 𝑀 → 𝑁 be a normal, faithful, tracial conditional expectation, 𝜑 be a formula with n free variables
𝑥 = (𝑥1, · · · , 𝑥𝑛). Let {𝑒 𝑗 } 𝑗∈𝐽 be a PVM over N and 𝑥𝑖, 𝑗 ∈ (𝑀)1 for 𝑖 = 1, . . . , 𝑛 and 𝑗 ∈ 𝐽. Then

∑
𝑗∈𝐽

𝑒 𝑗𝜑
𝑀
𝐸 (𝑥1, 𝑗 , . . . , 𝑥𝑛, 𝑗 ) = 𝜑𝑀

𝐸

(∑
𝑗∈𝐽

𝑒 𝑗𝑥1, 𝑗 , . . . ,
∑
𝑗∈𝐽

𝑒 𝑗𝑥𝑛, 𝑗

)
.

Proof. We proceed by induction on complexity of the formula. First, suppose 𝜑(𝑥) = Re tr(𝑝(𝑥)), and
hence, 𝜑𝑀

𝐸 (𝑥1, 𝑗 , . . . , 𝑥𝑛, 𝑗 ) = Re 𝐸 [𝑝(𝑥1, 𝑗 , . . . , 𝑥𝑛, 𝑗 )]. Write 𝑥𝑖 =
∑

𝑗∈𝐽 𝑒 𝑗𝑥𝑖, 𝑗 . Since 𝑒 𝑗 is central,

𝑒 𝑗 Re 𝐸 [𝑝(𝑥1, 𝑗 , . . . , 𝑥𝑛, 𝑗 )] = 𝑒 𝑗 Re 𝐸 [𝑝(𝑒 𝑗𝑥1, 𝑗 , . . . , 𝑒 𝑗𝑥𝑛, 𝑗 )]

= 𝑒 𝑗 Re 𝐸 [𝑝(𝑒 𝑗𝑥1, . . . , 𝑒 𝑗𝑥𝑛)]

= 𝑒 𝑗 Re 𝐸 [𝑝(𝑥1, . . . , 𝑥𝑛)] .

Summing over j completes the proof for this case, and the imaginary part is similar.
Next, suppose that 𝜑 = 𝑓 (𝜑1, . . . , 𝜑𝑘 ) for some continuous 𝑓 : R𝑘 → R, such that 𝜑 𝑗 satisfies the

induction hypothesis. Let 𝑥 𝑗 = (𝑥1, 𝑗 , . . . , 𝑥𝑛, 𝑗 ). Then we have

𝑒 𝑗 𝑓 ((𝜑1)
𝑀
𝐸 (𝑥 𝑗 ), . . . , (𝜑𝑘 )

𝑀
𝐸 (𝑥)) = 𝑒 𝑗 𝑓 (𝑒 𝑗 (𝜑1)

𝑀
𝐸 (𝑥), . . . , 𝑒 𝑗 (𝜑𝑘 )

𝑀
𝐸 (𝑥))

because the mapping 𝑁 → 𝑒 𝑗𝑁 , 𝑦 ↦→ 𝑒 𝑗 𝑦 is a ∗-homomorphism of commutative C∗-algebras and
therefore respects functional calculus. From here, we apply the induction hypothesis to 𝜑𝑖 and then
argue similarly as in the first case.

Now suppose that 𝜑(𝑥) = sup𝑦 𝜓(𝑥, 𝑦) where 𝜓 satisfies the induction hypothesis. First, note that if
(𝑧𝑖)𝑖∈𝐼 is a family of self-adjoint operators in N and e is a projection in N, then

𝑒 sup
𝑖

𝑧𝑖 = sup
𝑖

𝑒𝑧𝑖 .

Indeed, clearly 𝑒 sup𝑖 𝑧𝑖 is an upper bound for 𝑒𝑧𝑖 for each i, and hence, 𝑒 sup𝑖 𝑧𝑖 ≥ sup𝑖 𝑒𝑧𝑖 . However,
let 𝐶 = sup𝑖 ‖𝑧𝑖 ‖. Then clearly, (1 − 𝑒)𝐶 + sup𝑖 𝑒𝑧𝑖 is an upper bound for each 𝑧𝑖 , so that sup𝑖 𝑧𝑖 ≤

(1 − 𝑒)𝐶 + sup𝑖 𝑒𝑧𝑖 , which implies

𝑒 sup
𝑖

𝑧𝑖 ≤ 𝑒 sup
𝑖

𝑒𝑧𝑖 ≤ sup
𝑖

𝑒𝑧𝑖 ≤ 𝑒 sup
𝑖

𝑧𝑖 ,

which proves the claim. Again, let 𝑥𝑖 =
∑

𝑗 𝑒 𝑗𝑥𝑖, 𝑗 . Note that

𝑒 𝑗𝜑
𝑀
𝐸 (𝑥1, 𝑗 , . . . , 𝑥𝑛, 𝑗 ) = 𝑒 𝑗 sup

𝑦∈(𝑀 )1

𝜓𝑀
𝐸 (𝑥1, 𝑗 , . . . , 𝑥𝑛, 𝑗 , 𝑦)

= sup
𝑦∈(𝑀 )1

𝑒 𝑗𝜓
𝑀
𝐸 (𝑥1, 𝑗 , . . . , 𝑥𝑛, 𝑗 , 𝑦)
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= sup
𝑦∈(𝑀 )1

𝑒 𝑗𝜓
𝑀
𝐸 (𝑒 𝑗𝑥1, 𝑗 , . . . , 𝑒 𝑗𝑥𝑛, 𝑗 , 𝑒 𝑗 𝑦)

= sup
𝑦∈(𝑀 )1

𝑒 𝑗𝜓
𝑀
𝐸 (𝑒 𝑗𝑥1, . . . , 𝑒 𝑗𝑥𝑛, 𝑒 𝑗 𝑦),

and by the reverse manipulations as before, this equals 𝑒 𝑗𝜑
𝑀
𝐸 (𝑥1, . . . , 𝑥𝑛). Hence,∑

𝑗∈𝐽

𝑒 𝑗𝜑
𝑀
𝐸 (𝑥1, 𝑗 , . . . , 𝑥𝑛, 𝑗 ) =

∑
𝑗∈𝐽

𝑒 𝑗𝜑
𝑀
𝐸 (𝑥1, . . . , 𝑥𝑛) = 𝜑𝑀

𝐸 (𝑥1, . . . , 𝑥𝑛)

as desired. The case of an infimum is symmetrical; in fact, one can use the identity

inf
𝑦∈(𝑀 )1

𝜑𝑀
𝐸 (𝑥, 𝑦) = − sup

𝑦∈(𝑀 )1

[−𝜑𝑀
𝐸 (𝑥, 𝑦)]

to reduce it to the case of suprema and connectives. �

The other ingredient that we need for Proposition 3.13 is a classical fact about suprema in commutative
von Neumann algebras or, equivalently, about Stone spaces (which have already made their appearance
in model theory of probability spaces [Ben13, §2]). Lemma 3.15 serves a similar purpose for us as the
measure-theoretic fact [Ben13, Fact 3.30] used in [Ben13, Lemma 3.31].

Lemma 3.15. Let N be a commutative von Neumann algebra, and let {𝑧𝑖}𝑖∈𝐼 ⊂ 𝑁𝑠𝑎 be a collection of
elements which are uniformly bounded in norm. Then for any 𝜖 > 0, there exists a PVM {𝑒 𝑗 } 𝑗∈𝐽 over
N, and for each j there exists 𝑖 𝑗 ∈ 𝐼, s.t. ‖sup𝑖∈𝐼 𝑧𝑖 −

∑
𝑗 𝑒 𝑗 𝑧𝑖 𝑗 ‖ ≤ 𝜖 .

Proof. Let Ω be the Gelfand spectrum of N, so that 𝑁 � 𝐶 (Ω). We shall regard all 𝑧𝑖 as well as
𝑧 = sup𝑖∈𝐼 𝑧𝑖 as continuous functions on Ω. Then by [Tak79, Corollary III.1.16], there exists an open
dense set 𝑂 ⊆ Ω s.t. for any 𝑡 ∈ 𝑂, 𝑧(𝑡) = sup𝑖∈𝐼 𝑧𝑖 (𝑡). We now consider a maximal collection {𝐾 𝑗 } 𝑗∈𝐽
of nonempty pairwise disjoint clopen subsets s.t. for each j there exists 𝑖 𝑗 ∈ 𝐼 with |𝑧(𝑡) − 𝑧𝑖 𝑗 (𝑡) | < 𝜖

for all 𝑡 ∈ 𝐾 𝑗 . We claim that ∪𝐾 𝑗 is dense. Indeed, assume otherwise, then 𝑈 = Ω \ ∪𝐾 𝑗 is a nonempty
open set, whence so is 𝑂 ∩ 𝑈. Fix any 𝑡0 ∈ 𝑂 ∩ 𝑈, as 𝑧(𝑡0) = sup𝑖∈𝐼 𝑧𝑖 (𝑡0), there exists some 𝑧𝑖 s.t.
|𝑧(𝑡0) − 𝑧𝑖 (𝑡0) | < 𝜖 . Continuity then implies |𝑧(𝑡) − 𝑧𝑖 (𝑡) | < 𝜖 in some neighborhood K of 𝑡0. As clopen
sets form a basis of topology for Ω (see [Tak79, Definition III.1.6]), such a neighborhood can be chosen
to be clopen and a subset of U. But then adding K to {𝐾 𝑗 } shows the latter collection is not maximal, a
contradiction. This shows that ∪𝐾 𝑗 is indeed dense. Let 𝑒 𝑗 = 1𝐾 𝑗 . Then |

∑
𝑗 𝑒 𝑗 𝑧𝑖 𝑗 (𝑡) − 𝑧(𝑡) | ≤ 𝜖 on a

dense subset of Ω, and hence by continuity, ‖
∑

𝑗 𝑒 𝑗 𝑧𝑖 𝑗 (𝑡) − 𝑧(𝑡)‖ ≤ 𝜖 . �

Proof of Proposition 3.13. As 𝜑𝑀
𝐸 (𝑥) = sup𝑦∈(𝑀 )1 𝜓𝑀

𝐸 (𝑥, 𝑦), by Lemma 3.15, there exists a PVM
{𝑒 𝑗 } 𝑗∈𝐽 over N and elements 𝑦 𝑗 ∈ (𝑀)1 such that∑

𝑗

𝑒 𝑗𝜓
𝑀
𝐸 (𝑥, 𝑦 𝑗 ) ≥ 𝜑𝑀

𝐸 (𝑥) − 𝜖 .

Let 𝑦 =
∑

𝑗 𝑒 𝑗 𝑦 𝑗 . By Lemma 3.14, to the decompositions 𝑥𝑖 =
∑

𝑗 𝑒 𝑗𝑥𝑖 and 𝑦 =
∑

𝑗 𝑒 𝑗 𝑦 𝑗 , we have

𝜓𝑀
𝐸 (𝑥, 𝑦) =

∑
𝑗

𝑒 𝑗𝜓
𝑀
𝐸 (𝑥1, . . . , 𝑥𝑛, 𝑦 𝑗 ) ≥ 𝜑𝑀

𝐸 (𝑥) − 𝜖,

which concludes the proof. �

We next note that for a tracial von Neumann algebra M, the N-valued interpretation of a formula
𝜑(𝑥1, . . . , 𝑥𝑛) always defines a uniformly continuous function on (𝑀)𝑛1 with respect to 2-norm, which
will be useful for various limiting arguments. This is a generalization of the well-known uniform
continuity property for scalar-valued interpretations of formulas [BBHU08, Theorem 3.5], and its
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proof proceeds in the same way by induction on the complexity of the formula, while also relying on
Proposition 3.13.

Lemma 3.16. Let M be a finite von Neumann algebra, 𝑁 ⊆ 𝑍 (𝑀) be a subalgebra of its center,
𝐸 : 𝑀 → 𝑁 be a normal, faithful, tracial conditional expectation. Let 𝜏 be a state on N, so that
𝜏 = 𝜏 ◦ 𝐸 is a tracial state on M. For each formula 𝜑(𝑥1, . . . , 𝑥𝑛), there exists a continuous increasing
function 𝛿 : [0,∞) → [0,∞) such that for 𝑥, 𝑦 ∈ (𝑀)𝑛1 , we have

max
𝑗

‖𝑥 𝑗 − 𝑦 𝑗 ‖2 ≤ 𝛿(𝜖) =⇒ ‖𝜑𝑀
𝐸 (𝑥1, . . . , 𝑥𝑛) − 𝜑𝑀

𝐸 (𝑦1, . . . , 𝑦𝑛)‖2 ≤ 𝜖,

where ‖·‖2 denotes the 2-norm associated to 𝜏. Furthermore, 𝛿 can be chosen independent of M, N, E,
and 𝜏.

Proof. We proceed by induction on the complexity of formulas. First, consider a basic formula
Re tr(𝑝(𝑥1, . . . , 𝑥𝑛)). By decomposing p into monomials, it suffices to show that 𝐸 [𝑥𝑖1 . . . 𝑥𝑖𝑘 ] is uni-
formly continuous on (𝑀)𝑛1 . This follows easily from the inequalities ‖𝑥𝑦‖2 ≤ min(‖𝑥‖‖𝑦‖2, ‖𝑥‖2‖𝑦‖)
and ‖𝐸 (𝑥)‖2 ≤ ‖𝑥‖2.

Next, suppose that 𝜑 = 𝑓 (𝜑1, . . . , 𝜑𝑘 ) for some 𝑓 : R𝑘 → R continuous, and formulas 𝜑1, . . . , 𝜑𝑘

satisfying the conclusion of the lemma. By Lemma 3.12, each formula 𝜑 𝑗 is bounded by some constant
𝐶 𝑗 . To obtain the conclusion for 𝜑, it suffices to show that the application of f by functional calculus
defines a ‖·‖2-uniformly continuous function

((𝑁)𝐶1 ∩ 𝑁sa) × · · · × ((𝑁)𝐶𝑘 ∩ 𝑁sa) → 𝑁sa.

