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1. It has long been known that there is a strong connection between the class numbers of
quadratic fields and the distribution of quadratic residues. This connection is exemplified, for
instance, by the class number formulae of Dirichlet, which have formed the basis of much of
the work on the subject of class numbers.

The purpose of this paper is to discuss some of the features of this interplay, with particular
reference to the problem of obtaining upper bounds for g(p) the least prime quadratic residue
of a prime p.

2. The results of this section are classical.
Let/? = 3(4) be prime and assume that the class number h(—p) = 1.

Since I I = 1, g(p) splits in Q(V — p) and hence there is a prime ideal 10 with norm g(p).

Since h( —p) = 1, 10 must be generated by an integer y = - + -\/ — p, (a,beZ) with

N = - + -
4 4

Thus

Hence any upper bound for g(p) which is < for all sufficiently large p, gives a solu-

tion to the class number one problem.

Conversely, the result of Baker and Stark that h{—p) = 1 =>/> ^ 163, gives an effective
upper bound for g(j>). Indeed, if h(—p) > 1, then there must be a non-principal prime ideal

having norm q < />*, and I - I = 1.

Stronger bounds for g{p) are known. Vinogradov and Linnik [3] gave the bound

9(P) < Pi+e

(with no restriction on p) but their result depends on the Theorem of Siegel and hence is not
effective.

3. (A) For primes p = 1(4) an upper bound for g(p) may be given by the following simple
argument.

If p = 1(8), g(p) = 2.
If p = 5(8) and p > 5, then we may write p in the form
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where a has an odd prime factor q. Then

(B) A similar argument is the following:
Let 4a2 be the smallest even square > p , and let 8 = 4a2 —p. Then 0 <§ />* and 0 must have

an odd prime factor q.

'«W^I = 1 and

4. For primes of the formp = m2 +1, one has the conjecture of S. Chowlathat

h(p) = 1 => m ̂  26.

For these fields the regulator is relatively small and Siegel's Theorem shows that m is
bounded. As in the imaginary case, a sufficiently good (effective) upper bound for g(p) would
suffice. (This fact has been discovered independently by Y. Yamamoto.)

In fact, we have,

(C) If p = m2 +1 is prime, in > 2 and h(p) = 1, then g(p) = — .

Proof. Using the argument (A) of section 3, we have for this case

On the other hand, reasoning as in section 2,

g(p) = \Ny\=i\a-bs/p\ \a + bjp\.

Now m + yjp is the fundamental unit, and has norm — 1, so that (cf. p. 146 of [1]) by multi-
plying by an appropriate unit, we may assume that

0 < b < — = -
P P

whence

b<2m ^^ <
V P

Thus

a — b\l p = a — brn —

. b

i

in
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Also a + b\Jp > 2b\fp, and so,

The assumption b > 1 gives

which is impossible, since g(p) g —. Thus b = \, yielding

Since g(p) is an integer g(p) ^ —.completing the proof.

REMARK : Our original version of (C) was somewhat weaker and we are grateful to the
referee for his suggested improvement.

5. We now return to the argument (B) of section 3 and consider the case where p s 3(4),
p = 4a2 — 0t where 4a2 is the smallest even square > p.

We have ( -1 = 1 and, for primes q 16, I - ] = 1.

Thus

and

q = 3(4) =>(- )= - 1 .
\Pj

Thus, if g(p) > 0, then all the prime divisors of 8 are = 3(4), (and incidentally X(9) = 1,
X being the Liouville function).

Consider now the polynomial

P(n) = 4(a + n)2 - p = 4n2 + 8an + 0.

We may apply the above to deduce:

(D) If g(p) > 4T2 + 8aT+ 0, then P(ji) contains only prime factors = 3(4), for 0 ^ n < T.
Combining this with the result in 2, we obtain

(E) There is a computable constant c such that, if h{—p) = 1, then P(ji) has only prime
factors = 3(4), for 0 ^ n ^ c-Jp.

