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A GENERALIZATION OF WATSON'S LEMMA 

R. WONG AND M. WYMAN 

1. Introduction. Many functions, F(z), have integral representations of 
the form 

(1.1) F(z) = £f{t)e-"dt, 

the so-called Laplace transform of f(t). When f(t) satisfies certain regularity 
conditions, it is possible to use Cauchy's theorem to deform the contour so that 
F(z) has the integral representation 

iy 

(1.2) F(z) = £C f(t)e-ztdt, 

where 7 is a fixed real number, and the path of integration is the straight line 
joining t = 0 to t = 00 e11', small indentations in the path of integration being 
allowed to avoid singularities of f(t) where necessary. When the two functions 
defined by (1.1) and (1.2) are not the same, (1.2) provides the more general 
situation for a theoretical discussion of the properties of F{z). 

In 1918, G. N. Watson [7] proved an important result concerning the asymp­
totic behavior of functions F{z) defined by (1.1). Although this result is one 
of the more important tools of asymptotic theory, it is known that the con­
ditions on fit) and the path of integration are needlessly restricted. Generaliza­
tions can be found in [2;5;8]. A generalized version of Watson's result can be 
formulated as follows: 

LEMMA (Generalized Watson's Lemma). If: 
(i) F{z), as defined by (1.2), exists for some fixed z = z0; 

(ii) for some integer N 

(1.3) f(t) = £ a/""1 + otf»-1), 
as t —> 0 along arg t = 7; 

(iii) {an}, 0 ̂  n S N, is a sequence of complex numbers] and 
(iv) {Xw}, 0 ^ n ^ N, is a sequence of complex numbers satisfying Re \o > 0, 

and Re \n > Re \n-i, 1 ^ n ^ N; 
then 

(1.4) F{z) = É a»r(A„)2-x" + o(2-x*) 

as z —» 00 in |arg(ze^)| S TT/2 — A, for any real number A in the interval 
0 < A ^ TT/2. 
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186 R. WONG AND M. WYMAN 

The greater the integer N can be taken, the more detailed the information 
given in (1.4) becomes. From the known inversion properties of (1.2), one can 
be reasonably certain that the properties listed above for/(/) are close to being 
necessary and sufficient conditions for (1.4) to be true. If this is so, significant 
generalization of Watson's Lemma will not be obtained without changing the 
nature of the function/^) in (1.2), and, at the same time, changing the form of 
the final result given in (1.4). 

In a recent paper, Erdélyi [1] has studied the asymptotic behavior of a 
function F(z), denned by (1.1), in which/(£) may have a singularity of the type 
/*-!(_log ty, a possibility that will be the subject of further discussion in the 
present paper. One would hope, and indeed expect, that such a generalization 
would retrieve the results of Watson's Lemma by placing n = 0. Although 
such a generalization is obtained, the hope and expectation are not easily 
realized, and involve an unexpected form of expansion oif(t) in a neighborhood 
of t = 0. 

As indicated above, generalizations will likely involve a change in the form 
of the asymptotic information given in (1.4). A suitable framework for dis­
cussing problems of this type is given in Erdélyi and Wyman [3], and a sum­
mary of the fundamental definitions involved is given in the next section. 

2. Asymptotic expansions. Let R be an unbounded point set in the complex 
plane. A neighborhood, U(z0, 8), of a finite point z0, which may or may not be 
a point of R, is defined as a set of points z such that z Ç R and \z — z0\ < ô. If 
s0 is the point at infinity, then U(z0} ô) is defined as the set of points z such that 
z G R and \z\ > ô > 0. With such a neighborhood system, the concepts of 
limit point of a set, limit, the Landau order relations 0 and o, all are given 
meaning in the usual way. It will always be assumed that z0 is a limit point of R. 

Asymptotic analysis attempts to obtain information concerning the behavior 
of a function, F(z), in a neighborhood of a point z0. Although such functions 
must be defined for points belonging to some neighborhood U(ZQ, ô), they need 
not be defined for all points of R. Similarly, the information obtained need not 
retain validity for all points of R. 

Throughout the paper, the symbol I will stand for one of the two following 
sets of integers: 

(2.1) / = {0, 1, 2, . . . , M}, a finite set of integers; or 

= {0, 1, 2, 3, . . .}, the set of non-negative integers. 

If convenient, summations of the form 

M 

(2.2) E /» = E /., I finite 

oo 

= X/ fni I infinite, 
w=0 
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may be written £ / w . When / is an infinite set, the series may be formal and 
need not converge. 

Definition 2.1. A sequence of functions {(pn(z)},n £ / , is called an asymptotic 
sequence if 

(2.3) <pn+1 = o{(pn)y 

as z —> z0, as long as n and n + 1 both belong to / . 

The notation \<pn(z)} will be used throughout to denote an asymptotic 
sequence, and when ambiguity must be avoided, the limit point z0 will be 
specified in some way. 

Definition 2.2. The series Ylfn(z) is called an asymptotic expansion of a 
function F(z) with respect to the asymptotic sequence {^B(z)),asz-> z0, if for 
every fixed integer N 6 / , 

(2.4) F(z) = jt fn(z)+o(<pN), 

as s—-> z0. 

The notation 

(2.5) F(S)~ L / . ( « ) ; {«.}. 

as z —> So has the meaning given in (2.4). 
If for each n,fn(z) = an<pn(z), where the an are constants, then the expansion 

(2.5) is said to be of Poincaré's type. Furthermore, if the expansion is of this 
type, and <pn(z) = (Z(z))Xn, \n a complex number, the expansion is said to be of 
power series form. 

Definition 2.3. Two functions F(z) and G(z) defined on some neighborhood 
U(z0, 8) are said to be asymptotically equal, written 

(2.6) F{z) =G(z);[<pn}, 

as z —> zo, if 

(2.7) F(z) = G(z) + o(<pn), 

as z —» z0, for every fixed integer n £ I. 