Note that in the case where f is a polynomial, this follows from the same reasoning as in the first step.
Now fix a sequence of polynomials 𝑓 𝑗 such that 𝑓 𝑗 → 𝑓 uniformly on [−𝐶1, 𝐶1] × · · · × [−𝐶𝑘 , 𝐶𝑘 ]. The
spectral mapping theorem implies uniform convergence of 𝑓 𝑗 → 𝑓 on N (and with bounds independent
of the particular choice of N). Moreover, since uniform continuity is preserved under uniform limits,
we see that f is ‖·‖2-uniformly continuous.

Next, consider the case where 𝜑(𝑥) = sup𝑦 𝜓(𝑥, 𝑦). Let 𝛿 : [0,∞) → [0,∞) be the modulus of
continuity associated to 𝜓, and suppose that max 𝑗 ‖𝑥 𝑗 − 𝑥 ′𝑗 ‖2

≤ 𝛿(𝜖/4). By Proposition 3.13, there
exists y such that

𝜓𝑀
𝐸 (𝑥, 𝑦) ≥ 𝜑𝑀

𝐸 (𝑥) − 𝜖/4.

Furthermore, note that

𝜑𝑀
𝐸 (𝑥 ′) ≥ 𝜓𝑀

𝐸 (𝑥 ′, 𝑦).

Letting [·]+ denote the positive part of a self-adjoint operator, we have

[𝜑𝑀
𝐸 (𝑥) − 𝜑𝑀

𝐸 (𝑥 ′)]+ ≤ [𝜑𝑀
𝐸 (𝑥) − 𝜓𝑀

𝐸 (𝑥, 𝑦)]+ + [𝜓𝑀
𝐸 (𝑥, 𝑦) − 𝜓𝑀

𝐸 (𝑥 ′, 𝑦)]+ + [𝜓𝑀
𝐸 (𝑥 ′, 𝑦) − 𝜑𝑀

𝐸 (𝑥 ′, 𝑦)]+.

On the right-hand side, the first term is bounded by 𝜖/4 by our choice of y, and the last term is zero by
definition of 𝜑. Hence,

‖[𝜑𝑀
𝐸 (𝑥) − 𝜑𝑀

𝐸 (𝑥 ′)]+‖2 ≤
𝜖

4
+ ‖𝜓𝑀

𝐸 (𝑥, 𝑦) − 𝜓𝑀
𝐸 (𝑥 ′, 𝑦)‖2 ≤

𝜖

2
,

where we have applied the uniform continuity condition on 𝜓. A symmetrical argument shows that

‖[𝜑𝑀
𝐸 (𝑥 ′) − 𝜑𝑀

𝐸 (𝑥)]+‖2 ≤
𝜖

2
.
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Overall,

‖𝜑𝑀
𝐸 (𝑥) − 𝜑𝑀

𝐸 (𝑥 ′)‖2 = ‖[𝜑𝑀
𝐸 (𝑥) − 𝜑𝑀

𝐸 (𝑥 ′)]+‖2 + ‖[𝜑𝑀
𝐸 (𝑥 ′) − 𝜑𝑀

𝐸 (𝑥)]+‖2 ≤ 𝜖,

provided that max 𝑗 ‖𝑥 𝑗 − 𝑥 ′𝑗 ‖2
≤ 𝛿(𝜖/4). As before, the case of an infimum is symmetrical to the case

of a supremum. �

Now we show that if M has a direct integral decomposition, then the operator-valued interpretations
of formulas coincide with their fiberwise interpretations.
Lemma 3.17. Suppose that (𝑀, 𝜏) is a tracial von Neumann algebra given as a direct integral (𝑀, 𝜏) =∫ ⊕

Ω
(𝑀𝜔 , 𝜏𝜔) 𝑑𝜇(𝜔). Let 𝑁 = 𝐿∞(Ω) and let 𝐸 : 𝑀 → 𝐿∞(Ω) be the faithful, normal, tracial

conditional expectation given by 𝐸 [𝑥] (𝜔) = 𝜏𝜔 (𝑥(𝜔)). Let 𝜑 be a formula in the language of tracial
von Neumann algebras, and let 𝑥 ∈ (𝑀)𝑛1 . Then 𝜑𝑀

𝐸 (𝑥) ∈ 𝐿∞(Ω) is (up to a.e. equivalence) the function
given by Ω � 𝜔 ↦→ 𝜑𝑀𝜔 (𝑥(𝜔)). In particular, 𝜔 ↦→ 𝜑𝑀𝜔 (𝑥(𝜔)) is measurable.
Proof. We proceed by induction on the complexity of formulas. The cases for basic formulas and adding
connectives are straightforward and left to the reader. Now consider 𝜑 = sup𝑦 𝜓(𝑥, 𝑦) where the claim
is already proved for 𝜓.

Let 𝑧(𝜔) = 𝜑𝑀𝜔 (𝑥(𝜔)). First, let us verify that z is measurable (as in [FG24, Lemma 1.2]). Let
(𝑒𝑛)𝑛>0 be as in Definition 1.1, so that (𝑒𝑛 (𝜔))𝑛>0 is ‖·‖2-dense in (𝑀𝜔)1 for every 𝜔. Note that 𝜑𝑀𝜔

is uniformly continuous on (𝑀𝜔)1 with respect to ‖·‖2 by Lemma 3.16 in the case 𝑁 = C. Therefore,
for almost every 𝜔,

𝜑𝑀𝜔 (𝑥(𝜔)) = sup
𝑦0∈(𝑀𝜔)1

𝜓𝑀𝜔 (𝑥(𝜔), 𝑦0) = sup
𝑛>0

𝜓𝑀𝜔 (𝑥(𝜔), 𝑒𝑛 (𝜔)).

Thus, 𝑧(𝜔) = 𝜑𝑀𝜔 (𝑥(𝜔)) is the pointwise supremum of a countable collection of measurable functions,
and hence, it is measurable.

We show that this agrees with the operator-valued supremum by proving two directions. Given
𝑦 ∈ (𝑀)1, writing y as a function 𝜔 ↦→ 𝑦(𝜔) ∈ (𝑀𝜔)1 defined almost everywhere, we have by induction
hypothesis

𝜓𝑀
𝐸 (𝑥, 𝑦) (𝜔) = 𝜓𝑀𝜔 (𝑥(𝜔), 𝑦(𝜔))

≤ sup
𝑦0∈(𝑀𝜔)1

𝜓𝑀𝜔 (𝑥(𝜔), 𝑦0)

= 𝜑𝑀𝜔 (𝑥(𝜔)).

Hence, z is an upper bound for 𝜓𝑀
𝐸 (𝑥, 𝑦) in 𝑁sa, and

𝜑𝑀
𝐸 (𝑥) = sup

𝑦∈(𝑀 )1

𝜓𝑀
𝐸 (𝑥, 𝑦) ≤ 𝑧.

However, since the operator supremum in 𝐿∞(Ω) agrees with the pointwise supremum almost
everywhere,

𝑧(𝜔) = 𝜑𝑀𝜔 (𝑥(𝜔)) = sup
𝑛>0

𝜓𝑀𝜔 (𝑥(𝜔), 𝑒𝑛 (𝜔))

=

[
sup
𝑛>0

𝜓𝑀
𝐸 (𝑥, 𝑒𝑛)

]
(𝜔)

≤

[
sup

𝑦∈(𝑀 )1

𝜓𝑀
𝐸 (𝑥, 𝑦)

]
(𝜔)

=
[
𝜑𝑀
𝐸 (𝑥)

]
(𝜔).

Thus, 𝑧 ≤ 𝜑𝑀
𝐸 (𝑥). Thus, we have shown 𝑧 = 𝜑𝑀

𝐸 (𝑥), as desired. �
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3.3. Łoś’s theorem for ultrafibers and generalized ultraproducts

The following theorem is an analog of Łoś’s theorem for ultrafibers.
Theorem 3.18 (Łoś’s theorem for ultrafibers; cf. [Ben13, Theorem 3.19]). Let M be a finite von Neumann
algebra, 𝑁 ⊆ 𝑍 (𝑀) be a subalgebra of its center, 𝐸 : 𝑀 → 𝑁 be a normal, faithful, tracial conditional
expectation. Let U be a character on N and let 𝜋𝐸,U : 𝑀 → 𝑀/𝐸,U be the quotient map onto the
ultrafiber. Then for every formula 𝜑 and every tuple 𝑥 ∈ (𝑀)𝑛1 , we have

𝜑𝑀 /𝐸,U
(𝜋𝐸,U (𝑥)) = U (𝜑𝑀

𝐸 (𝑥)).

Proof. We proceed by induction on the complexity of 𝜑. For atomic formulas, this holds because for a
non-commutative ∗-polynomial p,

𝜏𝐸,U (𝑝(𝜋𝐸,U (𝑥)) = 𝜏𝐸,U (𝜋𝐸,U (𝑝(𝑥)) = U ◦ 𝐸 [𝑝(𝑥)] .

The case of adding connectives can also be proved easily from the fact that U is a ∗-homomorphism
from N to C and therefore commutes with continuous functional calculus.

Next, suppose that 𝜑(𝑥) = sup𝑦 𝜓(𝑥, 𝑦); the case of an infimum, of course, is symmetrical. We first
show that 𝜑𝑀 /𝐸,U

(𝜋𝐸,U (𝑥)) ≤ U (𝜑𝑀
𝐸 (𝑥)). As noted in Proposition 2.2, any element 𝑦̂ of norm at most

1 in 𝑀/𝐸,U can be lifted to an element y of norm at most 1 in M. From the induction hypothesis

𝜓𝑀 /𝐸,U
(𝜋𝐸,U (𝑥), 𝑦̂) = U (𝜓𝑀

𝐸 (𝑥, 𝑦)) ≤ U (𝜑𝑀
𝐸 (𝑥)),

and since 𝑦̂ was arbitrary, 𝜑𝑀 /𝐸,U
(𝜋𝐸,U (𝑥)) ≤ U (𝜑𝑀

𝐸 (𝑥)). For the other direction, fix 𝜖 > 0. Then by
Proposition 3.13, there exists 𝑦 ∈ (𝑀)1 s.t. 𝜓𝑀

𝐸 (𝑥, 𝑦) ≥ 𝜑𝑀
𝐸 (𝑥) − 𝜖 . Then by induction hypothesis,

U (𝜑𝑀
𝐸 (𝑥)) ≤ U (𝜓𝑀

𝐸 (𝑥, 𝑦)) + 𝜖

= 𝜓𝑀 /𝐸,U
(𝜋𝐸,U (𝑥), 𝜋𝐸,U (𝑦)) + 𝜖

≤ 𝜑𝑀 /𝐸,U
(𝜋𝐸,U (𝑥)) + 𝜖 .

Since 𝜖 was arbitrary, U (𝜑𝑀
𝐸 (𝑥)) ≤ 𝜑𝑀 /𝐸,U

(𝜋𝐸,U (𝑥)), so the proof is complete. �

Remark 3.19. We showed earlier that for each formula 𝜑, there is a universal upper bound for 𝜑𝑀
𝐸 . Now

in light of Theorem 3.18, we know that for every pure state U on N, we have

|U (𝜑𝑀
𝐸 (𝑥)) | = |𝜑𝑀 /𝐸,U

(𝜋𝐸,U (𝑥)) | ≤ ‖𝜑‖𝑢 .

Therefore,

‖𝜑𝑀
𝐸 ‖ ≤ ‖𝜑‖𝑢 ,

and it follows that the evaluation map 𝜑 ↦→ 𝜑𝑀
𝐸 extends to the C∗-algebra P𝑋 of definable predicates

from Definition 3.7.
Furthermore, in the special case of ultrapowers over measure spaces, we have the following, which

in particular proves Proposition C.
Proposition 3.20. Let A be a commutative von Neumann algebra and let (𝑀, 𝜏) be a tracial von
Neumann algebra. Let 𝑀̃ = 𝐴⊗𝑀 and let 𝐸̃ = id ⊗𝜏 : 𝑀̃ → 𝐴. Let U be a pure state on A, so that
𝑀̃/𝐸,U = 𝑀U . Then for 𝑥 ∈ (𝑀)𝑛1 and formulas 𝜑, we have

𝜑𝑀U
(𝜋𝐸̃ ,U (1𝐴 ⊗ 𝑥)) = 𝜑𝑀 (𝑥).

In particular, for every sentence 𝜑, we have 𝜑𝑀U
= 𝜑𝑀 , so that 𝑀U ≡ 𝑀 .
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The first claim says that the mapping 𝑀 → 𝑀U given by 𝑥 ↦→ 𝜋𝐸,U (1 ⊗ 𝑥) is an elementary
embedding (see 3.5). The second claim about sentences is the special case where 𝜑 has no free variables
(or 𝑛 = 0). Note that by Theorem 3.18, the first claim can be rewritten as

U ◦ 𝜑𝑀̃
𝐸̃
(1𝐴 ⊗ 𝑥) = 𝜑𝑀 (𝑥).

Hence, since we want to prove the proposition for all pure states, the claim is equivalent to

𝜑𝑀̃
𝐸̃
(1𝐴 ⊗ 𝑥) = 1𝐴𝜑

𝑀 (𝑥) in 𝐴.

We will prove this in greater generality, allowing 𝜏 : 𝑀 → C to be replaced by a conditional expectation
onto a central subalgebra.

Proposition 3.21. Let M be a finite von Neumann algebra, 𝑁 ⊆ 𝑍 (𝑀) be a subalgebra of its center,
𝐸 : 𝑀 → 𝑁 be a normal, faithful, tracial conditional expectation, and A be an abelian von Neumann
algebra. Let 𝑀̃ = 𝐴 ⊗ 𝑀 and 𝐸̃ : 𝑀̃ → 𝐴 ⊗ 𝑁 be given by 𝐸̃ = Id ⊗ 𝐸 . Then for any sentence 𝜑,
𝜑𝑀̃
𝐸̃

= 1𝐴 ⊗ 𝜑𝑀
𝐸 .

