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ON GENERALIZED THIRD DIMENSION SUBGROUPS

KEN-ICHI TAHARA, L.R. VERMANI AND ATUL RAZDAN

ABSTRACT. Let G be any group, and H be anormal subgroup of G. Then M. Hartl
identified the subgroup G N (1 + A3(G) + A(G)A(H)) of G. In this note we give
an independent proof of the result of Hartl, and we identify two subgroups G N
1+ AH)AG)A(H) + A([H, G)AH)), GN (1 + A2(G)AH) + AK)A(H)) of G
for some subgroup K of G containing [H, G].

1. Introduction. Let G beagroup, ZG the integral group ring of G and A(G) the
augmentation ideal of ZG. Let H be anormal subgroup of G and write

D1(G.H) = GN (1+ A¥G) + AG)A(H))
D2(G. H) =GN (1+ AH)AG)AH) + A(H.G)AH)).
Moreover let w: G/H — G be amap satisfying mw= identity on G/H, where m: G —
G/H isthe natural projection, and w(1) = 1. Since, for any . 3 € G/H,
(W) W(e)W(B)) = () te = 1,
there exists a unique element W(«, 8) € H such that

D W(e)wW(3) = w(aB)\W(a, 5).
Define K to be the subgroup of H generated by {[H. G]. W(c. 3) | . 3 € G/H}. Write
D3(G, H) = GN (1+ AXG)A(H) + AK)AH)).

Let 7n(G), n > 1, denote the n-th term of the lower central series of the group G. We
alsowrite 72(G) = G'. The subgroup D1 (G, H) hasbeen computed by Sandling [9], Passi
[7], Passi-Sharma [8], Khambadkone [3] and Karan-Vermani [4], when H is a certain
special subgroup of G. Recently this subgroup has been computed by Hartl [2] (which
is under circulation in preprint form only) for any normal subgroup H of G. Since we
make use of this result in our investigations, we give here an independent proof of this
result of Hartl and prove

THEOREM A. Let G be any group, and H be a normal subgroup of G. Then
D1(G, H) =v3(G){[X™,y] | X".y™ € HG' for somem > 1.x,y € G).
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Our proof of this result is via free group rings while Hartl’s proof is based on
homological arguments.

The subgroups G N (1 + A%(G)A(H)) and GN (1 + A(G)A(H)A(G)) have been
computed by Ram Karan and Vermani [5] and aso by Vermani, Razdan and Karan [10],
when H is a special normal subgroup of G. We are now able to compute subgroups
D,(G, H) and D3(G, H) similar to the above subgroups. We prove

THEOREM B. Let G be any group, and H be any normal subgroup of G. Then
D2(G, H) =v3(H){[X™ y] | X".y™ € [H, G] for somem > 1,x,y € H).
THEOREM C. Let G be any group, and H be any normal subgroup of G. Then
D3(G. H) =v3(H)([x™.y] | X", y" € K for somem > 1.x.y € H).

2. Proof of Theorem A. Werecord the following simple observation

LEMMA 2.1. Let J be an ideal of ZG containing A%(K), K being a subgroup of G.
Then
GN(1+J+A(K)) = (GN(1+J))eK

Let F={x;,%,..., %) be afree group of rank r and R be the normal closure

R= (1. X3, .o & Epnnnn)F

whereej|e| - e, & >0, & € F/(i > 1). We prove

THEOREM 2.2. With notation asin the previous paragraph,
FN(1+A3F) + AF)AR) = v3(F)U.

where U is the subgroup ([x™ y] | X™, y™ € RF’ for somem > 1, x,y € F) of F.

ProOOF. Note that the left hand side in the formula of Theorem 2.2 is D4(F,R) as
defined previously. By [9], D1(F, R) C [F, Rvs(F).
For u.v € F, using the identities, modulo A3(F),

2 W-Dv—-D=nu—-Dv-1)=@u-1nNV -1
(€) (uvl - ={u-v-1)—(v-Du—-1)}

in ZF, it follows that
UCFN(1+A%F) + AF)A(R) = Dy(F.R).
Sincev3(F) C D1(F, R) isclear,

4 Y3(F)U CFN (1+A3%F) + AF)A(R)) = Da(F. R).
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To show reverseinclusion we proceed asfollows. Supposew — 1 € A3(F) + A(F)A(R).
Then by [9], w € [F, R]v3(F). Since

[F.R] = ([}¢i. %] [€q. %] | 1<i <r,1<jk<r,g>r+1)F,
we can write any w € [F, R], modulo v3(F), as

®) w= ] [%.%19% [ DXl

1<i<j<r 1<g<k<r
where ajj, byq € Z.
Forw € [F.R] asin (5), define

(6) Sew) = [[x@/@™D g <p<r—1,

i>k
Now it follows from (5) that, modulo v3(F),

-1
w= [ (H[xﬁ‘,x;](a/e‘)a“*b‘k)

k=1 ‘i>k

™ w=TI0¢ sl s sin ()

We now claim that if w— 1 € A3(F) + A(F)A(R) withw € [F. R]73(F), then
(a((w))e‘ eRF fork=12..., r—1.
and so, in view of (7),
w e ([x™y] | X", y" € RF' for somem > 1,x.y € F)Y3(F).