Two functions having the same asymptotic expansion are asymptotically 
equal, and the converse is also true. 

Even this degree of generality is not sufficient to describe the asymptotic 
behavior of many of the known functions in mathematics. The form 

(2.8) F(z) ~ G1(z)\j: fn
a)(z); {<pn

a)}] + Gi(z)\ ^ /„ (2 )(2); {<pn
{i)]\ + ... 
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as z —> So, with the meaning 

(2.9) F(z) = Gi(*)|i: /„(1)(s) + o(^(1)) 1 

+G2(2)r2/r e
( 2 )(2)+0w2 >)i+.. . 

L n=0 J 

as s -^ So, where Ni, N2, . . . are arbitrary fixed integers chosen from Ii, 72, . . . , 
respectively, must often be used to give asymptotic information for many of the 
higher transcendental functions. 

In discussing the asymptotic behavior of a function F(z), defined by (1.2), 
the point set R is taken to be the sector of 5(A), where 

(2.10) 5(A): |arg(^ ' 7) | ^ TT/2 - A, 

where 7 is a real number, and the choice of A is restricted to the interval 
0 < A ^ 7r/2. The point z0 is the point at infinity, and a neighborhood, 
U(ZQ, <5), of the point at infinity will be defined as the intersection of 5(A) and 
the point set for which \z\ > ô > 0. By varying the choice of <5, a neighborhood 
system is established, and, therefore, for functions $(z) defined on some 
neighborhood of the point of infinity, the Landau order relations and the limit 
concept are given meaning. 

In some circumstances, 5(A) is equivalent to 

(2.11) - T T / 2 + A - 7 ^ arg z ^ TT/2 - A - 7, 

and in all cases 5(A) is equivalent to 

(2.12) (4ft - 1)TT/2 + A - 7 ^ arg z ^ (4ft + 1)TT/2 - A - 7 

for some fixed integer ft. This fact allows the particular functions log z and sx 

to be defined in the usual way by 

(2.13) log z = log I s I + i arg z 

and 

(2.14) zx = exp(Xlogs), 

where arg z must satisfy (2.12). 
For the results to be obtained in this paper, the sequence 

(2.15) {<pn(z) = (log 2 ) ^ - a r ^ } , 

where {/jin} and {Xn}, n £ 7, are sequences of complex numbers, plays an 
important role. Since 

(2.16) W f t = [(log s)'*-"-'*] • [ar^+i-^>] 

does not imply <pn+i = o{<pn), as \z\ —> 00, unless further restrictions on {nn\ or 
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{\n} are stated, {<pn) is not necessarily an asymptotic sequence. However, the 
conditions 

(2.17) Re \n+i > Re Xw, \xn arbitrary, n and (n + 1) both in / , 

or 

(2.18) Re \n+i = Re \ni Re fxn+i < Re jun, n and (n + 1) both in / , 

will insure that \ç>n}, as denned by (2.15), is such a sequence. For the remainder 
of the paper it will be assumed that \<pn(z)) is an asymptotic sequence. 

Since 

(2.19) 2«(logs)'exp(-€|s|«) = o(<pn), 

as z —> oo, for every n G / , for arbitrary complex numbers a and /3, and any 
positive real numbers e and ô, it will be true that terms which are exponentially 
small in \z\ can be replaced by zero in an asymptotic expansion. Similarly, 

(2.20) (log zYz~a = o((\og zYn • *rx*), 

as \z\ —> oo, for every n G / , providing Re a > Re \n for every n £ I, implies 

(2.21) ( l o g s ) * r " « 0 ; {*n}, 

as \z\ -^co. 
It is interesting to note that the condition Re \n+i > Re \n does not imply 

limn_>co Re \n = oo. Hence (2.21) may, in some instances, allow terms to be 
dropped which are not exponentially small. 

3. Basic integrals and their asymptotic behavior. By differentiating 
the identity 

iy 

(3.1) j ^ tx~\~ztdt = T(\)z-\ Re X > 0, |arg(z^7)| < TT/2 

m times with respect to X, the result 
iy r e im 

is obtained. This is equivalent to 

(3.3) r ?~\- log tre-'dt = z-\\ogz)m £ ( - l ) r W r ( r > ( X ) ( l o g 2 ) - r . 
*/0 r=0 \r / 

From (3.3), a reasonable conjecture might be that 

(3.4) £C t-\-\ogtYe-"dt= ( log*)***£ ( - l ) r ( ; ) r w ( X ) ( l o g 2 ) - r , 

where \i is allowed to be a complex number, a conjecture that is false. The series 
in (3.4) diverges for all finite values of log z. However, it will be shown that the 
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weaker result obtained by replacing equality of, by an asymptotic relation 
between, the two sides of (3.4) does hold under suitable conditions. When this 
and other results are obtained, it becomes possible to use the pattern of proof of 
Watson's Lemma to obtain a generalization of Watson's results. 

Since it is envisaged that X of (3.4) will be a complex number, /x_1 will not 
be a continuous function of t unless a suitable cut is introduced into the complex 
/-plane. As is usual, this cut extends from t = 0 to t = —oo along the negative 
real axis, and arg t is restricted by 

(3.5) — 7T < arg t < T. 