For the sake of induction, we will actually prove an even more general statement. Proposition 3.21
corresponds to the case of Proposition 3.22 where the index set J is a singleton and the projection-valued
measure is simply 1𝐴.

Proposition 3.22. Let M be a finite von Neumann algebra, 𝑁 ⊆ 𝑍 (𝑀) be a subalgebra of its center,
𝐸 : 𝑀 → 𝑁 be a normal, faithful, tracial conditional expectation, and A be an abelian von Neumann
algebra. Let 𝑀̃ = 𝐴 ⊗ 𝑀 and 𝐸̃ : 𝑀̃ → 𝐴⊗𝑁 be given by 𝐸̃ = id ⊗𝐸 . Let 𝜑 be a formula with n free
variables. Let 𝑥𝑖 =

∑
𝑗∈𝐽 𝑒 𝑗 ⊗ 𝑚𝑖, 𝑗 for each 𝑖 ≤ 𝑛, where {𝑒 𝑗 } 𝑗∈𝐽 is a PVM over A and 𝑚𝑖, 𝑗 ∈ (𝑀)1 for

all 𝑗 ∈ 𝐽. Also, write 𝑚 𝑗 = (𝑚1, 𝑗 , . . . , 𝑚𝑛, 𝑗 ). Then

𝜑𝑀̃
𝐸̃
(𝑥) =

∑
𝑗∈𝐽

𝑒 𝑗 ⊗ 𝜑𝑀
𝐸 (𝑚 𝑗 ).

Proof. We proceed by induction on the complexity of the formula. As in the proof of Lemma 3.14, the
cases for atomic formulae and adding connectives follows from the fact that 𝑀̃ � 𝑥 ↦→ (𝑒 𝑗 ⊗ 1)𝑥 ∈

(𝑒 𝑗 ⊗ 1)𝑀̃ is a *-homomorphism. As before, the sup and inf cases are symmetrical, and so suppose that
𝜑(𝑥) = sup𝑦 𝜓(𝑥, 𝑦) where 𝜓 satisfies the induction hypothesis.

Let 𝑒 𝑗 , 𝑚𝑖, 𝑗 and 𝑥𝑖 be as in the theorem statement. Let 𝜖 > 0. For each j, by Proposition 3.13, there
exists 𝑛 𝑗 such that

𝜓𝑀
𝐸 (𝑚 𝑗 , 𝑛 𝑗 ) ≥ 𝜑𝑀

𝐸 (𝑚 𝑗 ) − 𝜖 .

Let 𝑦 =
∑

𝑗∈𝐽 𝑒 𝑗 ⊗ 𝑛 𝑗 . Applying the induction hypothesis to 𝜓, we obtain

𝜑𝑀̃
𝐸̃
(𝑥) ≥ 𝜓𝑀̃

𝐸̃
(𝑥, 𝑦) =

∑
𝑗∈𝐽

𝑒 𝑗 ⊗ 𝜓𝑀
𝐸 (𝑚 𝑗 , 𝑛 𝑗 ) ≥

∑
𝑗∈𝐽

𝑒 𝑗 ⊗ (𝜑𝑀
𝐸 (𝑚 𝑗 ) − 𝜖) ≥

∑
𝑗∈𝐽

𝑒 𝑗 ⊗ 𝜑𝑀
𝐸 (𝑚 𝑗 ) − 𝜖 .

Therefore, 𝜑𝑀̃
𝐸̃
(𝑥) ≥

∑
𝑗∈𝐽 𝑒 𝑗 ⊗ 𝜑𝑀

𝐸 (𝑚 𝑗 ).
In order to prove the reverse inequality, we start by considering y in certain a dense subset of (𝑀̃)1

with respect to the strong-∗ operator topology (SOT-∗). Let

𝑆 =

{∑
𝑘∈𝐾

𝑝𝑘 ⊗ 𝑛𝑘 , {𝑝𝑘 }𝑘∈𝐾 is a PVM over 𝐴, 𝑛𝑘 ∈ (𝑀)1

}
.

By the construction of tensor products and by the Kaplansky density theorem, S is dense in (𝑀̃)1.
Suppose that 𝑦 =

∑
𝑘∈𝐾 𝑝𝑘 ⊗ 𝑛𝑘 is in S. Then by the induction hypothesis applied to the partition

(𝑒 𝑗 𝑝𝑘 ) 𝑗∈𝐽 ,𝑘∈𝐾 , we have
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𝜓𝑀̃
𝐸̃
(𝑥, 𝑦) =

∑
𝑗∈𝐽 ,𝑘∈𝐾

𝑒 𝑗 𝑝𝑘 ⊗ 𝜓𝑀
𝐸 (𝑚 𝑗 , 𝑛𝑘 ) ≤

∑
𝑗∈𝐽 ,𝑘∈𝐾

𝑒 𝑗 𝑝𝑘 ⊗ 𝜑𝑀
𝐸 (𝑚 𝑗 ) =

∑
𝑗∈𝐽

𝑒 𝑗 ⊗ 𝜑𝑀
𝐸 (𝑚 𝑗 ).

Next, suppose that y is a general element in (𝑀̃)1 and write y as the limit of a net 𝑦𝑖 ∈ 𝑆. Since
𝑦𝑖 → 𝑦 in SOT-∗, we have that for every normal state 𝜏 on 𝐴⊗𝑁 , we have ‖𝑦ℓ − 𝑦‖2,𝜏◦𝐸̃ → 0. By
Lemma 3.16, this implies that

‖𝜓𝑀̃
𝐸̃
(𝑥, 𝑦ℓ ) − 𝜓𝑀̃

𝐸̃
(𝑥, 𝑦)‖2,𝜏◦𝐸̃ → 0.

Therefore, since this holds for every normal state, we have 𝜓𝑀̃
𝐸̃
(𝑥, 𝑦ℓ) → 𝜓𝑀̃

𝐸̃
(𝑥, 𝑦). The preceding

argument showed that

𝜓𝑀̃
𝐸̃
(𝑥, 𝑦ℓ ) ≤

∑
𝑗∈𝐽

𝑒 𝑗 ⊗ 𝜑𝑀
𝐸 (𝑚 𝑗 ),

and therefore,

𝜓𝑀̃
𝐸̃
(𝑥, 𝑦) ≤

∑
𝑗∈𝐽

𝑒 𝑗 ⊗ 𝜑𝑀
𝐸 (𝑚 𝑗 ).

Since 𝑦 ∈ (𝑀̃)1 was arbitrary, 𝜑𝑀̃
𝐸̃
(𝑥) ≤

∑
𝑗∈𝐽 𝑒 𝑗 ⊗ 𝜑𝑀

𝐸 (𝑚 𝑗 ). We have now shown both inequalities so
the proof is complete. �

This concludes the proof of Proposition 3.20 and so of Proposition C. This proposition allows the
Keisler–Shelah characterization of elementary equivalence to be extended to ultrafilters on measure
spaces. We recall the Keisler–Shelah theorem for ultraproducts on discrete index sets here.

Theorem 3.23 (Keisler–Shelah, see [BBHU08, Theorem 5.7], [FHS14b, Theorem 2.1(2)]). (𝑀, 𝜏𝑀 ) ≡

(𝑁, 𝜏𝑁 ) iff there exists an index set I and an ultrafilter U on I s.t. (𝑀, 𝜏𝑀 )U � (𝑁, 𝜏𝑁 )U .

We now have the following corollary.

Corollary 3.24. Let (𝑀, 𝜏𝑀 ) and (𝑁, 𝜏𝑁 ) be two tracial von Neumann algebras. Then TFAE,

1. (𝑀, 𝜏𝑀 ) ≡ (𝑁, 𝜏𝑁 );
2. There exists a character U on a commutative von Neumann algebra A s.t. (𝑀, 𝜏𝑀 )U � (𝑁, 𝜏𝑁 )U .

Proof. (1) =⇒ (2). If (𝑀, 𝜏𝑀 ) ≡ (𝑁, 𝜏𝑁 ), then the Keisler-Shelah theorem implies that 𝑀U � 𝑁U

for some ultrafilter U on a discrete index set (i.e., a pure state on ℓ∞(𝐼) for some index set).
(2) =⇒ (1). This follows from Proposition 3.20 and the transitivity of elementary equivalence. �

4. Disintegration for elementary equivalence

The goal of this section is to prove Theorem A. It will become clear in the proof that the main case of
interest is when the measure spaces are diffuse. In this case, we will see that the right perspective on
this result is to look at the distribution of the theory Th(𝑀𝜔) as a random variable with values in the
space of theories of tracial factors (see [FG24, Definition 5.2]). The crux of the proof is to show that if
𝑀 ≡ 𝑁 , then the distribution of theories for M and N coincide.

4.1. The distribution of theories

Suppose that M is a tracial von Neumann algebra, 𝑁 ⊆ 𝑍 (𝑀) is a von Neumann subalgebra, and
𝐸 : 𝑀 → 𝑁 is the unique trace-preserving expectation. If 𝜑 is a sentence in the language of tracial von
Neumann algebras, then 𝜑𝑀

𝐸 is an element of N. Since (𝑁, 𝜏 |𝑁 ) is a commutative tracial von Neumann
algebra, it is isomorphic to 𝐿∞(Ω, 𝜇) for some complete probability measure space. Thus, 𝜑𝑀

𝐸 can be

https://doi.org/10.1017/fms.2025.10066 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10066


24 D. Gao and D. Jekel

regarded as a real random variable on Ω. Hence, it makes sense to speak of its probability distribution,
which is its spectral measure on R with respect to the tracial state. More generally, we can consider the
joint probability distribution of ((𝜑1)

𝑀
𝐸 , . . . , (𝜑𝑘 )

𝑀
𝐸 ) for several sentences 𝜑1, . . . , 𝜑𝑘 , which gives a

probability measure on R𝑘 . As a concrete example, recall that in the case that M is a direct integral
over 𝑁 = 𝐿∞(Ω, 𝜇), then 𝜑𝑀

𝐸 coincides with the measurable function 𝜔 ↦→ 𝜑𝑀𝜔 . Thus, the elements
((𝜑1)

𝑀
𝐸 , . . . , (𝜑𝑘 )

𝑀
𝐸 ) are simply random variables on the underlying probability space for the direct

integral.
We actually want to consider the joint distribution of all sentences together, or equivalently, instead

of looking at random variables in R𝑘 , we want to look at random variables taking values in the space of
theories of tracial von Neumann algebras. Recall from Definition 3.7 that P∅ is the real C∗-algebra
obtained as the separation-completion of the algebra of sentences with respect to ‖·‖𝑢 . We showed
in Proposition 3.9 that theories of tracial von Neumann algebras are in bijection with characters on
P∅. Let Spec(P∅) be the space of characters, that is, the Gelfand spectrum, of P∅, equipped with the
weak-∗ topology, so that P∅ � 𝐶 (Spec(P∅);R). Given 𝑁 ⊆ 𝑀 as above, there is a ∗-homomorphism
ev𝑀

𝐸 : P∅ → 𝑁 given by 𝜑 ↦→ 𝜑𝑀
𝐸 for sentences (see Remark 3.19). Hence, 𝜏𝑁 ◦ ev𝑀

𝐸 is a state on P∅

or, equivalently, a probability measure on Spec(P∅), which is the distribution that we seek.

Definition 4.1 (Distribution of theories). We denote by Ttr = Spec(P∅) the space of theories of tracial
von Neumann algebras with the weak-∗ topology. Given a tracial von Neumann algebra (𝑀, 𝜏) and
𝑁 ⊆ 𝑍 (𝑀), let 𝐸 : 𝑀 → 𝑁 be the unique trace-preserving conditional expectation. Let ev𝑀

𝐸 : P∅ → 𝑁
be the unique ∗-homomorphism given by 𝜑 ↦→ 𝜑𝑀

𝐸 on sentences (see Remark 3.19). The distribution of
theories for M over N is the probability measure on Ttr corresponding to the state 𝜏 |𝑁 ◦ ev𝑀

𝐸 on P∅.
In the case that 𝑁 = 𝑍 (𝑀) and E is the center-valued trace, then we call this probability measure

simply the distribution of theories for M.

A more measure-theoretic description of the distribution of theories can be found in Farah and
Ghasemi’s paper [FG24, Definition 5.2]. As one would expect, in the case of direct integrals, this can
be formulated more concretely.

Lemma 4.2. Suppose (𝑀, 𝜏) =
∫ ⊕

Ω
(𝑀𝜔 , 𝜏𝜔) is a direct integral of separable tracial von Neumann

algebras. Then 𝜔 ↦→ Th(𝑀𝜔 , 𝜏𝜔) is a random variable taking values in Ttr, and the distribution of
theories for M over N is the distribution of this random variable.

Proof. First, to see why Th(𝑀𝜔 , 𝜏𝜔) is a measurable function, it suffices to show that each open set is
measurable. Recall that Ttr is separable and metrizable, and the topology is generated by the continuous
functions given by elements of P∅, so it suffices to check that 𝜔 ↦→ Th(𝑀𝜔 , 𝜏𝜔) [𝜑] is measurable for
each 𝜑 ∈ P∅. Since formulas give a dense subset of P∅, it suffices to check measurability for formulas,
which follows Lemma 3.17.

Next, to show that the distribution of 𝜔 ↦→ Th(𝑀𝜔 , 𝜏𝜔) agrees with the abstract distribution of
theories, it suffices to check that both measures agree when integrated against any continuous function
on Ttr. By Lemma 3.17, for a sentence 𝜑, we have

𝜏𝑁 (𝜑𝑀
𝐸 ) =

∫
Ω

𝜑𝑀𝜔 𝑑𝜇(𝜔) =
∫
Ω

Th(𝑀𝜔 , 𝜏𝜔) [𝜑] 𝑑𝜇(𝜔).

