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Abstract

This paper announces the creation of a database for number fields.
It describes the contents and the methods of access, indicates the
origin of the polynomials, and formulates the aims of this collection

of fields.

1. Introduction

We report on a database of field extensions of the rationals, its properties, and the meth
used to compute it. At the moment, the database encompasses roughly 100,000 poly
mials generating distinct number fields over the rationals, of degrees up to 15. It contai
polynomials for all transitive permutation groups up to that degree, and even for most:
the possible combinations of signature and Galois group in that range. Moreover, whene!
these are known, the fields of minimal discriminant with given group and signature hay
been included. The database can be foundppendix A, or downloaded from the sites
listed there, and accessed via the computer algebra system Kant [10].

One of the aims in the compilation of this database was to test the limitations of curre
methods for the realization of groups as Galois groups. It turned out that these methc
have limitations if the signature of the resulting Galois extension is also prescribed.

2. Galois realizations with prescribed signature

Let K/Q be a number field of degree We denote by; the number of real embeddings
of K, and byr, the number of pairs of complex embeddings. Thenwe hawe1+2r>. The
pair (r1, r2) is called thesignatureof K . The extensiorK /Q is calledtotally realif ro = 0.
The solution of embedding problems often requires knowledge of the field extensions wi
a prescribed signature. This is one reason for the attempt to realize all the groups in
possible signatures.

Now letG be the Galois group of the Galois closurekdfQ. Then, for any embedding of
K intoC, complex conjugation is an elemeni®fthatis,G in its permutation representation
on the conjugates of the fixed group &f contains an involution with, fixed points.
Clearly, this restricts the signatures that may occur for a given Galois group. This leads
the following question.

Given a finite permutation grou@ and a conjugacy clas§ of involutions inG, does
there exist a number fiel& /Q whose Galois closure has group, such that the image of
complex conjugation lies in clags?

Obviously, a positive solution to this problem would solve the inverse problem of Galoi
theory. In a letter to Matzat, dated 20th July 1992, Serre has remarked that the convers
true, at least for totally real extensions, as follows.
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Proposition 1 (Serre). If all finite groups occur as Galois groups ov€, then all finite
groups occur as Galois groups of totally real extension®of

Proof. Let G be a finite group. We use a special case of a result of Haran and Jafjen |
Corollary 6.2]: There exists a finite group and an epimorphism : G — G having all
involutions of G in the kernel. Indeed, assume thGiis generated by elements, and let
v : F, — G be a corresponding epimorphism from the free profinite grBupf rankr
ontoG. ThenS := F, \ ker(y) is a compact subset which is invariant under conjugation.
HencesS? := {g? | g € S} is compact and invariant under conjugation as well, agdsE.
Thus there exists a normal subgroNp< F, of finite index withN N §2 = @. Defining
N := N Nnker(y), we have NN §2 = ¢, andN has a finite index irF,. ThenG := F,/N
with ¢ : G — G induced byy is as required.

Now let K /Q be a Galois extension with group and¢ : G — G as above, with
H = ker(¢). Assume thak 7 /Q is not totally real. Then some involution 6f acts as a
complex conjugation. However, by the constructiorothis involution lifts to an element
of order bigger than 2 i¢ = Gal(K /Q), contradicting the fact that complex conjugation
has order 2. Thug 7 /Q is a totally real realization fo6. O

For the explicit construction of fields with given signature, we may distinguish two case:
In the solvable case, class field theory may be used as in the general inverse problem.
construction of extensions with non-solvable groups is usually done via the rigidity metho
But this seems less well-adapted to the case where, in addition, the signature is prescrit
In fact, Serre [32, p. 91] has shown that rigidity with three branch points never gives totall
real Galois extensions for groups# S3. At the moment, we are reduced to using ad hoc
methods to construct extensions with arbitrary signature.

2.1. Symmetric groups

Let us first treat the symmetric groups. We propose an even stronger statement.

Proposition 2. Letn € N, where0 < k < n/2, and letf; € Q,,[X] (wherei =1,...,r)
be separable polynomials of degreewherep; # p; fori # j. Then there exist infinitely
many number field& /Q with Galois groupS,, and signaturgn — 2k, k), and such that

K®Qy, =QylX]/(fiyfori=1,...,r.

Proof. Let go € Z[X] be a separable polynomial with— 2k real andk pairs of complex
zeros, forexample the polynomﬂ;’;fk(X—i) ]_[f-‘zl((X—i)z—i—l). By the maintheorem on
elementary symmetric functions and Hilbert's irreducibility theorem, there exist irreducible
polynomials with groups,, arbitrarily close tagg (for example, with respect to the metric
induced by taking the maximal absolute value of the coefficients). To find such a polynomi
constructively, choose three further primgs.1, . .., ps, wheres := r 4+ 3. Furthermore,
let g; € Z[X], wherei = 1,...,r, be separable polynomials such i@y, [X1/(f;) =
Qp[X1/(gi), i =1,...,r,andg,41, ..., g € Z[X] are separable such that the only non-
linear irreducible factor of the reductign (mod p;), wherer + 1 < i < s, has degree,
n — 1 or 2, respectively.