Although log t is continuous under these conditions, a further cut is necessary 
in order to make (— log ty have the same property when JJL is allowed to have 
complex values. This is accomplished by introducing a cut from t = 1 to 
/ = oo along the positive real axis. Further, along the top of the cut 
( - log ty = (e~iir log ty = er^Qog ty, t ^ 1, and along the bottom of the cut 
( — log ty = (ei7r log ty = e^(log ty, t ^ 1. For the purpose of discussion, the 
cut /-plane is as shown below: 

0 1 

t-plane 

In discussing the asymptotic behavior of functions F(z) defined by Laplace 
integrals of the form 

J*ooe 

fifie—'dt, 
0 
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it will always be assumed that the integral exists for some value z — z0. The 
known properties of such integrals ensures the validity of the following two 
important properties: 

(3.7) (a) F(z) exists providing Re(zen) > Re(z0e
iy); 

f{t)e~ztdt = 0(exp(- € | c | | s | ) ) , <« r. uniformly in arg z, as z -^co in S (A), for some choice of e > 0, and any point 
t = c which lies on the straight line path of integration. The result in (3.7) 
holds when c = c(z). This degree of generality will be used in one or two proofs 
of the present paper. Unless otherwise stated, it will be assumed that c is fixed, 
and satisfies 

(3.8) 0 < |c| < 1. 

With such a restriction, one can delete \c\ in the right side of (3.7) to give 
iy 

J *ooe 

f{t)e-'dt = 0 (exp( - e | s | ) ) , 
c 

uniformly in arg z, as z —>oo in S (A), for some e > 0. 
Since integrals of the type 

i f-1 (-kg tye-
udt, 

and expressions of the form 

' V"(x)(iog»r t ^K:)1 

play important roles throughout the paper, the following notations are intro­
duced: 

(3.10) L(a,b, X, », z) = f / x - 1 ( - log / ) V 2 ^ / , 
«Ja 

where the path of integration is the straight line joining t = a to t = b, with 
arg a — arg b = y, and 0 ^ |a| < |&|; 

(3.H) s„(x,M,iog2) = f: (-i)rMrw(x)(iog2r. 
Some care must be taken to insure that L(a, b, X, ju, z) as given in (3.10) is a 

well-defined function. When i± is a non-negative integer, then ( — log tY has no 
singularity at t = 1, and the cut from t = 1 to t = oo is no longer necessary. 
For all other values of /*, ( — log tY will have a singularity at t = 1, and it may 
be necessary to avoid the point t = 1 by allowing an indentation in the path of 
integration, and to recognize that there are two functions which may be defined, 
depending on whether the path of integration includes part of the cut in the 
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first quadrant of the /-plane or part of the cut in the fourth quadrant of the 
/-plane. For simplicity in the statement of our major results, it will be assumed 
that the path of integration in (3.10) does not include any portion of the cut 
in the /-plane involved when t ^ 1. The situation in which the path of integra­
tion is allowed to include part of the cut from / = 1 to / = oo will be dealt with 
as a separate case. 

For any non-negative integer m, (3.3) can be written as 

(3.12) L(0, to eiy, X, w, z) = s"x(log z)mSm{\ m, log z). 

From (3.9), one obtains 

(3.13) L(c,oo eiy, X, m, s) = 0 (exp( -e | s | ) ) , 

uniformly in arg z, as z -^00 in 5(A). Hence 

(3.14) L(0,c ,X,m,z) = (log s)w2r\Sw(X, m, log z) + 0 (exp( -e |* | ) ) , 

uniformly in arg z, as z —> 00 in S (A). This result can be interpreted in two 
ways: 

(3.15) L(0, c, X, m, z) ~ (log s)w£r*[S«(X, m, log z); {(log « ) -} ] ; 

or 

(3.16) L(0 ,c ,X,w, Z ) = ( - î r ^ s t r C X ) ^ ] ; ! ^ } , 

providing {<pn} is an asymptotic sequence for which 

(3.17) exp(-e | s | ) «(>;{*>»}, 

as z —* 00 in 5(A). The estimates of error involved in the two interpretations are 
quite different, and the asymptotic information obtained by the use of (3.16) 
will be more detailed in nature than could be obtained by the use of (3.15). 

For the more general situation L(0, c, X, ju, z), Erdélyi [1] has given an 
elegant proof that 

(3.18) L(0, c, X, /x, z) ~ 2T*(log *HS»(X, M, log z)\ {(log z)~n\l 

as z —*oo through positive real values of 3, providing 0 < c < 1, X > 0 and y. 
is real. Although elegant, the proof does not seem readily adapted to extensions 
allowing c, X, £t, z to be complex. This extension will be obtained by a sequence 
of lemmas. 

LEMMA 3.1. If a = \z\~2+5eiy, 0 < ô < 1, then there will exist a number 
p > 0 such that 

(3.19) L(0,a,\,v,z) =<)(*-*->), 

uniformly in arg z, as JS —>oo i» 5(A). 
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Proof. For any choice of rj > 0, ( — log ty = o (/"'), as t —> 0. Hence 

(3.20) |L(0, a, X, /i, s) | £ f |^" , " 1 *| 

= 0(ax-'), 
uniformly in arg 2, as z —» CQ in 5(A). Since Re X > 0, 0 < b < 1, and TJ is 
arbitrary, a choice of 77 exists such that 

(3.21) p = Re(X(l - Ô) - (2 - 0)77) > 0. 

Substituting a = \z\~2+8ety into (3.20) then gives the required result. 

LEMMA 3.2. With a as in Lemma 3.1, 

(3.22) L(0,az, X, », 1) = 0 (*"'), 

/or some p > 0, uniformly in arg 2, as 2 —> 00 m 5(A). 

The proof is similar to that used in Lemma 3.1. 

LEMMA 3.3. With a defined as above, and b defined by b = \z\~8eiy, then for any 
integer n ^ 0, 

(3.23) L(az, bz, X, », 1) « ( - l ) n r ^ ( X ) ; {(log*)-1}. 