By density, this extends to all functions in P∅ = 𝐶 (Ttr;R), so the claim is proved. �

In order to prove that the distribution of theories is preserved by elementary equivalence, we first
show the following. The proof can be thought of as a generalization of the method for Corollary B.

Proposition 4.3. Let (𝑀, 𝜏) be a tracial von Neumann algebra, and let N be a von Neumann subalgebra
of its center. LetU be a character on a commutative von Neumann algebra A, and consider the generalized
ultrapowers 𝑁U ⊆ 𝑀U . Then the distribution of theories for M over N is the same as the distribution
of theories for 𝑀U over 𝑁U . In particular, the distribution of theories for M over 𝑍 (𝑀) is the same as
that for 𝑀U over 𝑍 (𝑀U ).
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Proof. Let q denote the natural quotient map 𝑞 : 𝐴⊗𝑀 → 𝑀U . Note that the trace U ◦ (id𝐴 ⊗𝜏) on
𝐴⊗𝑀 restricts on 𝐴⊗𝑁 to the trace U ◦ (id𝐴 ⊗𝜏 |𝑁 ), and hence, we have a natural trace-preserving
embedding 𝑁U → 𝑀U . Furthermore, letting 𝐸̃ : 𝑀U → 𝑁U be the unique trace-preserving conditional
expectation, we have

𝐸̃ ◦ 𝑞 = 𝑞 ◦ (id𝐴 ⊗𝐸).

Indeed, for each 𝑥 ∈ 𝐴⊗𝑀 , (id𝐴 ⊗𝐸) (𝑥) is an element in 𝐴⊗𝑁 satisfying

(id𝐴 ⊗𝜏) ((id𝐴 ⊗𝐸) (𝑥)𝑦) = (id𝐴 ⊗𝜏) (𝑥𝑦) for 𝑦 ∈ 𝐴⊗𝑁.

By applying U to both sides, we see that 𝑞((id𝐴 ⊗𝐸) (𝑥)) is an element in 𝑁U with the same inner
product as 𝑞(𝑥) with every element of 𝑁U .

Let V be a character on 𝑁U . We claim that (𝑀U )/𝐸̃ ,V � (𝐴 ⊗ 𝑀)/id𝐴 ⊗𝐸,V◦𝑞 . Indeed,
(𝐴⊗𝑀)/id𝐴 ⊗𝐸,V◦𝑞 is obtained by quotienting 𝐴⊗𝑀 by the ideal {𝑥 : V ◦𝑞◦ (id𝐴 ⊗𝐸) (𝑥∗𝑥) = 0}. Mean-
while, (𝑀U )/𝐸̃ ,V is obtained by quotienting out the ideal {𝑥 : U ◦ (id𝐴 ⊗𝜏) (𝑥∗𝑥) = 0}, and then further
quotienting by {𝑦 ∈ 𝑀U : V ◦ 𝐸̃ (𝑦∗𝑦) = 0}. But by the first paragraph, V ◦ 𝐸̃ ◦ 𝑞 = V ◦ 𝑞 ◦ (id𝐴 ⊗𝐸),
and hence, these two quotients are the same.

By Theorem 3.18, for every sentence 𝜑,

V
[
𝜑𝑀U

𝐸̃

]
= 𝜑 (𝑀U )/𝐸̃,V

= 𝜑 (𝐴⊗𝑀 )/id𝐴 ⊗𝐸,V◦𝑞
= V ◦ 𝑞

[
𝜑𝐴⊗𝑀

id𝐴 ⊗𝐸

]
.

Since V was an arbitrary pure state,

𝜑𝑀U

𝐸̃
= 𝑞

[
𝜑𝐴⊗𝑀

id𝐴 ⊗𝐸

]
.

By Proposition 3.21,

𝜑𝐴⊗𝑀
id𝐴 ⊗𝐸 = 1𝐴 ⊗ 𝜑𝑀

𝐸 .

Therefore,

𝜑𝑀U

𝐸̃
= 𝑞

[
1𝐴 ⊗ 𝜑𝑀

𝐸

]
,

or in other words, 𝜑𝑀U

𝐸̃
equals the image of 𝜑𝑀

𝐸 under the diagonal embedding 𝑁 → 𝑁U . Since the
diagonal embedding is trace-preserving, we have

𝜏𝑁U [𝜑𝑀U

𝐸̃
] = 𝜏𝑁 [𝜑𝑀

𝐸 ] .

Since this holds for all sentences 𝜑, we have proved that the distributions of theories agree.
Next, consider the second claim regarding the case where 𝑁 = 𝑍 (𝑀). By Proposition 2.8,

𝑍 (𝑀U ) = 𝑍 (𝑀)U , so this follows from the first claim. �

Corollary 4.4. Let (𝑀, 𝜏𝑀 ) and (𝑁, 𝜏𝑁 ) be elementarily equivalent tracial von Neumann algebras.
Then their distributions of theories coincide.

Proof. By the Keisler-Shelah theorem (Theorem 3.23), there exists some ultrafilter such that 𝑀U � 𝑁U ,
which of course implies that 𝑀U and 𝑁U have the same distribution of theories. By Proposition 4.3, M
and 𝑀U have the same distribution of theories, and N and 𝑁U have the same distribution of theories.
Hence, M and N have the same distribution of theories. �
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4.2. Proof of Theorem A

First, we recall some measure theory background needed to create a measurable isomorphism that will
exhibit fiberwise elementary equivalence. Recall that a standard Borel space is a measurable space
isomorphic to a complete separable metric space equipped with its Borel 𝜎-algebra. Any two such
spaces, if they have no atoms, are Borel-isomorphic, so that we can always assume without loss of
generality that we are working on [0, 1] with its Borel 𝜎-algebra.

Theorem 4.5 (Rokhlin disintegration theorem). Let 𝜇 be a Borel measure on [0, 1] × [0, 1]. Let 𝜇1 be
the pushforward of 𝜇 under the first coordinate projection. Then there exists a family of probability
measures (𝜈𝑥)𝑥∈[0,1] such that

◦ For each Borel 𝐴 ⊆ [0, 1], 𝑥 ↦→ 𝜈𝑥 (𝐴) is Borel-measurable.
◦ For each Borel set A, let 𝐴𝑥 = {𝑦 ∈ [0, 1] : (𝑥, 𝑦) ∈ 𝐴}. Then 𝐴𝑥 is Borel measurable and

𝜇(𝐴) =
∫
[0,1]

𝜈𝑥 (𝐴𝑥) 𝑑𝜇1 (𝑥).

One can easily obtain the following equivalent notions of a probability space having ‘diffuse fibers’
relative to a given random variable X. This result could also be deduced from certain versions of the
spectral theorem or from direct integral decompositions of von Neumann algebras, but we prefer to give
a more self-contained proof. Note that condition (3) is exactly the stability under tensorization assumed
in Theorem A.

Lemma 4.6. Consider [0, 1] with Lebesgue measure. Let X be any Borel random variable [0, 1] →

[0, 1] and let Y be the identity function [0, 1] → [0, 1]. Let 𝜇𝑋 ∈ P ([0, 1]) be the distribution of X – that
is, the pushforward of Lebesgue measure by the function X. Similarly, let 𝜇𝑋,𝑌 ∈ P ([0, 1]× [0, 1]) be the
distribution of (𝑋,𝑌 ), or the pushforward Lebesgue measure under (𝑋,𝑌 ). Let 𝜋1, 𝜋2 : [0, 1] × [0, 1] →
[0, 1] denote the coordinate projections. The following are equivalent:

1. For 𝜇𝑋 -almost every x, the measure 𝜈𝑥 in the disintegration for 𝜇𝑋,𝑌 from Theorem 4.5 has no atoms.
2. There exists an isomorphism of measure spaces Φ : ([0, 1], Leb) → ([0, 1], 𝜇𝑋 ) × ([0, 1], Leb) such

that 𝑋 = 𝜋1 ◦Φ.
3. There exists an isomorphism of measure spaces Ψ : ([0, 1], Leb) → ([0, 1], Leb) × ([0, 1], Leb)

such that 𝑋 = 𝑋 ◦ 𝜋1 ◦ Ψ.
4. There exists an isomorphism of measure spaces Ψ : ([0, 1], Leb) → ([0, 1], Leb) × ([0, 1], Leb)

and a random variable Z such that 𝑋 = 𝑍 ◦ 𝜋1 ◦ Ψ.
5. There exists a sequence of random variables 𝑍𝑛 : [0, 1] → {−1, 1} such that for all random variables

𝑊 : [0, 1] → [0, 1], we have ‖𝐸 [𝑍𝑛𝑊 | 𝑋]‖𝐿2 → 0.

Proof. (1) =⇒ (2). Note that ([0, 1], Leb) is isomorphic to ([0, 1] × [0, 1], 𝜇𝑋,𝑌 ) as a measure space
since (𝑋,𝑌 ) generate the entire Borel 𝜎-algebra on [0, 1]. Hence, it suffices to produce an isomorphism
([0, 1] × [0, 1], 𝜇𝑋,𝑌 ) → ([0, 1], 𝜇𝑋 ) × ([0, 1], Leb) that preserves the first coordinate.

Let 𝐹𝜈𝑥 : [0, 1] → [0, 1] be the cumulative distribution function of 𝜈𝑥 – that is, 𝐹𝜈𝑥 (𝑦) = 𝜈𝑥 ([0, 𝑦]).
Since 𝜈𝑥 has no atoms, 𝐹𝜈𝑥 is continuous. Since 𝐹𝜈𝑥 is an increasing surjective continuous function
[0, 1] → [0, 1], there is a unique strictly increasing, right-continuous function 𝐺𝑥 : [0, 1] → [0, 1]
such that 𝐹𝜈𝑥 ◦ 𝐺𝑥 = id. Let 𝐹 (𝑥, 𝑦) = 𝐹𝜈𝑥 (𝑦) and let 𝐺 (𝑥, 𝑦) = 𝐺𝑥 (𝑦). We claim that F and G are
Borel-measurable. Indeed, note that

{(𝑥, 𝑦) : 𝐹 (𝑥, 𝑦) ≤ 𝑡} = {(𝑥, 𝑦) : 𝜈𝑥 ([0, 𝑦]) ≤ 𝑡},

which is Borel-measurable by the properties of the disintegration. However,

{(𝑥, 𝑦) : 𝐺 (𝑥, 𝑦) ≤ 𝑡} = {(𝑥, 𝑦) : 𝑦 ≤ 𝐹 (𝑥, 𝑡)},
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which is Borel-measurable since F is Borel-measurable. Note that (𝐹𝜈𝑥 )∗𝜈𝑥 = Leb since
(𝐹𝜈𝑥 )∗𝜈𝑥 ([0, 𝑡]) = 𝜈𝑥 (𝐹

−1
𝜈𝑥 ([0, 𝑡])) = 𝜈𝑥 ([0, 𝐺𝑥 (𝑡)]) = 𝐹𝜈𝑥 (𝐺𝑥 (𝑡)) = 𝑡.

Now let 𝐹̃ (𝑥, 𝑦) = (𝑥, 𝐹 (𝑥, 𝑦)) and 𝐺̃ (𝑥, 𝑦) = (𝑥, 𝐺 (𝑥, 𝑦)). Note that 𝐹 (𝑥, 𝐺 (𝑥, 𝑦)) = 𝑦 by construc-
tion, and 𝜇𝑋,𝑌 -almost everywhere we have 𝐺 (𝑥, 𝐹 (𝑥, 𝑦)) = 𝑦 since the set of jump discontinuities of
𝐺𝑥 has measure zero, and hence, 𝐹̃ and 𝐺̃ are inverses of each other almost everywhere. Moreover,
𝐹̃∗𝜇𝑋,𝑌 = 𝜇𝑋 × Leb because using the disintegration theorem, for ℎ ∈ 𝐶 ([0, 1] × [0, 1]),∫

[0,1]2
ℎ ◦ 𝐹̃ 𝑑𝜇𝑋,𝑌 =

∫
[0,1]

∫
[0,1]

ℎ(𝑥, 𝐹 (𝑥, 𝑦)) 𝑑𝜈𝑥 (𝑦) 𝑑𝜇𝑋 (𝑥)

=
∫
[0,1]

∫
[0,1]

ℎ(𝑥, 𝑦) 𝑑 (𝐹𝜈𝑥 )∗𝜈𝑥 (𝑦) 𝑑𝜇𝑋 (𝑥)

=
∫
[0,1]

∫
[0,1]

ℎ(𝑥, 𝑦) 𝑑𝑦 𝑑𝜇𝑋 (𝑥)

=
∫
[0,1]×[0,1]

ℎ 𝑑 (𝜇𝑋 × Leb).

(2) =⇒ (3). Let Φ be as in (2). Let Γ : [0, 1] → [0, 1] × [0, 1] be any isomorphism of measure
spaces (for instance, one can take Γ = Φ). Then let Ψ = (Φ−1 × id[0,1] ) ◦ (id[0,1] ×Γ) ◦Φ. We leave the
verification to the reader.

(3) =⇒ (4). This is immediate.
(4) =⇒ (5). Let Ψ be as in (4), and let 𝑋̃ = 𝑋 ◦ 𝜋1 ◦Ψ. We can use the maps Ψ and Ψ−1 to transform

between random variables on [0, 1] × [0, 1] and [0, 1]; hence, it suffices to show that there are random
variables 𝑍𝑛 : [0, 1] × [0, 1] → {−1, 1}, such that for all random variables 𝑊 : [0, 1] × [0, 1] → [0, 1],
we have ‖𝐸 [𝑍𝑛𝑊 | 𝑋̃]‖𝐿2 → 0. Let 𝑓𝑛 : [0, 1] → {−1, 1} be a function that alternates between ±1 on
intervals of length 2−𝑛. Let 𝑍𝑛 = 𝑓𝑛 ◦ 𝜋2. Given Borel 𝑊1, 𝑊2 : [0, 1] → R, consider the tensor product
𝑊1 ⊗ 𝑊2 on [0, 1] × [0, 1]. Then

‖𝐸 [𝑍𝑛 (𝑊1 ⊗ 𝑊2) | 𝑋̃]‖𝐿2 ≤ ‖𝐸 [𝑍𝑛 (𝑊1 ⊗ 𝑊2) | 𝜋1]‖𝐿2

= ‖(𝑊1 ⊗ 1)𝐸 [𝑍𝑛𝑊2]‖𝐿2 = ‖𝑊1‖𝐿2 |𝐸 [𝑍𝑛𝑊2] | → 0.