Thiswill complete the proof of Theorem 2.2. We proceed to prove our claim.
Letw, asin (7), be such that

w—1e A¥F) + AF)A(R).

Expansion of w — 1, modulo A3(F), yields (in view of (7))
r—1
w—1= k}_jl{(xg« — (W) — 1) — (W) — 1) (x¢ — D}
Sincex;¢k € R, where & € F/, sox* € RF’ and thus
X — 1€ N%(F) + AR.

Whence

:(xﬁ‘ — 1)(s(w) — 1) (mod A3(F) + AF)A(R))
i(Xk — D)(swW)* — 1)(mod A3(F) + A(F)AR))  (by (2).

=
|
H
[T
T IMT

=~
1
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Already w — 1 € A3(F) + A(F)A(R). It, therefore, follows that
rki_i(xk — 1)(sW® - 1) € A%F) + APAR.

and consequently, A(F) being freeright ZF-modulewith {x,— 1| 1 < k < r} asabasis,
we get
(sc(W)™ — 1) € A*(F) + ZFA(R) = A%(F) + AR),

and so,
(scw)* eFN(1+2AXF) +AR) =RF. 1<k<r-1. (byLemma2.)

as asserted in our claim. n

PROOF OF THEOREM A. Let G beagroup and H be a normal subgroup of G. Define
U; to be the subgroup of [H, G]v3(G) generated by {[x™.y] | X™,y" € HG' for some
m > 1, xy € G}. Then U; is anormal subgroup of G containing H’. That U173(G) is
contained in D1 (G, H) follows asin (4) above.

For proving the reverse inclusion, using standard arguments, we can assume G to be
afinitely generated group. LetG=F/T,H = R/T, whereF isafreegroupand T, Rare
normal subgroupsof F with T C R. Then

GN (1+A%G) + AG)A(H)) = FN (1+A%F) + AFAR) + ZFA(T)) /T
(8) = FN(1+2A%F) + AFR)AR)T/T.

The last equality holds by Lemma 2.1. On the other hand, v3(G)U; = UT/T.U asin
Theorem 2.2. Hence, in view of (8), the proof of Theorem A follows from Theorem 2.2.

]
3. Proof of Theorem B. First we have the following:

LEmmA 3.1. If H and K are any subgroups of a group G each contained in the
normalizer of the other, then

AMH)AK) + A(H. K]) = AK)AH) + A(H. K]).
PROOF. Let x be any element of H, and y be any element of K. Then
X=Dy-1 =0y = Dx—+y—DIy.x 1=+ ([y:x 1 -1
and so (x — 1)(y — 1) € AK)AH) + A([H. K]), which implies
AH)AK) C AK)AH) + A(H. K]).

Similarly AGK)A(H) € A(H)A(K) + A([H. K]), and the result follows. .
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COROLLARY 3.2. Let G beagroup, and H be a normal subgroup of G. Then
AH)AG)AH) + A(H, GDAH) = AG)A(H) + A([H, GDAH).

Let G beagroup, H be anormal subgroup of G, and write N for [H, G]. Let Sdenote
aleft transversal of H in G. Then each g € G can be uniquely written asg = sh for some
s € Sand h € H. Let 74 denote the extension to ZG by linearity of the map defined on
G by

g=sh—h.

Thenty: ZG — ZH iseasily seento beahomomorphism of right ZH-modules, the action
of H on ZG being through multiplication in G. We know that each element u € ZG can
be written uniquely as a finite sum of the form

u=> sus, whereuse ZH,
seS

namely, ZG is a free right ZH-module with the set S as a free basis. Then 7 is,in fact,

the map which mapsu = 3"¢sSUs t0 Y s s Us. Consequently we have

9) TH(A(G)A"(H)) = A™(H) foraln> 1.

PROOF OF THEOREM B. Since D(G,H) C H' C H,

GN(1+AMHAGAH) + AN)AH)) = HN (1+ AH)AG)AH) + AN)AH))
= HN (1+ AG)A%(H) + ANN)A(H))

by Corollary 3.2 of Lemma 3.1, and hence

GN (1+ AMAGAH) + ANAH) € HN (1+m(AGAHH) + ANAH)))
= HN (1+A%H) + AN)AH)). by (9)
C HN(1+AG)A%(H) + AN)AH)).

Therefore,
D2(G.H) = HN (1+ A3H) + AN)AH)).

The result then follows from Theorem A. n

4, The proof of Theorem C. Let G a group, and H be a normal subgroup of G.
Then we can take w(G/H) as representatives of H in G, and any element of G can be
uniquely written in the form

g=w()x witha € G/H, x € H.

Let W(r, 8) and K be as in the introduction. For any elements w(a)x, w(B)y (a. 3 €
G/H.x,y € H),

7 ((Wle)x = 1) (W(B)y = 1)) = W(er, Xx (B)ly —x—y +1
(10) = (W(e. ) — 1) + ([x. W(3)] — 1) mod A*(H).
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and hence
(L%(G)) C LAYH) + A(K).