Proof. L(az, bz, X, n, 1) = L(0, 00 e*r, X, », 1) 

— L(0, az, X, », 1) — L(bz, coel\ X, », 1) 

= (--l)nr<B>(X) + 0(2T>) - L(fe, ooe*v, X,», 1), 

uniformly in arg 2, as s —> 00 in 5(A), where r = arg (se*7). Since it is trivial to 
prove L(bz, ooe*T, X, », 1) = 0(exp(—e|;s|1_5)), as z —» 00 in 5(A), the required 
result has been obtained. 

These lemmas allow us to prove the following major result. 

THEOREM 3.1. For any choice of complex numbers X and p, with Re X > 0, 

(3.24) L(0, c, X, M, z)~g-*Qog s)"[5œ(X, M, log s); {(log *)"*}] 

uniformly in arg 2, as s —» 00 i» 5(A), providing \c\ < 1. 

Proof. With a and & defined as above, 

L(0, c, X, M, 2) = L(a, b, X, /x, 2) + L(0, a, X, /*, z) + L(6, £, X, /*, 2) 
= L(a, 6, X, /i, 2) + 0 ( 2 " ^ ) + 0(exp(-e|s |!-*)) , 

uniformly in arg z, as 2 —» 00 in 5(A). The second order term is negligible with 
respect to the first, and therefore can be dropped. 

Since 

(3.25) L(a, by X, /x, z) = f ^ ( - l o g J)**""* <&, 
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the substitution u = zt gives 

^x-1(logjs — loguYé~udu, 
az 

and, therefore, 

(3.27) L(a, b, X, M, 2) = ^ ( l o g zY f ^ ( l - X^)\~udu. 
Jaz \ log 2/ 

Since |log w/log z| ^ 1 — ôi, for some choice of 8U 0 < ôi < 1, as z —» 00 in 
5(A), then for any fixed integer iV ^ 0, the finite binomial expansion, with 
remainder, gives for all points on the path of integration that 

(3.28) (l - M " = ± (-!)•(*)££«£ + RN> 
\ log z/ S W (log 2) 

where 

(3.29) | i ^ z | 4 | ^ ; 

for some fixed K > 0. Hence 

(3.30) L(o, 6, X, M, z) = z"x(log z)" 

x [ £ (-i)Br)(iog2)-K r^-^iog^v^ + rJ, 
where 

az 

Using the proof of Lemma 3.3 gives 

(3.32) L(a, 6, X, M, 2) = *~X(log z)M 

x f Z (-irMr(w)(x)(iog2)-
w + 0 ( 0 + r J , 

as s —>oo in 5(A). Further, 

(3.33) |r*I ^ X|og z\~iN+1) (Z \1f-\l0g u)N+1e~udu\ 
Jaz 

IT 

^K\logz\-(N+1) j ^ \ux-\logu)N+1e-udu\, 

where r = arg(zen). 
It is trivial to show that the integral in (3.33) exists and is bounded in arg z. 

Hence 

(3.34) L(a, b, X, M> z) = ar*(log *MS*(X, /x, log a) + 0((log s ) -"" 1 ) ] , 

as s —> 00 in 5(A). Furthermore, the order relation does not depend on arg z. 
This proves the required result. 
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A combination of the results given thus far yields 

(3.35) Z(0, coe'T, X, M, z) - Z-x(log zflSM, M, log 2); {(log s)-"}] 

~^aog*rf Ë (-i)"Mr<")(x)(iogSr; 

{(logs)-"} 

as 2 —>co in 5(A), providing Re X > 0. As indicated before, the case y = 0 is 
excluded from the proof of (3.35), and validity of (3.35) when 7 = 0 will now 
be established. 

Let us consider the function L (z) defined by 

(3.36) L(z) = r /X _ 1(-log tye~ztdt, |arg z\ = TT/2 - A, Re X > 0, 

where the path of integration is as shown below. 

o<r < 1 — c 

-H-f /3\ 
c 1- 1+r 

t-plane 

It is assumed that the path of integration is along the top of the circular cut 
so that ( — log tY = £~^(log tY when t = 1 + r. With these restrictions, 

(3.37) L(Z) = J* tx-\-\ogtye-
ztdt+ j T f-\-\ogtye-

ztdt 

+ f r tx-\-\ogtye-
ztdt+ r l-\-\ogtye-

z\ 
Jl-r Jl+r 

In the interval c = t = 1 — r, |^x—1( — log ty\ is bounded, and 

\e~zt\ g exp[— |s|c sin A], 

'dt. 
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and therefore 

(3.38) j T tx-\-log tfe-ztdt = 0 (exp(-e | s | ) ) , 

as |z| —> oo, for some choice of e > 0. 
Similarly, for some choice of r > 0, |£x-1( — log ty\ is bounded on \t — 1| = r, 

and |exp( — zt)\ = |exp[—z(l + reie)]\ = 0(exp(— c|z|)), as \z\ —> oo for some 
choice of e > 0. This will imply the integral on the semi-circular path is 
0(exp(— e\z\)) as \z\ —» oo , for some choice of e > 0. This result follows readily 
for the last integral of (3.37) so that 

(3.39) L(z) =L(O f c l X l / i , a ) + 0(exp(-e |2 | ) ) f 

as z—>oo in |arg(z)| g ir/2 — A, for some choice of e > 0. This of course 
implies 

(3.40) L(z) - 2T*(log «M5œ(X, M, log s); {(log s)""}], 

as z —>oo in |arg(z)| ^ 7r/2 — A, providing Re X > 0. 
This same result holds for the function M(z) defined by a path of integration 

in which the indentation is into the fourth quadrant, and the point joining 
t = 1 to / = oo is on the lower side of the cut. Hence (3.35) is valid when 7 = 0 
for both of the functions one would obtain from the two paths of integration 
which we have described. When Re ju > — 1, it is not necessary to provide the 
indentation, and straight line paths, above and below the cut, can be used to 
join t = 0 to t = oo. 