Write

n
gi:Zai,ij fori:O,...,s.
j=0
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By the weak approximation theorer®q, Theorem 1.11], we may chookg ..., b, € Q
such that

fi=) biX' €QIX]

i=0
satisfies the following two conditions:

* |bj —ao ;| (Wherej =0,...,n) is sufficiently small thatf has the same signature
asgo;

* |bj — a;jlp; are sufficiently small thatQ[X]/(f) ® Q, = Q,[X]1/(gi) for
i=1,...,s(seethe lemma of Krasner [25, Proposition 5.5]).

Then f has the same signature gg andQ[X1/(f) ® Qp,, = Q,,[X1/(fi), where
i=1,...,r areasrequired. Finally, factorization modpla. 1, . . ., ps shows that Galf)
is 2-fold transitive, and hence primitive, and contains a transposition. By atheorem of Jorde
this implies that Galf) = &,,.

By varying the additional primes, or by enlarging the set of primes, we may clearl
obtain infinitely many examples. O

2.2. Alternating groups

The case of alternating groups is inherently more complicated, and it is the only oth
case that we can solve uniformly. We first rephrase a result of Mestre into a universal liftir
property as follows (see [2] for definitions and other results in this area).

Theorem 3. The group(,, has the universal lifting property over fields of characteristic O.
More precisely, i is afield of characteristic 0 angl(X) € K[X]is a separable polynomial
with square discriminant, then there exists a polynonfiél, X) € K (¢)[X] generating a
regular Galois extension df () with group2l,,, for n > 3, such that the splitting fields of
g(X) and £ (0, X) coincide.

Proof. Let g(X) € K[X] be of degreex > 3 with square discriminant. First, assume
thatn is odd. Then, by the result of Mestre (s&&[1V.5.12]), there exists a polynomial
h(X) € K(X) of degreen — 1 such thatf (¢, X) := g(X) — th(X) € K(¢)[X] has Galois
group®l, overk (t).

Now assume that is even. Replacing by X — a for a suitable: € K, we may assume
thatg1(X) := Xg(X) is separable. Singg again has a square discriminant and odd degree,
by the first part there exists a polynomjalz, X) = g1(X) —rh(X) with group®l,, 1. Note
that this implies thak (0) # 0. By [24, IV.5.12(b)], the polynomial

f@, X) == (g1(X)h(1) — g1(Dh(X)) /(X — 1) € K (D)[X]

has groupl,. Moreover, £ (O, X) = Xg(X)h(0)/X = h(0)g(X) is a non-zero scalar
multiple of g(X), so f (¢, X):= f(z, X)/h(0) has all the required properties. O

Note that the signature of a field with even Galois group is necessarily of the forr
(n — 2k, k) with k even. For alternating groups, all these signatures can be realize@over

Corollary 4. Letn € N, and letO < k < n/2 be even. Then there exist infinitely many
number fieldsk /Q with Galois group(,, and signaturegn — 2k, k).
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Proof. For 1 < i < k/2, letu;(X) € Z[X] be distinct totally complex polynomials of
degree 4 with Galois groufts; for exampley; (X) = (X —i)*—7(X —i)?—3(X —i)+1.
Then

n—2k k/2

g) =[x =i [Ju)
i=1 i=1

is separable with square discriminant and signature 2k, k). By Theoren®, there exists
a polynomialf (¢, X) € Q(¢)[X] with Galois groupl,, such thatf (0, X) = g(X). Since
g is separable, for any close to 0 the specializatiofi(zp, X) has the same signature @as
By the Hilbertirreducibility theorem, there exist infinitely many sugfor which the Galois
group is preserved under specialization. O

Note that for symmetric and alternating groups, the conjugacy classes of involutions &
parametrized by the cycle types, so the preceding results show that any involution in-
alternating or symmetric group can occur as a complex conjugation in a Galois extensi
of the rationals.

2.3. Further simple groups

The non-abelian simple groups with faithful permutation representations of degree
most 15 are k(7), L2(8), L2(11), M11, M12, L3(3), L2(13)and the alternating groups.
For the groups k(7), Lo(11), M11 and My, totally real realizations were found i23],
by constructing the Hurwitz spaces for certaituples of conjugacy classes, whare: 4.

These constructions involve a considerable amount of calculation, and seem to be restric

to groups of small degree. At the moment we are not aware of any totally real extensio
of Q with group L»(8), L3(3) or L2(13), nor with the almost simple group$™P»(8),
PGLy(11) or PGLy(13).

3. How to construct the polynomials

In this section we give a short overview of the methods that were used to construct t
polynomials contained in the database.

3.1. Methods from the geometry of numbers

Let K be a number field of degreewith absolute discriminanb. Fora € K, we
denote by = a1, ..., a, € C the conjugates aof, and we defindz(a) := > 7 ; |o:l.2|.
Now [7, Theorem 6.4.2] (attributed to Hunter) states that there exists an algebraic integ
a € K\ Q such thatl»(«) < B, whereB depends only on and D. This can be used to
derive bounds for the coefficients of the characteristic polynomial of a primitive elemer
of K. A description of this method can be found B Section 9.3]. In the case where all
the conjugatesas, ..., «, are real, we have used a slightly different approach.