Since simple tensors span a dense subset of the probability space, the claim follows.
(5) =⇒ (1). Use the same notation from the first step. Let 𝑆𝜖 be the set of (𝑥, 𝑦) such that 𝜈𝑥 has

an atom of size ≥ 𝜖 at y. We can write

𝑆𝜖 = {(𝑥, 𝑦) : lim
𝑧→𝑦−

𝐹𝜈𝑥 (𝑧) ≤ 𝐹𝜈𝑥 (𝑦) − 𝜖},

and hence, 𝑆𝜖 is a Borel set since (𝑥, 𝑦) ↦→ 𝐹𝜈𝑥 (𝑦) is Borel-measurable. Let (𝑆𝜖 )𝑥 be the slice
{𝑦 : (𝑥, 𝑦) ∈ 𝑆𝜖 }. From this, it is not hard to see that

𝑓𝜖 (𝑥) =

{
inf(𝑆𝜖 )𝑥 , (𝑆𝜖 )𝑥 ≠ ∅,

−1, else.

is a Borel function. Let (𝑍𝑛)𝑛∈N be a sequence of random variables as in (5). Let 𝑊𝜖 = 1𝑌= 𝑓𝜖 (𝑋 ) . By
passing to a subsequence, assume that 𝐸 [𝑊𝜖 𝑍𝑛 | 𝑋] → 0 almost surely (that is, 𝜇𝑋 -almost everywhere).
But note that when (𝑆𝜖 )𝑥 ≠ ∅, we have

|𝐸 [𝑊𝜖 𝑍𝑛 | 𝑋] (𝑥) | =

����∫
[0,1]

𝑍𝑛 (𝑥, 𝑦)1𝑦= 𝑓𝜖 (𝑥) 𝑑𝜈𝑥 (𝑦)

���� = |𝑍𝑛 (𝑥, 𝑓𝜖 (𝑥))𝜈𝑥 ({ 𝑓𝜖 (𝑥))) | ≥ 𝜖 .

Therefore, whenever 𝐸 [𝑊𝜖 𝑍𝑛 | 𝑋] (𝑥) → 0, we have (𝑆𝜖 )𝑥 = ∅. Hence, for 𝜇𝑋 -almost every x, we
have (𝑆𝜖 )𝑥 = ∅. Since this holds for every 𝜖 , we conclude that for 𝜇𝑋 -almost every x, the measure 𝜈𝑥

has no atoms. �
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Proof of Theorem A. The measure space (Ω1, 𝜇1) can be decomposed into countably many atoms and
an atomless space, which we in turn can assume is ([0, 1], Leb). Thus, suppose that Ω1 = 𝐼 � [0, 1] and

(𝑀, 𝜏) =
⊕
𝑖∈𝐼

𝛼𝑖 (𝑀𝑖 , 𝜏𝑖) ⊕ 𝛼0

∫ ⊕

[0,1]
(𝑀𝜔 , 𝜏𝜔) 𝑑𝜔,

where (𝛼𝑖)𝑖∈𝐼 are the weights of the atoms and 𝛼0 = 1 −
∑

𝑖∈𝐼 𝛼𝑖 . Let (𝑀0, 𝜏0) =
∫ ⊕

[0,1] (𝑀𝜔 , 𝜏𝜔) 𝑑𝜔.
Similarly, suppose that

(𝑁, 𝜎) =
⊕
𝑗∈𝐽

𝛽𝑖 (𝑀 𝑗 , 𝜎𝑗 ) ⊕ 𝛽0

∫ ⊕

[0,1]
(𝑁𝜔 , 𝜎𝜔) 𝑑𝜔,

and let (𝑁0, 𝜎0) =
∫ ⊕

[0,1] (𝑁𝜔 , 𝜎𝜔) 𝑑𝜔.
Since we assumed (𝑀, 𝜏) ≡ (𝑁, 𝜎), the Keisler-Shelah theorem yields some ultrafilter U on some

index set S such that (𝑀, 𝜏)U � (𝑁, 𝜎)U . Note that there is an isomorphism

(𝑀, 𝜏)U �
⊕

𝑖∈{0}∪𝐼

𝛼𝑖 (𝑀𝑖 , 𝜏𝑖)
U

in the obvious way. Indeed, any element in the ultrapower (𝑀, 𝜏)U can be lifted to some tuple (𝑥𝑠)𝑠∈𝑆
over the index set S, which in turn can be decomposed as a direct sum of elements 𝑥𝑠,𝑖 ∈ 𝑀𝑖 , 𝑖 ∈ 𝐼 ∪{0}.
Moreover, ‖𝑥𝑠 ‖2 → 0 along the ultrafilter if and only if ‖𝑥𝑠,𝑖 ‖2 → 0 along the ultrafilter for each i.
The elements (𝑀𝑖 , 𝜏𝑖)

U are factors for each 𝑖 ∈ 𝐼 (by Proposition 2.8 for instance), while (𝑀0, 𝜏0)
U has

diffuse center. Thus, the elements 1𝑀𝑖 are exactly the minimal central projections in (𝑀, 𝜏)U for 𝑖 ∈ 𝐼.
The analogous claims hold for (𝑁, 𝜎) as well. Hence, (𝑀, 𝜏)U � (𝑁, 𝜎)U becomes⊕

𝑖∈𝐼

𝛼𝑖 (𝑀𝑖 , 𝜏𝑖)
U ⊕ 𝛼0 (𝑀0, 𝜏0)

U �
⊕
𝑗∈𝐽

𝛽 𝑗 (𝑁 𝑗 , 𝜎𝑗 )
U ⊕ 𝛽0 (𝑁, 𝜎)U .

The isomorphism must map minimal central projections on the left-hand side to minimal central
projections on the right-hand side. Therefore, there is a bijection 𝑓1 : 𝐼 → 𝐽 such that the identity in
(𝑀𝑖 , 𝜏𝑖)

U is mapped to the identity in (𝑁 𝑓1 (𝑖) , 𝜎 𝑓1 (𝑖) )
U under the isomorphism. It easily follows that

𝛼𝑖 = 𝛽 𝑓1 (𝑖) and (𝑀𝑖 , 𝜏𝑖)
U � (𝑁 𝑓1 (𝑖) , 𝜎 𝑓1 (𝑖) )

U , which means that (𝑀𝑖 , 𝜏𝑖) ≡ (𝑁 𝑓 (𝑖) , 𝜎 𝑓 (𝑖) ). Moreover, the
remaining summands with diffuse center in the direct sum decomposition must also correspond under
the isomorphism, so that (𝑀0, 𝜏0)

U � (𝑁0, 𝜎0)
U , which means that (𝑀0, 𝜏0) ≡ (𝑁0, 𝜎0).

By Corollary 4.4, (𝑀0, 𝜏0) and (𝑁0, 𝜎0) have the same distribution of theories. By Lemma 4.2, this
means that the random variables 𝑋 : 𝜔 ↦→ Th(𝑀𝜔 , 𝜏𝜔) and 𝑌 : 𝜔 ↦→ Th(𝑁𝜔 , 𝜎𝜔) have the same
distribution, or 𝜇𝑋 = 𝜇𝑌 as probability measures on Ttr. Let 𝑔 : Ttr → [0, 1] be an isomorphism
of standard Borel spaces, and let 𝑋̃ = 𝑔 ◦ 𝑋 . Since we assumed that the diffuse part of the direct
integral decomposition satisfies stability under tensorization, it is easy to see that the random variable
𝑋̃ satisfies condition (3) of Lemma 4.6. Hence, by condition (2), there exists a measurable isomorphism
Φ̃ : ([0, 1], Leb) → ([0, 1], 𝜇𝑋̃ ) × ([0, 1], Leb) such that 𝑋̃ = 𝜋1 ◦ Φ̃. Let Φ = (𝑔−1 × id) ◦ Φ̃ :
([0, 1], Leb) → (Ttr, 𝜇𝑋 ) × ([0, 1], Leb); then we have 𝑋 = 𝜋1 ◦ Φ. Similarly, obtain an isomorphism
Ψ : ([0, 1], Leb) → (Ttr, 𝜇𝑌 ) × ([0, 1], Leb) such that 𝑌 = 𝜋1 ◦ Ψ.

Then 𝑓0 = Ψ−1 ◦ Φ gives an isomorphism ([0, 1], Leb) → ([0, 1], Leb) such that 𝑌 ◦ 𝑓0 = 𝑋 ,
meaning that Th(𝑁 𝑓0 (𝜔) , 𝜎 𝑓0 (𝜔) ) = Th(𝑀𝜔 , 𝜏𝜔). Let 𝑓 : 𝐼 � [0, 1] → 𝐽 � [0, 1] be the function given
by 𝑓 |𝐼 = 𝑓1 and 𝑓 |[0,1] = 𝑓0. Then f is a bijection such that (𝑁 𝑓 (𝜔) , 𝜎 𝑓 (𝜔) ) ≡ (𝑀𝜔 , 𝜏𝜔). �

Remark 4.7. In the setup of Theorem A, if we remove the hypothesis of stability under tensorization
for the diffuse part of the direct integral decomposition, can we still find a measurable isomorphism
𝑓 : Ω1 → Ω2 such that 𝑀𝜔 ≡ 𝑁 𝑓 (𝜔) almost surely? We claim that the answer comes down to the
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behavior of the fiber measures in the distintegration of the diffuse parts of Ω1 and Ω2 over the random
variables X and Y, respectively.

The proof given above still allows us to match up the direct summands over each atom in the probability
spaces (Ω1, 𝜇1) and (Ω2, 𝜇2), and so it remains to consider what happens for the diffuse parts. So for
simplicity, assume that there are no atoms in Ω1 and Ω2. Assume Ω1 and Ω2 are standard Borel spaces.
Disintegrate 𝜇1 with respect to the random variable 𝑋 (𝜔) = Th(𝑀𝜔 , 𝜏𝜔) as 𝜇1 =

∫
Ttr

𝜈𝑥 𝑑𝜇𝑋 (𝑥), where
𝜈𝑥 ∈ P (Ω1) is supported on 𝑆𝑥 = {𝜔 ∈ Ω1 : 𝑋 (𝜔) = 𝑥}. This is possible since Ω1 and T1 are standard
Borel spaces, hence isomorphic to [0, 1] as measure spaces, and for the same reason, Lemma 4.6
also applies to this disintegration. In particular, the hypothesis of stability under tensorization means
precisely that for 𝜇𝑋 -a.e. x, the fiber measure 𝜈𝑥 is diffuse. Similarly, let 𝜇2 =

∫
Ttr

𝜈̃𝑦 𝑑𝜇𝑌 (𝑦) where
𝜈̃𝑦 is supported on 𝑆𝑦 = {𝜔 ∈ Ω2 : 𝑌 (𝜔) = 𝑦}. As in the proof above, we still have 𝜇𝑋 = 𝜇𝑌 . By
construction, for each 𝑥 ∈ Ttr, the tracial von Neumann algebras 𝑀𝜔 for 𝜔𝑆𝑥 and 𝑁𝜔 for 𝜔 ∈ 𝑆𝑦 have
theory equal to x, and so they are all elementarily equivalent to each other.

Thus, if the sizes of the atoms of the measures 𝜈𝑥 and 𝜈̃𝑥 agree for almost every x, then there is an
isomorphism of (𝑆𝑥 , 𝜈𝑥) to (𝑆𝑥 , 𝜈̃𝑥). In this case, one can show that these maps can be chosen to depend
measurably on x, or there is a measurable isomorphism 𝑓 : (Ω1, 𝜇1) → (Ω2, 𝜇2) sending 𝑆𝑥 to 𝑆𝑥

(we leave the details to the reader, but the idea is to measurably pick out atoms of a certain size in each
fiber as in the proof of Lemma 4.6 (5) =⇒ (1)). Then 𝑋 (𝜔) = Th(𝑀𝜔) = 𝑌 ( 𝑓 (𝜔)) = Th(𝑁 𝑓 (𝜔) ),
so that 𝑀𝜔 ≡ 𝑁 𝑓 (𝜔) almost everywhere. Conversely, if such a measurable isomorphism exists, then it
is necessary that for 𝜇𝑋 -a.e. 𝑥 ∈ Ttr, the fiber measures 𝜈𝑥 and 𝜈̃𝑥 have the same number of atoms of
each size.

5. Isomorphism classes of ultrafibers

In this section, we show that under the continuum hypothesis (CH), the ultrafibers obtained from
separable algebras are all isomorphic to some ultraproduct over the natural numbers. More precisely,
we show the following.

Proposition 5.1. Assume CH. Let (Ω, 𝜇) be a standard Borel probability space and let U be a pure state
on 𝐿∞(Ω, 𝜇). Let (𝑀𝜔)𝜔∈Ω be a measurable field of separable tracial von Neumann algebras and write
(𝑀, 𝜏) =

∫ ⊕

Ω
(𝑀𝜔 , 𝜏𝜔) 𝑑𝜇(𝜔), and let 𝐸 : 𝑀 → 𝐿∞(Ω, 𝜇) be the canonical expectation. Then there

exists a sequence (𝜔𝑛)𝑛∈N in Ω and a non-principal ultrafilter V on N such that 𝑀/𝐸,U �
∏

𝑛→V 𝑀𝜔𝑛 .