With the clarification of paths of integration provided in our proof, (3.35) 
will be valid without placing the restriction Y ^ 0. 

4. Main theorems. Turning attention to the more general case where 
iy 

J»coe 

f(f)e-"dt, 
0 

it will be assumed that F(z) exists for some z = JS0. 

THEOREM 4.1. If: 

(i) for each integer N Ç / 

(4.2) / ( / ) = E aJ*-1PnQog t) + o(?»-\log t)mW)), 

as t —> 0 along arg t = y; 
(ii) Pn(u) is a polynomial of degree m = m(n); 

(iii) {\n} is a sequence of complex numbers, with Re Xw+i > Re Xw, Re X0 > 0, 
for all n such that n and n + 1 are both in I; 

(iv) \an) is a sequence of complex numbers; 
then as z —> oo in S (A) 

(4.3) F(z) ~ £ flnPn(P„)[r(Xn)2-
x"]; {2-

x"(log z)mM}, 
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where Dn is the operator 

d\n 

The result is uniform in the approach of z —> oo in S (A). 

Proof. Trivially, {z~Xn(log z)m(re)} is an asymptotic sequence as \z\ —> oo in 
5(A). For any choice of t = c 9e 0 on the path of integration, (3.7) implies 

(4.4) / ( * , « ) = f(t)e—dt 
•'C 

= O(exp(-3 |2 | ) ) -0;!2-x"(log2)O T ( ' l )}, 

uniformly as z —-> oo in 5(A), where ô is some positive number. 
Writing 

(4.5) f(t) = £ a/^P^log t) + RN, 
n=0 

gives 

(4.6) Pf(t)e~ztdt = f ) an P ^ P , (log t)e~ztdt + rN, 

where 

(4.7) rN= f RNe~ztdt. 
Jo 

Using (3.16) and (4.4) gives 

*y AT" 

(4.8) r° f(t)e-"dt = D anP„(i?re)[r(Xn)2-x"] + r* + 0(exp(-« |* | ) ) , 

for some 5 > 0, as z —>• oo in 5(A). 
Since the choice of t = c is arbitrary, it may be chosen sufficiently small so 

that 

RNe~ztdt (4.9) rN= P 

satisfies 

(4.10) \rN\ ^ e P ^ ( l o g O ^ " 2 ^ ! . 
Jo 

Replacing z£ by t gives 

(4.11) |r„| ^ e| (log *)»<" . z~*"\ £ e n | ^ " X ( l - ^fWe-'dt 

where \T\ ^ 7r/2 — A. The existence of the integral, uniformly bounded in 
z as z —» oo in 5(A), implies 

(4.12) rN = o(z-*"(\ogz)mW), 

uniformly, as z —» oo in 5(A). 
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These results give 
iy 

J»ooe 

f(t)e-"dt 
0 

= E areP„(P„)[r(xK)2-
x"] + 0(2-x"(iogS)m W )), 

uniformly, as z —* oo in 5(A). 
When w(n) = 0 for all n £ I, then Pn(Dn) is a constant, and the result of 

Theorem 4.1 reduces to the result contained in the general form of Watson's 
Lemma given in § 1. 

Furthermore, if 

(4.14) f(*)~ Z analog t), 

as t —> 0, Theorem 4.1 gives 

/»00 J 

(4.15) JQ / ( O c " " * ~ I o , ^ - tr(XK)S-x"]; {2-
x"(logz)} 

~ E ff„r(XB)[^(XK) - log2]2-x"; {2-x"(log2)l, 

where ^(X) = r ' (X)/r(X). This particular result is given by D. S. Jones in 
[6, p. 439]. 

If the integral 
jy 

(4.16) L(0, ooe l \ X, /z, z) = C *X_1(-log ife~zlit 

is examined, it is reasonable to expect that the result contained in (3.24) can 
be used to advantage to discuss the asymptotic behavior of integrals of the 
form (4.1) with/(/) now allowed to have logarithmic type singularities, as well 
as singularities of branch-point type. In several respects, the asymptotic 
behavior is quite different from what one might expect. Before proceeding, one 
further result is required. 

LEMMA 4.1. It is always possible to choose a complex number c = \c\elJ ^ 0 
such that 

(4.17) I = f I ^ C - I o g t)"e-!"dt\ = 0(2-x(log zf), 

as z —> oo in 5(A), where X, /x are fixed complex numbers, with Re X > 0. The path 
of integration is the straight line arg t = y joining t = 0 to t = c. 

Proof. Along the path of integration t = peiy, 0 ^ p ^ |c|. Hence 

(4.18) \I\gK (C p - 1 ! ( - log p - hf\ exp( -1* | (sin A)P)dP, 
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where a = Re X. As \c\ —> 0, — log p —» oo . This implies, by taking \c\ sufficiently 
small, that 

J»lcl 
p a- 1(- logp)^exp(- |2 | (s in A)P)dp 

o ^

»lcl 

0 

^KL(0, |c|,a, 0, |z|sin A), 

where 0 = Re ju. The constant X is being used as a generic symbol whose value 
may change from time to time in the proof. The use of (3.24) will give 

(4.20) I = 0((|s|sin A)-«(log |s|sin A)"), as \z\ -> oo 

= 0(|2|-a(log|z|)^), as \z\ -^oo 

= 0(z~a(\ogzy) = O(arx(logz)"), as s-> oo in 5(A). 

The result is uniform in arg z as z —» 00 in 5(A). 

THEOREM 4.2. / / : 

(i) ^(2), as gwew -m (4.1), exists for some z = z0; 
(ii) {£Xn_1( — log tYn) is an asymptotic sequence as t—>0 along arg/ = 7, 

where {Xw}, {nn}, n G i", are 60^ sequences of complex numbers, with 
Re Ao > 0; 

(m) / (o~ E ^-^-logo^^^-^-iog^r} 
as J —> 0 along arg £ = 7; 

then 

(4.21) F(s) - £ a„L(0, c, X», AI», 2) ; {2^"(log zfn}, 

as z —> 00 in S (A), where t = c is some point on the path of integration with 
0 < \c\ < 1. 