This result suggests a type of problem of which we mention only an example, the difficulty
of which already seems formidable.
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Let/(a) be the least positive integer x, such that x2+a has some prime factor = 1(4).
What can one say about/(a) ? A good enough upper bound might lead to an analogous argu-
ment for P(ri) and thus provide another proof of the class number one result.

It is not even clear whether or not/(a) is bounded. It is easy to choose values of a such
that the smallest prime factor = 1(4) is large, but it still may be that a+1 is divisible by this
prime.

If the polynomial x2+a is replaced by x+a then the corresponding function is trivially
bounded, since x+a = 0(5) for some positive x^5. Partly because of this, partly because of
the difficulty in proving it unbounded, and partly because of numerical evidence, we are tempted
to conjecture that/(a) is bounded.

6. The result (E) is reminiscent of the old result (Euler-Rabinovitch):

(*) h(-p) = lox2 + x + !— is prime for O ^ x g

p+1
By substituting x = 0, 1, 2 we get q = =-——, q + 2, q + 6.

A special case of Schinzel's hypothesis H is:

CONJECTURE: There are infinitely many primes q such that q+2,q + 6 and 4q— 1 are also
primes.

Although it seems very likely that this conjecture is true, we mention the following curious
byproduct of (*).

(F) The falsity of this prime "quadruples" conjecture implies that there are only finitely
many/> with h(—p) = 1, computability of the former implying computability of the latter.

A result analogous to (*) has recently been given by Hendy [2] for complex quadratic
fields of class number 2. The result also has an analogue for fields Q(\/p),p = m2 + l, h{p) = 1.

As in the previous section we consider the polynomial P(n) = 4«2 + 8an + 0. Here, how-

ever, p = 1(4), so for any odd prime factor q of P(ri), we have ( - ) = ( - ) = l. If P(n) is com-
posite, then it will have a prime factor ^ V-P(«) and hence, we have:

(G) Let/> = 1(4) and g(p) > -j4T2 + 8aT+8. Then P(n) is prime for 0 ^ n ^ T.
Combining this with (C), we get

(H) There is a computable constant c such that if p = m2 +1 and h{p) = 1, then P(n) is
prime for 0 ̂  n ̂  c^Jp.

Note added July 1,1975. The function/, defined in Section 5 seems likely to be unbounded
after all, since, as Professor H. M. Stark has pointed out, the boundedness of/would contra-
dict Schinzel's hypothesis H.

Indeed, let m be a positive integer and choose any primes q0,qls..., qm which are = 3
(mod 4) and greater than m2. By the Chinese Remainder Theorem, there is a positive integer
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b = 1 (mod 8) satisfying the congruences b = —i2 (mod q() for 0 ^ i' ^ m.

m

Let Q = 8 n 9i.
i = 0

f6/g£ if t even

' ~ 1 G / 2 9 , if iodd

b + i2 . . .
if i even

and bt = •!

-— if i odd

and consider the polynomials

Clearly Q, and Z>f are integers and

Fi(y) = 3 (mod 4) for all integers y.

m

Furthermore, letting F(y) = f j Ff(}>)> we have:
i = O

LEMMA. (A) 7%e F{{y) are irreducible.

(B) There is no prime p which divides F(y)for all integers y.

Proof. Since the F, are linear, it suffices to prove (B). Since the bj are odd, 2JCF(y). If
p X Q, and p | (yQi+bt), then /? | (yq+b +1:2). If p | F(y) for all ̂ , then for each y, there exists an i

such that i2 = —(yQ + b) (mod/)). Thus the Legendre symbol I I is independent of y,

which is impossible since pX Q- Considering the case where p = qh we note that if j ^ i,
then qiXbj, for otherwise we would have qi\(b+j2), qi\(b + iz) and hence qt\(iz—j2) which
would contradict qt > m2. Thus, if qt \ F(y) for all y, then qt | Ft(y) for all y, which is impossible
since q f and Q, are relatively prime. This completes the proof of the lemma.

From the lemma it follows that, if one assumes hypothesis H, then there is a y0 for which
the Fi(y0) are all primes. Letting a = y0Q + b, we have/(a) > m.
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