We remark that Proposition 5.1 in particular applies to generalized ultrapowers over separable
commutative tracial von Neumann algebras as follows. Suppose that (𝑀, 𝜏𝑀 ) is a tracial von Neumann
algebra. Let A be a separable diffuse commutative tracial von Neumann algebra, and let U is a character
on A. We can assume without loss of generality that 𝐴 = 𝐿∞(Ω), and then 𝐴⊗𝑀 is identified with∫ 𝜔

Ω
(𝑀, 𝜏𝑀 ) 𝑑𝜔, and the ultrafiber 𝑀/𝐸,U is exactly the generalized ultrapower 𝑀U of Definition 2.5.

Hence, the proposition implies that 𝑀U is isomorphic to an ultrapower 𝑀V with respect to a non-
principal ultrafilter V on N.

The isomorphism in Theorem 5.1 arises from the following classic fact from model theory. The
notions of density character and saturation are explained below.

Proposition 5.2 [FHS14a, Proposition 4.13]. If (𝑀, 𝜏𝑀 ) and (𝑁, 𝜏𝑁 ) are saturated tracial von Neumann
algebras of the same uncountable density character, then 𝑀 ≡ 𝑁 if and only if 𝑀 � 𝑁 .

Recall that the density character of a metric space is the minimum cardinality of a dense subset or,
equivalently, the maximum cardinality of a collection of disjoint balls. The density character of a tracial
von Neumann algebra is understood with respect to the 𝐿2-metric, or equivalently, it refers to the density
character of the predual. Thus, the first prerequisite for applying Proposition 5.2 is to determine the
density character of the ultrafibers in question. We will show the density character is 2ℵ0 if the algebra
has a diffuse part, and in fact, this is true even without assuming CH.

https://doi.org/10.1017/fms.2025.10066 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10066


30 D. Gao and D. Jekel

Proposition 5.3. Let (Ω, 𝜇) be a standard Borel probability space and letU be a character on 𝐿∞(Ω, 𝜇).
Assume that U is not given by a point mass located at some atom of Ω. Let (𝑀𝜔)𝜔∈Ω be a measurable
field of separable tracial von Neumann algebras and write (𝑀, 𝜏) =

∫ ⊕

Ω
(𝑀𝜔 , 𝜏𝜔) 𝑑𝜇(𝜔), and let

𝐸 : 𝑀 → 𝐿∞(Ω, 𝜇) be the canonical expectation.

1. If 𝑀/𝐸,U has a diffuse summand, then its density character is 2ℵ0 .
2. Otherwise, 𝑀/𝐸,U is a direct sum of matrix algebras, and hence is separable.

For the proof, we need one more property of the ultrafilters or characters on 𝐿∞(Ω) – namely,
countable incompleteness. Recall that an ultrafilter U on an index set I is called countably incomplete
if there exists a decreasing sequence of sets {𝐴𝑛}

∞
𝑛=1 ⊆ U such that

⋂
𝑛 𝐴𝑛 = ∅. For instance, all non-

principal ultrafilters on N are countably incomplete since we can take 𝐴𝑛 = {𝑛, 𝑛 + 1, . . . }. If we view
the ultrafilter as a pure state on ℓ∞(𝐼), then countable incompleteness means that there is a decreasing
sequence of projections 𝑝𝑛 such that U (𝑝𝑛) = 1 and

∧
𝑛∈N 𝑝𝑛 = 0. Thus, we adapt the definition to

characters on commutative von Neumann algebras as follows.

Definition 5.4. Let U be a character on a commutative von Neumann algebra N. We say U is countably
incomplete if there exists a decreasing sequence of projections. {𝑝𝑛}

∞
𝑛=1 ⊆ 𝑁 s.t. 𝑝𝑛 ↘ 0 in SOT and

U (𝑝𝑛) = 1 for all n.

Proposition 5.5. Let N be a commutative tracial von Neumann algebra and U a character on N. Then
U is countably incomplete unless there is a minimal projection p such that 𝑝𝑥 = U (𝑥)𝑝 for all 𝑥 ∈ 𝑁 .

Proof. First, consider the case where N is diffuse. By Maharam’s theorem [Mah42, Theorem 1], we
may assume (𝑁, 𝜏𝑁 ) = 𝐿∞([0, 1]𝜅 , 𝜆⊗𝜅 ) for some infinite cardinal 𝜅, where 𝜆 is the Lebesgue measure.
Thus, 𝐴 = 𝐶 ([0, 1]𝜅 ) ⊆ 𝑁 , so U necessarily restricts to a character on A, which must be of the form
of the evaluation functional at some 𝑡 ∈ [0, 1]𝜅 . For each positive integer n, let 𝑓𝑛 : [0, 1] → [0, 1]
be a continuous function s.t. 𝑓𝑛 = 1 on [𝑡 (0) − 1/(2𝑛), 𝑡 (0) + 1/(2𝑛)] ∩ [0, 1] and 𝑓𝑛 = 0 outside
[𝑡 (0) − 1/𝑛, 𝑡 (0) + 1/𝑛] ∩ [0, 1]. Let 𝑝 : [0, 1]𝜅 → [0, 1] be the projection map onto the zeroth
coordinate. Then 𝑔𝑛 = 𝑓𝑛 ◦ 𝑝 ∈ 𝐴. Furthermore, by definition U (𝑔𝑛) = 𝑔𝑛 (𝑡) = 1. Let 𝑝𝑛 ∈ 𝑁 be the
projection corresponding to the set ([𝑡 (0) − 1/𝑛, 𝑡 (0) + 1/𝑛] ∩ [0, 1]) × [0, 1]𝜅\{0}. Then 𝑝𝑛 ≥ 𝑔𝑛, so
U (𝑝𝑛) = 1. We also have 𝜏𝑁 (𝑝𝑛) ≤ 2/𝑛 → 0, so 𝑝𝑛 ↘ 0.

Now consider the general case. Choose a family (𝑝𝑖)𝑖∈𝐼 of mutually orthogonal minimal projections
in N that is maximal with respect to inclusion. Since N has a faithful state, I must be countable. Let
𝑝 =

∑
𝑖∈𝐼 𝑝𝑖 . Then N is the direct sum of 𝑝𝑁 and (1 − 𝑝)𝑁 , and so the character U must be supported

on one of these two summands. If it is supported on (1 − 𝑝)𝑁 , then we can apply the diffuse case. If it
is supported on 𝑝𝑁 , then the argument is the same as for ℓ∞(N). �

Proof of Proposition 5.3. (1) Suppose that p is a central projection such that 𝑝𝑀/𝐸,U is diffuse, and
hence it contains a copy of 𝐿∞({−1, 1}N) where {−1, 1}N is the probability space equipped with the
infinite tensor product of the uniform measure 1

2 (𝛿−1 + 𝛿1). Let 𝑣𝑘 : {−1, 1}N → {−1, 1} be the kth
coordinate projection, viewed as an element of 𝑝𝑀/𝐸,U . Note that 𝑣𝑘 is self-adjoint with 𝑣2

𝑘 = 𝑝, and
the 𝑣𝑘 ’s commute. Since 𝑀/𝐸,U is a quotient of M, write

𝑣𝑘 = 𝜋𝐸,U

[∫ ⊕

Ω
𝑣𝑘 (𝜔) 𝑑𝜇(𝜔)

]
,

where 𝑣𝑘 (𝜔) ∈ (𝑀𝜔)1 is self-adjoint. For 𝑛 ∈ N, let 𝐴𝑛 ⊆ Ω be the set of 𝜔 such that������𝜏𝜔
⎡⎢⎢⎢⎢⎣

𝑚∏
𝑗=1

𝑣𝑖 ( 𝑗) (𝜔)

⎤⎥⎥⎥⎥⎦ − 𝜏𝐸,U

⎡⎢⎢⎢⎢⎣
𝑚∏
𝑗=1

𝑣𝑖 ( 𝑗)

⎤⎥⎥⎥⎥⎦
������ ≤ 1

𝑛
for 𝑚 ≤ 2𝑛 and 𝑖(1), . . . , 𝑖(𝑚) ∈ {1, . . . , 𝑛}.
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Note that because U evaluated on 𝜔 ↦→ 𝜏𝜔

[∏𝑚
𝑗=1 𝑣𝑖 ( 𝑗) (𝜔)

]
is equal to 𝜏𝐸,U

[∏𝑚
𝑗=1 𝑣𝑖 ( 𝑗)

]
, we must have

that

U (1𝐴𝑛 ) = 1.

Also, 𝐴𝑛 is a decreasing sequence. Moreover, since U is countably incomplete, choose a decreasing
collection of subsets 𝐵𝑛 such that U (1𝐵𝑛 ) = 1 and 𝜇(𝐵𝑛) → 0. Let 𝐶𝑛 = 𝐴𝑛 ∩ 𝐵𝑛, so that U (1𝐶𝑛 ) = 1
and 𝜇(𝐶𝑛) → 0. For each 𝑆 ⊆ N, define

𝑣𝑆 (𝜔) =
∑
𝑛∈N

1𝐶𝑛\𝐶𝑛+1 (𝜔)
∏

𝑖∈𝑆∩{1,...,𝑛}
𝑣𝑖 (𝜔),

where the product runs from left to right when the indices are written in increasing order. Suppose the
sets S and 𝑆′ are not equal, and say they differ at some integer m. Fix some 𝑛0 ≥ 𝑚. Then for 𝑛 ≥ 𝑛0,
we have

𝜏𝐸,U

⎡⎢⎢⎢⎢⎣� !
∏

𝑖∈𝑆∩{1,...,𝑛}
𝑣𝑖
"#$
∗ ∏
𝑖∈𝑆′∩{1,...,𝑛}

𝑣𝑖

⎤⎥⎥⎥⎥⎦ = 0,

and hence by definition of 𝐴𝑛, we have for 𝜔 ∈ 𝐶𝑛 \ 𝐶𝑛+1 that

|𝜏𝜔 (𝑣𝑆 (𝜔)
∗𝑣𝑆′ (𝜔)) | =

������𝜏𝜔
⎡⎢⎢⎢⎢⎣� !

∏
𝑖∈𝑆∩{1,...,𝑛}

𝑣𝑖 (𝜔)
"#$
∗ ∏
𝑖∈𝑆′∩{1,...,𝑛}

𝑣𝑖 (𝜔)

⎤⎥⎥⎥⎥⎦
������ ≤ 1

𝑛
≤

1
𝑛0

.

This holds on
⋃

𝑛≥𝑛0 (𝐶𝑛 \ 𝐶𝑛+1), which equals 𝐶𝑛0 up to null sets. Since U (1𝐶𝑛0
) = 1, we have that

|𝜏𝐸,U (𝑣
∗
𝑆𝑣𝑆′ ) | ≤

1
𝑛0

.

Since 𝑛0 was arbitrary, 𝜏𝐸,U (𝑣
∗
𝑆𝑣𝑆′ ) = 0. Similar reasoning shows that 𝜏𝐸,U (𝑣

∗
𝑆𝑣𝑆) = 𝜏𝐸,U (𝑝). There-

fore, (𝑣𝑆)𝑆⊆N gives an orthogonal set of nonzero elements in 𝑝𝑀 of cardinality equal to 2ℵ0 , so the
density character is at least 2ℵ0 .

However, since M is separable, its cardinality is at most 2ℵ0 . And 𝑀/𝐸,U is the image of M under the
quotient map, and so its cardinality is at most 2ℵ0 . Hence, the density character is also at most 2ℵ0 .

(2) Suppose 𝑀/𝐸,U has no diffuse summand. Choose a family (𝑝𝑖)𝑖∈𝐼 of mutually orthogonal minimal
projections in 𝑍 (𝑀/𝐸,U ) that is maximal with respect to inclusion. This collection must be countable
since 𝑀/𝐸,U has a faithful trace. We must have

∑
𝑖∈𝐼 𝑝𝑖 = 1, or else we could construct a minimal

projection under the complement and contradict maximality. Note that 𝑝𝑖𝑀
/𝐸,U must be a factor, or

else it would contain a nontrivial central projection and contradict minimality of 𝑝𝑖 . Thus, 𝑝𝑖𝑀
𝐸,U

must be a tracial factor that admits a minimal projection, and so is isomorphic to a matrix algebra. �

Now that we have computed the density character of the generalized ultraproducts, we move on to
saturation. Roughly speaking, saturation means that if some conditions have approximate solutions, then
they have a solution; saturation is thus somewhat similar to compactness (see [Jek24, Proposition 2.28]).
The number of constants that can appear in the conditions is a specified cardinality 𝜅. The definition is
as follows; see [BBHU08, Definition 7.5], [FHS14a, §4.4].

Definition 5.6. Let M be a tracial von Neumann algebra. Let 𝐴 ⊆ (𝑀)1 and let Γ be a collection of
formulas whose free variables lie within {𝑥1, · · · , 𝑥𝑛} ∪ {𝑦𝑎}𝑎∈𝐴. with free variables 𝑥1, . . . , 𝑥𝑛 and
(𝑦𝑖)𝑖∈𝐼 .
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1. The collection Γ is satisfiable in M if there exist 𝑥1, . . . , 𝑥𝑛 ∈ (𝑀)1, such that

𝜑𝑀 (𝑥1, · · · , 𝑥𝑛, {𝑎}𝑎∈𝐴) = 0 for 𝜑 ∈ Γ.

2. The collection Γ is finitely approximately satisfiable if, for every finite subset Γ0 ⊆ Γ and every
𝜖 > 0, there exists {𝑥1, · · · , 𝑥𝑛} ⊆ (𝑀)1, such that

|𝜑𝑀 (𝑥1, · · · , 𝑥𝑛, {𝑎}𝑎∈𝐴) | < 𝜖 for 𝜑 ∈ Γ0.

3. Let 𝜅 be an infinite cardinal. We say that M is 𝜅-saturated if for every 𝐴 ⊆ (𝑀)1 with |𝐴| < 𝜅 and
every collection Γ as above, if Γ is finitely approximately satisfiable, then Γ is satisfiable.

4. We call M countably saturated if it is ℵ1-saturated, meaning that the above condition holds whenever
|𝐴| < ℵ1 (i.e., when A is countable).