Proof. For any choice of c = |c|e*7 ^ 0, no matter how small, 
iy 

(4.22) F(z) = (Cf(t)e-*'dt + P° f{t)e~s'dt. 

From (4.4), 

(4.23) F(z)= (Cf(t)e-*'dt + 0(exp(-8\z\)), 

for some fixed ô > 0, as 3 —>oo in 5(A). 
For any fixed N £ I, 

(4.24) /(0 = £ a/n-\-logtyn + RN, 

where for any given e > 0, there will exist a complex number c ^ 0 such that 

(4.25) | i ^ | g e ^ - U - l o g *)w|, arg * = 7, M ^ |c|. 
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Hence 
N 

(4.26) F(z) = 2 anL(0, c, \n, »„, z) + rN + 0(exp(-o |z | ) ) , 
n=0 

as z —» oo in 5(A), where 

(4.27) \rN\ S e P | ^ _ 1 ( - l o g ifNe~ztdt\ 

< K ' € - |s "(log*)""!, 

by Lemma 4.1. 
From these results, 

(4.28) F(z) = £ anL(0, c, X„, M„ *) + o(*"^(log s)"*, Z 
w=0 

as z —» oo in 5(A), and therefore 

(4.29) F(z) ~ ^ awL(0, c, Xw, M„ *) ; {^Xn(log zYn}, 

as z —>oo in 5(A). 

The Erdélyi result, namely Theorem 4.2, may not be as useful in some 
circumstances as one might expect. To illustrate, consider Theorem 4.2 with 
Re \n+i > Re Xn whenever n and n + 1 are both in / . It will also be assumed 
a0 = a± = 1 in (4.21). From Theorem 3.1, it follows that 

(4.30) L(0, c, Xo, MO, z) ~ z °(log s) 

and 

£ (-irWrfo)(xo)(iog2r; 
rc=0 V * / 

{(logs)-} 

L w=0 

(4.31) L(fl,c, Xi,/.i,«) ~2-A l ( Iog«)H f £ ( - i r M r ( K ) ( X 1 ) ( l o g 2 r ; 

!(iogS)-n 

as z —»oo in 5(A). Hence for any fixed integers TVo > 0 and Ni > 0, 

(4.32) F(s) = Z - X o ( l o g 2 r [ g ( - i r (^ 0 ) r ( K ) (X„) ( log Z ) - B + 0((Iog 2)-"°)] 

+ 2-Xl(log 2)"1 [ g ( - D " ^ x ) r f e ) ( X O ( l o g 2 ) - K + 0((log 2)-"1) ] 

+ o(2-
Xi(iog2r), 
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as z —> <x> in 5(A). If the term z~\(log zY° is factored from the expressions in 
(4.32), one obtains 

(4.33) F(z) = 2 - X o ( l o g * H £ ( - i r ( ^ 0 ) r ( " , ( X o ) ( l o g S r 

+ «((log 2 ) ^ ) + 0(ZX°-Xl (log S)"1-"») ] , 

as z —> oo in 5(A). Since Re Xi > Re X0, 

(4.34) sx°-Xl(logz)^-^0 = o((logz)-N°), 

as z —> oo in 5(A). Hence 

Xo / i _ \M0 (4.35) F(s) = z~A0(logz) £ ( - i r ( ^ ° ) r w ( X o ) ( l o g s ) " * + o((logzTN°) 

or 

(4.36) F (z) ~ z-*° (log zY o[Sœ(\o, fJioAog z); {(log z)-n}] 

as 2 —* oo in 5(A). 
If ju0 is not a non-negative integer, then 5oo(X0, /x0, log 2) has an infinite 

number of terms, each of which is larger than every term in 

zr^(log zyiSœ(\h m,log z). 

From a pragmatic point of view the first term of (iii) gives the complete 
asymptotic expansion of F(z). This is a somewhat surprising result because the 
situation when the \in are non-negative integers is quite different. In such a 
case, every term of (iii) gives a contribution to a much more accurate form of 
asymptotic expansion. 

Thus, if the Erdélyi form of (4.21) is reduced to its natural pragmatic form 
of (4.36), it is clear that the result is no longer a generalization of Watson's 
Lemma except insofar as the first term is concerned. It is therefore natural to 
ask whether such a generalization does exist in which the powers of ( — log t) 
can take values which are not non-negative integers. It is possible, for example, 
to ask for conditions on f(t) in 

iy 

(4.37) F{z) = r* f{t)e~ztdt, 

which will ensure that 

(4.38) Fiz) ~ X anz~K(log *)""; i ^ " (log «)""}, 

as z—>oo in 5(A), where Re Xn+i > Re Xw, whenever n and n + 1 are in / , and 
\xn is an arbitrary complex number. This would then be a generalization of 
Watson's Lemma, with the result of this lemma being obtained when /xw = 0. 
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In order to answer this question, we shall digress to discuss briefly the function 
fx(t} j(3, a) defined by 

(4.39) J»oo 

o 

r+V 
ros + i)r(a + x + i) 

This function has the asymptotic expansion (see [4] or [9]) 

(4.40) / i ( M 8 , a ) ~ * a ( - l o g * ) - ' - 1 

dx. 