Forh e H,g € G, it follows that
[h.g] — 1=mm(h.g] — 1) € M (L*G)),

and hence A(N) C 7 (A%G)). Moreover, by (10),

W(e. B) — 1 = ((w(a)x — 1)(w@)y 1)) — (Ix W(3)] — 1) mod A%(H),

and so
A(K) C TH(AZ(G)).

which implies A2(H) + A(K) € m4(A2(G)). Thusit follows that
A?(H) + A(K) = 14(A%(G)).

Since 1 is right ZH-module homomorphism, we have
PROPOSITION 4.1.

TH (AZ(G)A(H)) = As(H) + A(K)A(H).
PROOF OF THEOREM C.

D3(G.H) = GN(1+A%G)A(H) + AK)A(H))
C GN(1+A(GA(H)) =H CH,

and hence
D3(G.H) = HN (1+AXG)AH) + A(K)A(H))
_— (H N (L+AXG)AH) + A(K)A(H)))
C HN (1+A%H) + AK)A(H))
C GN (1+AXG)AH) + AK)AH)).
Thus
D3(G.H) = HN (1+ A3H) + AK)AH)).
Thus the result follows from Theorem A. n

COROLLARY 4.2. Let H beanormal subgroup of agroup G suchthat W(«, 3) € HNG'
for any ., 8 € G/H. Then

GN (1+A*G)AH)) =v3H)([X™ ] | X" y" € HNG' for somem > 1.x.y € H).
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ProOOF. Assume that W(«.3) € HN G for any a.f € G/H. Then K =

([H,Gl.W(e. 8) | . 3 € G/H) C HN G, and hence
GN(1+A(Q)AMH)) = HN(L+m(AXG)AH)

HN (1+A%H) + A(K)A(H)) by Proposition 4.1
HN (1+A3%H) + A(HN G)AH))
GN (1+ A%G)AH) + A(HNG)AH))
= GN(1+2%G)AH)).

-
-

Thusit follows
GN(1+A%G)AH)) = HN (1+A3H) + AHNG)AH))
= Y3(H)([X™y] | X",y" € HN G for somem > 1,x,y € H).

We again obtain an identification of the normal subgroup G N (1 + A%(G)A(H))
similar to the one in Corollary 4.2 for a suitable normal subgroup H of agroup G.
We show easily

LEMMA 4.3 ([5, LEMMA 2.1]). Let G = H e K where H and K are subgroups of G
with H normal in G. Then

AN2(G)A(H) = A3(H) + A(H, KDAH) + AK)AZ(H) + A2(K)A(H).

THEOREM 4.4. Let G = H | K, H and K be subgroupsof G such that H is normal in
GandHNK CHNG'. Then

GN (1+AXG)AH)) =va(H){[X".y] | x".y" € HNG' for somem > 1. x,y € H).
PROOF. Let X,y beany elementsof H with x™, y" € HN G’ for somem > 1. Then
XM y] —1 = —(y — (X" — 1) mod A%(G)A(H)
—m(y — 1)(x — 1) mod A%(G)A(H)
—(y" — 1)(x — 1) mod A%(G)A(H)
= 0mod A?(G)A(H)
and hence[x™.y] € GN (1+ A%(G)A(H)). Thus
Ya(H)([x™.y] | X", y" € HNG' forsomem > 1,x,y € H)

is contained in G N (1 + A%(G)A(H)). To see the reverse inclusion, let h € GN
(1+2A2(G)A(H)) €GN (1+A(G)A(H)) =H’ C H. Then

h—1 e AXG)A(H) N A(H)
= (A3(H) + A(H. KDAH) + AK)AZ(H) + A (K)A(H)) N A*(H)

= A¥(H) + A(H.KDAH) + ((A(K)AZ(H) + AP(K)A(H)) N AZ(H))
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by Lemma4.3, and hence
h—1e A%H) + A(H.KDAH) + (AK)AH) N A%(H))

It follows from [5, Lemma 2.2] that A(K)A(H) N A%2(H) = A(HNK)A(H). Wethus
have

h—1¢e A%H) + A(H. KDAH) + AHNK)A(H)

which is contained in A3(H) + A(H N G)A(H) by our hypothesis. Therefore, by Theo-
remA

h e vsH)([X™y] | X", y" € HNG' for somem> 1,x,y € H),
as desired. ]

REMARK 4.5. Observe that the hypothesis of Theorem 4.4, for example, is satisfied
if the exact sequence

HG' /G — G/G — G/HG'

splits. Thisistruein the following cases, e.g.
(@) if G/H isfree abelian,
(b) if Hisadivisible subgroup of G,
(c) if H splitsover G.

M. Curzio and C. K. Gupta [1] have obtained an identification of the subgroup
GN (1 + AZ(G)A(H)) when G is afinitely generated group and H anormal subgroup of
G. We can conjecture as follows

CONJECTURE 4.6. Let G bea group, and H be a normal subgroup of G. Then
GN (1+A%G)AH)) =VaH)([X™.y] | X".y" € HNG' for somem > 1.x.y € H).
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