5. We call M saturated if it is 𝜅-saturated where 𝜅 is the density character of M.

Hence, in Proposition 5.2, the requirement is for M and N to be saturated with the cardinal specified
by their density character. We showed in Proposition 5.3 that the density character of ultrafibers arising
from a direct integral is 2ℵ0 in the non-atomic case. Under CH, this equals ℵ1, so in this case, countable
saturation is enough to obtain saturation. It is well known that ultraproducts with respect to countably
incomplete ultrafilters are countably saturated [BBHU08, Proposition 7.6], [FHS14a, Proposition 4.11].
Our next goal is to show the same conclusion for ultrafibers over continuous index sets by adapting the
classic diagonalization argument.

Proposition 5.7. Let M be a finite von Neumann algebra, 𝑁 ⊆ 𝑍 (𝑀) be a subalgebra of its center,
𝐸 : 𝑀 → 𝑁 be a normal, tracial, faithful conditional expectation, and U be a countably incomplete
character on N. Then 𝑀/𝐸,U is countably saturated.

Proof. Let 𝐴 ⊂ (𝑀/𝐸,U )1 be a countable set. For each 𝑎 ∈ 𝐴, fix a lift a ∈ (𝑀)1 of a. Let Γ be a
collection of formulae whose free variables lie within {𝑥1, · · · , 𝑥𝑛} ∪ {𝑦𝑎}𝑎∈𝐴, and suppose that Γ is
finitely approximately satisfiable in 𝑀/𝐸,U . First, we consider the case where Γ is countable, so write
Γ = {𝜑𝑘 : 𝑘 ∈ N}.

For each 𝑚 ∈ N, since Γ is finitely satisfiable, fix 𝑥 (𝑚)

1 , . . . , 𝑥 (𝑚)
𝑛 ∈ (𝑀/𝐸,U )1 such that

|𝜑𝑘 (𝑥
(𝑚)

1 , . . . , 𝑥 (𝑚)
𝑛 , (𝑎)𝑎∈𝐴) | <

1
𝑚

for 𝑘 = 1, . . . , 𝑚.

Let x(𝑚)
𝑗 ∈ (𝑀)1 such that 𝜋𝐸,U (x

(𝑚)
𝑗 ) = 𝑥 (𝑚)

𝑗 . By Theorem 3.18, we have

|U ((𝜑𝑘 )
𝑀
𝐸 (x(𝑚)

1 , · · · ,x(𝑚)
𝑛 , {a}𝑎∈𝐴)) | <

1
𝑚

for 𝑘 = 1, . . . , 𝑚.

By Lemma 2.3, there exists a projection 𝑝𝑚 ∈ 𝑁 s.t. U (𝑝𝑚) = 1 and

‖𝑝𝑚 (𝜑𝑘 )
𝑀
𝐸 (x(𝑚)

1 , · · · ,x(𝑚)
𝑛 , {a}𝑎∈𝐴)‖∞ <

1
𝑚

for 𝑘 = 1, . . . , 𝑚.

As U is countably incomplete, fix a sequence of projections 𝑞𝑛 ↘ 0 with U (𝑞𝑛) = 1. Then let
𝑒𝑚 = (

∧𝑚
𝑘=1 𝑝𝑘 ) ∧ 𝑞𝑚, so that 𝑒𝑚 ↘ 0 and 𝑒𝑚 satisfies the same condition as 𝑝𝑚 above.

Let 𝑒′0 = 1−𝑒1 and 𝑒′𝑚 = 𝑒𝑚−𝑒𝑚+1 for 𝑚 ≥ 1. Then (𝑒′𝑚)
∞
𝑚=0 is a PVM over N. For 𝑖 = 1, . . . , 𝑛, define

x𝑖 =
∞∑

𝑚=0
𝑒′𝑚x

(𝑚)
𝑖 , 𝑥𝑖 = 𝜋𝐸,U (x𝑖).
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Given 𝑚0 ∈ N, we have that 𝑚 ≥ 𝑚0,

‖𝑒𝑚 (𝜑𝑘 )
𝑀
𝐸 (x(𝑚)

1 , · · · ,x(𝑚)
𝑛 , {a}𝑎∈𝐴)‖∞ <

1
𝑚

for 𝑘 = 1, . . . , 𝑚,

and hence,

‖𝑒′𝑚(𝜑𝑘 )
𝑀
𝐸 (x(𝑚)

1 , · · · ,x(𝑚)
𝑛 , {a}𝑎∈𝐴)‖∞ <

1
𝑚0

for 𝑘 = 1, . . . , 𝑚0.

Therefore,

‖𝑒𝑚0

∞∑
𝑚=0

𝑒′𝑚(𝜑𝑘 )
𝑀
𝐸 (x(𝑚)

1 , · · · ,x(𝑚)
𝑛 , {a}𝑎∈𝐴)‖

∞

≤
1
𝑚0

for 𝑘 = 1, . . . , 𝑚0.

By Lemma 3.14, this means that

‖𝑒𝑚0 (𝜑𝑘 )
𝑀
𝐸 (x1, · · · ,x𝑛, {a}𝑎∈𝐴)‖∞ ≤

1
𝑚0

for 𝑘 = 1, . . . , 𝑚0.

Since U (𝑒𝑚0) = 1, we therefore have by Theorem 3.18 that

|𝜑𝑀 /𝐸,U

𝑘 (𝑥1, . . . , 𝑥𝑚, (𝑎)𝑎∈𝐴) | =
��U [

(𝜑𝑘 )
𝑀
𝐸 (x1, · · · ,x𝑛, {a}𝑎∈𝐴)

] �� ≤ 1
𝑚0

for 𝑘 = 1, . . . , 𝑚0.

Since 𝑚0 was arbitrary, 𝜑𝑀 /𝐸,U

𝑘 (𝑥1, . . . , 𝑥𝑚, (𝑎)𝑎∈𝐴) = 0 for all 𝑘 ∈ N, and therefore, Γ is satisfiable.
It remains to remove the assumption that Γ is countable. Consider a general Γ = (𝜑𝑖)𝑖∈𝐼 associated

to the same countable set A. By Lemma 3.10, choose a countable set of formulas Λ that is dense with
respect to ‖·‖𝑢 . For each 𝑖 ∈ 𝐼 and 𝑚 ∈ N, choose 𝜆𝑖,𝑚 ∈ Λ such that ‖𝜆𝑖,𝑚 − 𝜑𝑖 ‖𝑢 ≤ 1/𝑚. Let

𝜓𝑖,𝑚 = max(0, |𝜆𝑖,𝑚 | − 2/𝑚).

Since 𝜆𝑖,𝑚 comes from the countable setΛ, the set Γ′ = {𝜓𝑖,𝑚 : 𝑖 ∈ 𝐼, 𝑚 ∈ N} is countable. Furthermore,
note that for each 𝑖 ∈ 𝐼,

|𝜑𝑖 | ≤
1
𝑚

=⇒ 𝜓𝑖,𝑚 = 0 =⇒ |𝜑𝑖 | ≤
2
𝑚

.

Thus, since Γ is finitely approximately satisfiable, so is Γ′. By the preceding argument, Γ′ is satisfiable
in M. If (𝑥1, . . . , 𝑥𝑛) satisfies Γ′, then it satisfies |𝜑𝑖 (𝑥1, . . . , 𝑥𝑚, (𝑎)𝑎∈𝐴) | ≤ 2/𝑚 for all 𝑖 ∈ 𝐼 and 𝑚 ∈ N,
and therefore, it satisfies Γ, as desired. �

Finally, we put the pieces together to complete the proof.

Proof of Proposition 5.1. Consider a direct integral (𝑀, 𝜏) =
∫ ⊕

Ω
(𝑀𝜔 , 𝜏𝜔) 𝑑𝜇(𝜔). Let 𝐸 : 𝑀 →

𝐿∞(Ω, 𝜇) be the canonical conditional expectation. First, we claim that

Th(𝑀/𝐸,U ) ∈ {Th(𝑀𝜔) : 𝜔 ∈ Ω}.

Let ev𝑀
𝐸 : P∅ → 𝐿∞(Ω, 𝜇) be the evaluation map. By Theorem 3.18, Th(𝑀/𝐸,U ) is the mapping

P∅ → R given by U ◦ ev𝑀
𝐸 . For each 𝜑 ∈ P∅, we have

| Th(𝑀/𝐸,U ) [𝜑] | ≤ ‖𝜑𝑀
𝐸 ‖𝐿∞ (Ω,𝜇) ≤ sup

𝜔∈Ω
|𝜑𝑀𝜔 | = sup

𝜔∈Ω
| Th(𝑀𝜔) [𝜑] |.

Recall that 𝜑 is equivalent to a continuous function on the compact Hausdorff space X = Spec(P∅). If
Y ⊆ X and we have | 𝑓 (𝑥) | ≤ sup𝑦∈Y | 𝑓 (𝑦) | for all 𝑓 ∈ 𝐶 (X ;R), then 𝑥 ∈ Y . Since the theories are
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characters corresponding to point evaluations, this shows in our case that Th(𝑀/𝐸,U ) is in the closure
of {Th(𝑀𝜔) : 𝜔 ∈ Ω}, as desired.

Now since the space of theories is separable and metrizable, there exists a sequence 𝜔𝑛 such that
Th(𝑀𝜔𝑛 ) → Th(𝑀/𝐸,U ). Fix a non-principal ultrafilter V on N, and let 𝑁 =

∏
V (𝑀𝜔𝑛 , 𝜏𝜔𝑛 ). By Łoś’s

theorem, Th(𝑁) = lim𝑛→V Th(𝑀𝜔𝑛 ) = Th(𝑀/𝐸,U ).
By [FG24, Lemma 4.4, proof of Proposition 4.3], we have that N is atomic if and only if 𝑀/𝐸,U is

atomic; moreover, the sizes of the atoms in the decomposition and the dimensions of the matrix algebras
are uniquely determined by the theory. Thus, in the atomic case, we have 𝑀/𝐸,U � 𝑁 .

Otherwise, 𝑀/𝐸,U and N both have a diffuse summand. By Proposition 5.3, the density character
of 𝑀/𝐸,U and of N is the continuum 2ℵ0 . Note that Proposition 5.7 implies that 𝑀/𝐸,U and N are
countably saturated (i.e., ℵ1-saturated). By CH, ℵ1 = 2ℵ0 , and therefore, 𝑀/𝐸,U and N are saturated, so
by Proposition 5.2, 𝑀/𝐸,U � 𝑁 . �

6. Random matrices and ultraproducts

Our goal in this section is to describe how ultrafibers shed light on the relationship between random
matrices and ultraproducts. We denote by M𝑛 the algebra of 𝑛 × 𝑛 complex matrices equipped with
the normalized trace tr𝑛. Suppose that 𝑋 (𝑛) = (𝑋 (𝑛)

𝑖 )𝑖∈𝐼 is a tuple of random 𝑛 × 𝑛 matrices on the
probability space ([0, 1], Leb) and suppose that lim sup𝑛→∞ ‖𝑋 (𝑛)

𝑖 ‖ < ∞ almost surely. Fix also a
free ultrafilter U on N. Then in what sense does the sequence 𝑋 (𝑛)

𝑖 define a random element in the
ultraproduct

∏
𝑛→U M𝑛?

For concreteness, assume that 𝑋 (𝑛)
𝑖 is an independent family of matrices from the Gaussian unitary

ensemble (GUE) (for background, see, for example, [AGZ09, MS17]). For almost every 𝜔 ∈ [0, 1],
the sequence (𝑋 (𝑛)

𝑖 (𝜔))𝑛∈N defines an element 𝑋𝑖 (𝜔) in Q =
∏

𝑛→U M𝑛. However, 𝜔 ↦→ 𝑋𝑖 (𝜔) is not
measurable in the usual sense. Indeed, for 𝑋𝑖 (𝜔) to be Bochner-measurable, it would have to almost
surely take values in a separable subspace of Q, which would imply there is some 𝐿2 ball 𝐵𝑟 (𝑌 ) in Q
such that {𝜔 : 𝑋𝑖 (𝜔) ∈ 𝐵𝑟 (𝑌 )} has strictly positive measure with 𝑟 < 1. Write 𝑌 = [𝑌 (𝑛) ]𝑛∈N. Then
this set can also be written as

{𝜔 : lim
𝑛→U

‖𝑋 (𝑛)
𝑖 − 𝑌 (𝑛) ‖2 < 𝑟} ⊆ {𝜔 : lim sup

𝑛→U
‖𝑋 (𝑛)

𝑖 (𝜔) − 𝑌 (𝑛) ‖2 < 𝑟}

⊆ lim sup
𝑛→∞

{𝜔 : ‖𝑋 (𝑛)
𝑖 (𝜔) − 𝑌 (𝑛) ‖2 < 𝑟}.

Thus,

Leb(𝜔 : 𝑋𝑖 (𝜔) ∈ 𝐵𝑟 (𝑌 )) ≤ lim sup
𝑛→∞

Leb(𝜔 : ‖𝑋 (𝑛)
𝑖 (𝜔) − 𝑌 (𝑛) ‖2 < 𝑟),

which is zero because the Gaussian measure of the r-ball vanishes as 𝑛 → ∞ if 𝑟 < 1. It is difficult
even to obtain weak-∗ measurability for 𝜔 ↦→ 𝑋𝑖 (𝜔) because the inner products with elements of Q
are not ordinary limits of inner products with elements of M𝑛, but rather ultralimits. Even if we could
achieve weak-∗ measurability, it would not be that helpful since the predual of the matrix ultraproduct
is not separable; thus, many natural conditions we would want for the random matrix would end up
producing uncountable unions and intersections. Hence, great care has to be taken in arguments that
combine probability and ultraproducts as in [FJP23, JP24].