X 
n=0 

as t —> 0. Further, 

£ ( -1)» - ^ 4 r ^ Md, - » - 1, a) ( - log /)""; { ( - log tyn} 
n\ 

(4.41) 

This gives 

(4.42) 

as t —» 0. Hence 

M(l, - n - l , a ) = ( - 1 ) " 

M (M8, a) = 

da" 

^ ( - l o g O - ^ 1 " 

r 

(4.43) /*(*, -M„ - 1, X» - 1) = 

r(« + i) 

' " - ' ( - l o g 0"" 

T ( a + 1) 

r 
r(x„) 

l + O 
l o g * / J ' 

as t —> 0. The sequences {/*(£, —fjin— l,\n— 1)} and {/Xn_1( —log/)Mn} as 
/ —> 0 along arg t = y and {s~Xn(log zYn] as z —> oo are all asymptotic sequences 
for the same conditions on {Xn} and {/xw}. It is assumed that such conditions are 
met, and all three are asymptotic sequences. In such a situation one can study 
functions f(t) which have asymptotic expansions of the form 

(4.44) f(t) ~ E « / " - ' ( - l o g t)""; {^-X(-log t)"}, 

as t —•» 0, which has already been accomplished, or one can discuss the possibility 
that 

(4.45) f(t) ~ X (built, -un - 1, Xn - 1); {/*(/, -\xn - 1, Xn 

as t —* 0. If (4.45) exists then the constants an are given by 

(4.46) a0 = lim/(*)//*(*, ~Mo - 1, X0 - 1) 

= iim/(Or(Xo)Ax°-1(-iogOM°, 

1)1, 

aK = lim 
* - i 

/ ( 0 - Z ) OnM ,̂ — Mn ~ 1, Xn — 1) A*(*> "MA; — 1, Xfc — 1) 

= lim r(X*) 
A - l 

/ ( 0 - Z ) OnV>(t, ~»n - 1, X„ - 1) /r*-1(-log0M*. 

Although these formulae give an explicit determination of these constants, 
the formulae are not useful in specific determinations. The problem of deter­
mining conditions on / ( / ) for which (4.45) is valid is interesting, but is not a 
problem which will be considered in this paper. 
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THEOREM 4.3 If: 
iy 

(i) F(z) = r f{t)e~ztdt, 
Jo 

(iii) f(t) ~ £ <W^, - / « . - 1, X» - 1); { ^ _ 1 ( - l o g / H , 

' 0 

exists for some fixed z = z0; 

(ii) {/Xn_1( —log tYn) is an asymptotic sequence as t —> 0 along arg £ = 7 with 
Re Xo > 0; 

ÛWH*> —/*» — 1, An — 1 ; ; \ 

as t —> 0 a/owg arg 2 = 7; 

(4.47) F(z) ~ £ ^ X " ( l o g 2)""; {2-x°(log «)"}, 

as z —> 00 m 5(A). 77z£ result holds uniformly in the approach ofz—>co. 

Proof. For any choice of c = \c\ety 9^ 0, it is true that 

^ f(!)e-"dt+ f(t)e—, 
0 « / C 

= f f(l)e~ztdt + 0(exp(-3 |z | ) ) 
•/o 

for some fixed 5 > 0, as 2 —> 00 in 5(A). From (iii), it follows that for any fixed 
integer N Ç / , 

(4.49) /(*) = £ Onn(t, -ixn - 1, X» - 1) + i ^ , 
71=0 

where for every e > 0, there will exist a number |c| such that 

(4.50) \RN\ ^ e\t^-i(-\ogty»\, 

providing \t\ ^ |c|. Since the choice in (4.48) is arbitrary, there is no loss of 
generality in identifying \c\ in (4.48) with that in (4.50), and assuming |c| is 
small if so desired. These results give 

(4.51) F(z) = £ an f\(t, -ixn- l,K - l)e~ztdt + rN + 0(exp(-o\z\)), 
n=0 «/0 

as z —» 00 in 5(A), where 

(4.52) \r„\£e ('\^\-log tye-"dt\, 
«/o 

which as before, (4.27), means 

(4.53) rN = o(z-x*(\ogzyx), 

as z —>oo in 5(A). 
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Further, 
17 

n(t, -i*n - 1, K - l)e~"dt = ix(t, -nn - 1, X, - l)e~"dt 
0 * /0 

+ 0(exp( -S | 2 | ) ) , 

for some fixed 8 > 0, as z —> oo in 5(A). Hence the well-known result [4, p. 222], 

J»ooe 

,i(*, - / i , - 1, X, - l)éT*V« = 2- x "( logsr , 
0 

(4.55) 

coupled with the results given above yields 

(4.56) F(z) = £ anz-Xn(logzyn + o(z-x»(\ogzY»), 

as z —> co in 5(A), and the order relation is independent of z. This of course 
proves that 

(4.57) F(z) ~ £ aB2-
x"(log *)""; ^ " ( l o g z)"»}, 

uniformly, as z —» oo in 5(A). 

Since 

(4.58) 

and 

(4.59) 

7W—1 / ,a \ 

/»(*, - 1 , X „ - 1) = 
X n - l 

r(x») ' 
this result shows that /xw = 0 will yield Watson's Lemma, and Theorem 4.3 is 
a true generalization of this latter result. In Theorem 4.3, \xn is an arbitrary 
fixed complex number. 

Returning to Theorem 4.2, the conditions under which 

(4.60) Re \n = Re Xw+i, R e fjin+i < R e fjLn 

whenever n and n + 1 are members of / , leads to a result that one might 
reasonably expect to hold. In this instance, 

(4.61) F(z) = a0z -Xo r(x0)(log*)' 

+ (-!)' 
i - X i 

+ aiz 

• ( : :> 

"» - ( ^ i r(1'(x„)(iogzr»-1 + . . . 

r (V(Xo)( log0)"o- ro + 0((log2)"o-'o) 

r(x1)(log2r 

+ ( 
_j-vriJMl jp (n) 

-(7)' r^(x1)(logzr-1 + c i - 1 

(Xi)0og«),,l-ri + o(0og«),'1-ri) + 
+ aMz-x" \ V (\M) (log z)"" 

+ ( - ! ) ' • < : ; ) 

(v), ru,(x^)(iog2)"^1 + .. 

r(,,f)(xi,)aog2)'',r~rjf + oak**)**-'*) + ... 
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Under the stated conditions, the ratio z-Xn/z~Xo is bounded as z —> oo. In 
(4.61), this will mean that none of the terms in (4.61) becomes = 0 with respect 
to an asymptotic sequence composed of powers of (log z)~l. It is possible to 
regroup the terms of (4.61) so that F(z) will exhibit an asymptotic expansion 
of the form 

(4.62) F(z) ~ s-*°[E bn(z) (log *)-*»; {(log *)-'*}], 

uniformly, as z —> oo in 5(A), where the bn(z) are all bounded as z —> oo in 5(A), 
and the sequence of fixed complex numbers {rn) satisfies r0 = —Mo, 
Re rn+i > Re rn. Although the explicit expression of bn(z) can be obtained, it is 
of such complexity that it is hardly worthwhile stating the formulae involved. 
In the situation just described, every term of the expansion of f(t) contributes 
to the asymptotic expansion of F(z). This is merely in keeping with what might 
be expected from an examination of the conditions and result given in Watson's 
Lemma. 

As an illustration of this form of asymptotic expansion, the function F(z) 
defined by 

will be considered. The general procedures of the present paper may be used in 
two different ways. The function (1 — log /)_ / i has the convergent expansion 

(4.64) (1 - log 0"* = £ ( ~ M ) ("log tr~\ 

providing \t\ < e~x. The conditions of Theorem 4.2 are then trivially satisfied 
and 

(4.65) F(z) - £ ( " M ) L ( 0 , 1, X, - M - n, z) ; {^(log z)~^}, 

uniformly, as z —> oo in 5(A). As before 

(4.66) i(0, 1, X, -M - », s) ~ A Ë ( - ! )"(""L" W)r(ro)(X)(logZy-n-m; 

i(iogzr-n-m}], 

uniformly, as z —>• oo in 5(A). Regrouping terms will then give 

£ a B ( l og 2 ) - B ; { ( l og 2 n 

uniformly, as z —> oo in 5(A), where 

(4.6S, *-t(-lK,rJ("'V + "W 

(4.67) F(2)~2_ X( l0g2) 
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There does however exist a much simpler asymptotic form of expansion of 
F{z). In (4.63), replace t by et. Hence 

(4.69) F{z) = ex P — - ^ 
Jo ( — 

Directly, one therefore has 

exp[— (ze)t\ 

( - logO* 
at. 

(4.70) F(z)~ 2-x(log(ze))- E (-i> "' / , , r ( ' ! ) ( X ) ( l o g ( S e ) r ; 

; (log ( « ) ) - } 
uniformly, as 2 —» oo in 5(A), or 

(4.71) F ( 2 ) ~ 2 " x ( l + logz)" E (-D <7> r(M,(x)(i + logsr"; 

{(logs)""} 

uniformly, as z •—> oo in 5(A). Because of the Poincaré nature of these expan­
sions, (4.67) can be obtained from (4.71) by writing 

( 1 + l o g s ) -
and then expanding 

in powers of (log z)~l. 

= (logs) 

1 + 

logs 

5. A concluding remark. Although quite general theorems have been 
established by means of which Watson's Lemma has been generalized, no 
pretence is made that necessary and sufficient conditions for the validity of the 
results have been found. This point is stressed to emphasize the fact that it is 
the pattern, not the detail, of proof which is important. The pattern of proof 
need not be abandoned in a specific example just because one or more of the 
conditions of validity of a particular theorem does not happen to be true. As 
an illustration of this remark, we consider 

(5.1) F(z) = f° f-1 log(log±J e-"dt, 

where it is assumed that Re X > 0 and 0 < c < 1. Although the singularity of 
the integrand is not of the type considered in this paper, the pattern of pro­
cedure outlined in § 3 will yield the asymptotic behavior of F(z) as z —> co. 
For the sake of simplicity we restrict ourselves to real z. 

Consider 
1 

(5.2) f(f) = log log 
t 
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Clearly, 

(5.3) f(uz~ ) = log (log z — logu) 

-*k,.+*(i-£ï). 
For every fixed positive integer N ^ 0, we have 

(5.4) log(l - M = - ± I ̂ % + o(p^) , 
* \ log zl £i n (log z) \(log z) ^ / 

as s —> oo , providing 

(5.5) 

or equivalently, 

(5.6) 

log u 
log z ^ 1 - Ô , 

1 ^ ^ 1-5 

for some fixed ô > 0. The substitution u = tz gives 

(5.7) a ^ * g 6, 

where a = z~2+ô and & = 2 -5. Therefore the use of the approximation (5.4) 
must exclude t = 0. 

One now proves exactly as in Lemma 3.1 that a fixed p > 0 must exist such 
that 

(5.8) P t-^ifte-^dt = O0Tx-p), 

as z —> oo . Further, the proof of 

(5.9) P t^fifie-'dt = 0(exp(-21"5)) , 

as z —» oo , is easily obtained. These two results coupled together give 

(5.10) F(z) = f ^ftfe-'dt + O0Tx~p), 

as 2 —> ce. From here on the pattern of procedure follows closely that of 
Theorem 3.1. The result obtained is 

(5.11) z\F(2) = (loglogs){r(X) + 0 ( 0 } 

+ \ t ( - £)Qogz)-*rM(\) + oaiogs)-"-1) 

as z —» oo, for some fixed -q > 0, which will of course imply 

(5.12) { 2 ^ ( 2 ) - T(X) log log 2} 

as 2 —» oo. 
.1 (-£>** ««rr^wudogs)-!, 
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