Therefore, rather than attempting to study 𝑋𝑖 as a map [0, 1] →
∏

𝑛→U M𝑛, it seems much more
natural to consider 𝑋𝑖 as an element of

∏
𝑛→U (𝐿

∞[0, 1] ⊗ M𝑛), which heuristically is more like a
random variable on the non-separable probability space ([0, 1], Leb)U corresponding to 𝐿∞[0, 1]U
than on the probability space [0, 1] itself. However, it is not even a random variable over ([0, 1], Leb)U
in the ordinary sense. And so, rather than trying to extract a deterministic element of

∏
𝑛→U M𝑛 from

𝑋𝑖 by choosing a point in some probability space, we can form an ultrafiber of
∏

𝑛→U (𝐿
∞[0, 1] ⊗M𝑛)
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using a pure state V on its center 𝐿∞[0, 1]U . As we will see below, the ultrafiber M obtained from this
process is larger than the subalgebra 𝑄 =

∏
𝑛→U M𝑛 ⊆

∏
𝑛→U (𝐿

∞[0, 1] ⊗ M𝑛) corresponding to the
deterministic matrices. In fact, the image of 𝑋𝑖 in M will be freely independent of Q (for background
on free independence, see [VDN92, AGZ09, MS17]).

Proposition 6.1. Let U be a free ultrafilter on N. Let 𝑁 =
∏

𝑛→U (𝐿
∞[0, 1] ⊗ M𝑛) and let

𝑄 =
∏

𝑛→U M𝑛 ⊆ 𝑁 . Let V be a pure state on 𝑍 (𝑁) � 𝐿∞[0, 1]U , let 𝐸 : 𝑁 → 𝑍 (𝑁) be the
trace-preserving conditional expectation, let 𝑀 = 𝑁/𝐸,V be the corresponding ultrafiber, and let
𝜋𝐸,V : 𝑁 → 𝑀 be the natural quotient map.

Let I be a countable index set and let (𝑋 (𝑛)
𝑖 )𝑖∈𝐼 be a family of independent GUE matrices on the

probability space ([0, 1], Leb). Let 𝑓 : R → R be a bounded continuous function with 𝑓 |[−2,2] = id,
and let 𝑋𝑖 = [ 𝑓 (𝑋 (𝑛)

𝑖 )]𝑛∈N ∈ 𝑁 . Then

1. 𝜋𝐸,V is injective on Q, and 𝜋𝐸,V (𝑄) is an elementary submodel of M.
2. 𝑋𝑖 does not depend on the particular choice of f.
3. The elements 𝜋𝐸,V (𝑋𝑖) are freely independent of each other and of 𝜋𝐸,V (𝑄).
4. For each 𝑘 + ℓ-variable formula 𝜑, indices 𝑖1, . . . , 𝑖𝑘 ∈ 𝐼, and elements 𝐴1, . . . , 𝐴ℓ ∈ (𝑄)1, the

value of

𝜑𝑀 (𝜋𝐸,V (𝑋𝑖1/2), . . . , 𝜋𝐸,V (𝑋𝑖𝑘/2), 𝜋𝐸,V (𝐴1), . . . , 𝜋𝐸,V (𝐴ℓ))

does not depend on V (it only depends on U ).

Proof. (1) Note that 𝑁 =
∏

𝑛→U (𝐿
∞[0, 1] ⊗M𝑛) is a quotient of

𝑁̃ =
⊕
𝑛∈N

𝐿∞[0, 1] ⊗M𝑛 � 𝐿∞[0, 1]⊗
⊕
𝑛∈N

M𝑛;

let q denote the quotient map, and let 𝐸̃ : 𝑁̃ → 𝑍 (𝑁) � 𝐿∞[0, 1]⊗ℓ∞(N) be the center-valued trace.
As in the proof of Proposition 4.3, we have

𝑀 = 𝑁/𝐸,V � 𝑁̃/𝐸̃ ,V◦𝑞 .

Note also that 𝑁̃ can be viewed as a direct integral of 𝑀𝑛 (C) over the probability space
⊔

𝑛∈N [0, 1]
corresponding to the algebra 𝐿∞[0, 1]⊗ℓ∞(N) (after fixing a probability measure onNwith full support,
which, however, will play no role in the argument). For 𝑗 = 1, . . . , k, let (𝐴(𝑛)

𝑗 )𝑛∈N ∈
⊕

𝑛∈N M𝑛 be a
sequence of matrices bounded in operator norm, and let

𝐴̃ 𝑗 = 1𝐿∞ [0,1] ⊗
⊕
𝑛∈N

𝐴(𝑛)
𝑗 ∈ 𝑁̃ .

Let 𝜑 be a formula with k free variables. By considering these with respect to the direct integral
decomposition over 𝐿∞[0, 1]⊗ℓ∞(N) and applying Lemma 3.17, we see that

𝜑𝑁̃
𝐸̃
( 𝐴̃1, . . . , 𝐴̃𝑘 ) = 1𝐿∞ [0,1] ⊗

⊕
𝑛∈N

𝜑M𝑛 (𝐴(𝑛)
1 , . . . , 𝐴(𝑛)

𝑘 ).
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Then by Theorem 3.18, we have

𝜑𝑀 (𝜋𝐸̃ ,V◦𝑞 ( 𝐴̃1), . . . , 𝜋𝐸̃ ,V◦𝑞 ( 𝐴̃𝑘 )) = V ◦ 𝑞[𝜑𝑁̃
𝐸̃
( 𝐴̃1, . . . , 𝐴̃𝑘 )]

= V ◦ 𝑞

(
1𝐿∞ [0,1] ⊗

⊕
𝑛∈N

𝜑M𝑛 (𝐴(𝑛)
1 , . . . , 𝐴(𝑛)

𝑘 )

)
= V ◦ 𝑞

(⊕
𝑛∈N

1𝐿∞ [0,1] ⊗ 𝜑M𝑛 (𝐴(𝑛)
1 , . . . , 𝐴(𝑛)

𝑘 )

)
= V

(
1𝑁 lim

𝑛→U
𝜑M𝑛 (𝐴(𝑛)

1 , . . . , 𝐴(𝑛)
𝑘 )

)
= lim

𝑛→U
𝜑M𝑛 (𝐴(𝑛)

1 , . . . , 𝐴(𝑛)
𝑘 )

= 𝜑𝑄 (𝐴1, . . . , 𝐴𝑘 ),

where 𝐴 𝑗 is the image of [𝐴(𝑛)
𝑗 ]𝑛∈N in Q. Note that 𝜋𝐸̃ ,V◦𝑞 ( 𝐴̃ 𝑗 ) = 𝜋𝐸,V (𝐴 𝑗 ); we have shown that

𝜑𝑀 (𝜋𝐸,V (𝐴1), . . . , 𝜋𝐸,V (𝐴𝑘 )) = 𝜑𝑄 (𝐴1, . . . , 𝐴𝑘 )

for all formulas 𝜑 and 𝐴 𝑗 ∈ 𝑄. Taking 𝜑 to be the distance, we see that 𝜋𝐸,V |𝑄 is isometric, and hence
injective. And since this relation in fact holds for all formulas 𝜑, the mapping 𝑄 → 𝑀 is an elementary
embedding.

(2) It is well known that for GUE matrices, we have lim𝑛→∞ ‖𝑋 (𝑛)
𝑖 ‖ = 2 almost surely. Sup-

pose f and g are two bounded continuous functions that both equal identity on [−2, 2]. Given
𝜖 > 0, there exists 𝛿 > 0 such that | 𝑓 − 𝑔 | < 𝜖 on [−2 − 𝛿, 2 + 𝛿]. Thus, when ‖𝑋 (𝑛)

𝑖 ‖ ≤ 2 + 𝛿,
which happens for sufficiently large n almost surely, we have ‖ 𝑓 (𝑋 (𝑛)

𝑖 ) − 𝑔(𝑋 (𝑛)
𝑖 )‖ ≤ 𝜖 . Therefore,

lim sup𝑛→∞ ‖ 𝑓 (𝑋 (𝑛)
𝑖 ) − 𝑔(𝑋 (𝑛)

𝑖 )‖
𝐿2 ( [0,1],M𝑛)

≤ 𝜖 , and since 𝜖 was arbitary, the limit is zero. This im-
plies that ( 𝑓 (𝑋 (𝑛)

𝑖 ))𝑛∈N and (𝑔(𝑋 (𝑛)
𝑖 ))𝑛∈N produce the same element of 𝑁 =

∏
𝑛→U (𝐿

∞[0, 1] ⊗M𝑛).
(3) Recall that to show free independence of (𝜋𝐸,V (𝑋𝑖))𝑖∈𝐼 and (𝜋𝐸,V (𝑄)), we need to show that for

non-commutative polynomials 𝑝1, . . . , 𝑝𝑘 and for 𝐴1, . . . , 𝐴𝑘 ∈ 𝑄, we have

𝜏𝑀

⎡⎢⎢⎢⎢⎣
𝑘∏
𝑗=1

(𝑝 𝑗 ((𝜋𝐸,V (𝑋𝑖))𝑖∈𝐼 ) − 𝜏𝑀 [𝑝 𝑗 ((𝜋𝐸,V (𝑋𝑖))𝑖∈𝐼 )]) (𝜋𝐸,V (𝐴 𝑗 ) − 𝜏𝑀 [𝜋𝐸,V (𝐴 𝑗 )])

⎤⎥⎥⎥⎥⎦ = 0,

where the product is understood to run from left to right. We also have to prove similar claims for
alternating strings that start with 𝐴1 − 𝜏(𝐴1) or end with 𝑝𝑘 ((𝑋𝑖)𝑖∈𝐼 ) − 𝜏(𝑝𝑘 ((𝑋𝑖)𝑖∈𝐼 )), but the proof in
these cases, of course, is symmetrical, so we focus on the first case written above. Since 𝜋𝐸,V : 𝑁 → 𝑀
is a ∗-homomorphism and 𝜏𝑀 = V ◦ 𝐸 , it suffices to show that

𝐸

⎡⎢⎢⎢⎢⎣
𝑘∏
𝑗=1

(𝑝 𝑗 ((𝑋𝑖)𝑖∈𝐼 ) − 𝐸 [𝑝 𝑗 ((𝑋𝑖)𝑖∈𝐼 )]) (𝐴 𝑗 − 𝐸 (𝐴 𝑗 ))

⎤⎥⎥⎥⎥⎦ = 0 in 𝑁.

The latter is the element of the ultraproduct
∏

𝑛→U (𝐿
∞[0, 1] ⊗M𝑛) given by the sequence

tr𝑛
⎡⎢⎢⎢⎢⎣

𝑘∏
𝑗=1

(𝑝 𝑗 (( 𝑓 (𝑋
(𝑛)
𝑖 ))𝑖∈𝐼 ) − tr𝑛 [𝑝 𝑗 (( 𝑓 (𝑋

(𝑛)
𝑖 ))𝑖∈𝐼 )]) (𝐴

(𝑛)
𝑗 − tr𝑛 (𝐴(𝑛)

𝑗 ))

⎤⎥⎥⎥⎥⎦ ,
where (𝐴(𝑛)

𝑗 )𝑛∈N is a sequence representing 𝐴 𝑗 in Q. By Voiculescu’s asymptotic freeness theorem (see,
for example, [AGZ09, Theorem 5.4.5]), this sequence of random variables converges to zero almost
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surely. Since they are bounded, they also converge to zero in 𝐿2 as 𝑛 → ∞. Therefore, this sequence of
bounded random variables agrees with the zero element in N, as desired.

(4) This follows by a concentration of measure argument similar to [FJP23, Lemma 4.2], so we will
proceed briefly here. By (2), assume without loss of generality that | 𝑓 | ≤ 2 everywhere. For 𝐴1, . . . ,
𝐴ℓ ∈ (𝑄)1 and for each j, lift 𝐴 𝑗 to a sequence (𝐴(𝑛)

𝑗 )𝑛∈N where 𝐴(𝑛)
𝑗 ∈ (M𝑛)1. It suffices to check

the claim on a dense set of formulas, such as the rational polynomial formulas in Lemma 3.10. These
formulas are easily seen to be Lipschitz on the unit ball. Hence,

𝜑M𝑛 ( 𝑓 (𝑋 (𝑛)
𝑖1

)/2, . . . , 𝑓 (𝑋 (𝑛)
𝑖𝑘

)/2, 𝐴(𝑛)
1 , . . . , 𝐴(𝑛)

ℓ )

is a Lipschitz function of (𝑋 (𝑛)
𝑖1

, . . . , 𝑋 (𝑛)
𝑖𝑘

). Let 𝑎𝑛 be its expectation. Then by Gaussian concentration
of measure (see, for example, [AGZ09, Lemma 2.3.3]), we have that

lim
𝑛→∞

‖𝜑M𝑛 ( 𝑓 (𝑋 (𝑛)
𝑖1

)/2, . . . , 𝑓 (𝑋 (𝑛)
𝑖𝑘

)/2, 𝐴(𝑛)
1 , . . . , 𝐴(𝑛)

ℓ ) − 𝑎𝑛1‖
𝐿2 [0,1]

= 0.

Therefore, the sequence 𝜑M𝑛 ( 𝑓 (𝑋 (𝑛)
𝑖1

)/2, . . . , 𝑓 (𝑋 (𝑛)
𝑖𝑘

)/2, 𝐴(𝑛)
1 , . . . , 𝐴(𝑛)

ℓ ) agrees in 𝐿∞[0, 1]U with the
constant lim𝑛→U 𝑎𝑛. It follows by similar reasoning to (1) that

𝜑𝑀 (𝜋𝐸,V (𝑋𝑖1/2), . . . , 𝜋𝐸,V (𝑋𝑖𝑘/2), 𝜋𝐸,V (𝐴1), . . . , 𝜋𝐸,V (𝐴ℓ))

= V
[
[𝜑M𝑛 ( 𝑓 (𝑋 (𝑛)

𝑖1
)/2, . . . , 𝑓 (𝑋 (𝑛)

𝑖𝑘
)/2, 𝐴(𝑛)

1 , . . . , 𝐴(𝑛)
ℓ )]𝑛∈N

]
= V (1 · lim

𝑛→U
𝑎𝑛)

= lim
𝑛→U

𝑎𝑛.

This is clearly independent of V , and only depends on U and 𝐴1, . . . , 𝐴ℓ . �
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