Let f(X) € Z[X] be a totally real separable polynomial of degre@hat is, the stem
field of f hasn different real embeddings). Then all the derivativesfodire also totally
real and separable. Conversely, given a totally real polynogii&) € Z[X] of degree
n —1 > 2, there are only finitely many totally real polynomigi$X) € Z[X] such that
f' = g. Moreover, the constant terms of such polynomiglsonsist of all integers in an
intervall which can be computed frog Indeed, denote by, < ... < «,_1, the (different
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real) roots ofg, and letfo denote any integral polynomial with derivatiyg = g. Assume
for definiteness that the highest coefficiengads positive. Denote by

m := max fo(ey-1-2) | 0<i < (n —2)/2}
the maximum of the minima ofy, and by
M := min{ fo(oty—2-2i) | 0<i < (n—3)/2}

the minimum of the maxima.

Then, clearly,fo — cis totally real ifand onlyifc € I :={a e R | m < o < M}.

The above considerations lead us to the following conclusion (see&lpo 448], for
example).

Lemma 5. For fixeda,, an—1, an-2 € 7L, there exist only finitely many totally real polyno-
mials f(X) = Y1 _ga; X' € Z[X], and these may be enumerated effectively.

Indeed, such polynomials can exist onlyif*—2 is totally real. Sincef *~2 of degree 2
is completely determined by, a,-1 anda,_», there are only finitely many possibilities
for £=3) and now induction proves the assertion.

By the theorem of Hunter, any primitive extensi&nof Q of degree: can be generated
by a monic polynomiaf (X) = Y"_,a; X’ € Z[X] of degree: such that 0< a,_1 < n/2,
and withT>-norm bounded by a function in the discriminaiik’). Moreover, thel>-norm
bounds the third-highest coefficient,_».

Hence Lemma& can be used to enumerate the totally real fields of bounded discriminant
It seems that this strategy produces far fewer polynomials to be considered, as compa
to the approach that first tries to bound the discriminant, and then to sieve for totally re
polynomials. For example, in the case of totally real degree-8 extensions (see Theor
13), only 869062 polynomials were produced and had to be processed further. (Among
corresponding fields, only 4896 had a Galois group different féx)

3.2. Specializing from polynomials ov&(z)

Let G be a finite group. We call the field extensidyQ(r) a G-realization, if it is
Galois with groupG and regular, which means th@tis algebraically closed ix. When a
group has &-realization ovefQ, it is an immediate consequence that there exist infinitely
many disjoint number fields /Q with Galois groupG. Suppose that we have a polynomial
f € Q()[X] such that the splitting field of is a regular extension with Galois group
G. By specializingt to a € Q, we see that G&f (a, X)) is a subgroup of5. Hilbert's
irreducibility theorem states that G#l(a, X)) = G for infinitely manya € Q. See for
example [32, Section 4.6] for a method to find infinitely many Q with that property.
This allows us to construct polynomials with Galois gro@pover Q when we have an
explicit polynomial f € Q(z, X). In some lucky cases, we are able to get proper subgroup:
of G.

3.3. Methods from class field theory

Suppose that we want to construct a polynomfiasuch that Galf) = G for some
permutation groups. Furthermore, suppose that in a corresponding field extension, th
stem fieldN of f has a subfield. such thatN/L is an Abelian extension with Galois
groupA. Then we can try the following approach. The Galois group of (the splitting field
of) L can be determined group-theoretically, and is denoted/ byiven a fieldZ with
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Galois groupH, we generate relative Abelian extensions with Galois grausing class
field theory. The Galois groups ové& of such extensions are subgroups of the wreath
productA : H. Experiments show that most of the computed fields have the wreath produ
or the direct product as a Galois group. But we also get other Galois groups. One advant:
of this method is that we are able to control the field discriminants of the computed field
Therefore we can prove minimal discriminants for such groups. For example, this h:
been successfully applied to degree-8 fields having a degree-4 subfidtd{ a complete
description, we refer the reader ), [Section 9.2]. We should point out that we have used
the class field algorithm described ihg] and implemented in10]. Cohen [8, Theorem
9.2.6] remarks that the class field methods can be extended to fields where the Galois gr
of N/L is a dihedral group of ordem? wheren is odd. Fieker and the first authdrd] are
able to extend this method to the case whéyd. is a Frobenius group with Abelian kernel.
For example, this applies to the Frobenius grodps: Z,,, wherep is prime andp | [ — 1.

3.4. Embedding obstructions

Suppose that we want to construct a field extension of degree 4 with cyclic guup
applying the methods of the preceding paragraph and takirg Q(+/—1). Then we would
find out that there are no extensioNg L such that Galv/Q) = Z4. It would be nice to
know in advance whether or nftis a good choice. Lek be a number field, let /K be a
finite field extension with Galois groufd, and let

1—U—G—H—71

be an exact sequence of groups. Then afield is called groper solution of the embedding
problemif Gal(N/K) = G. For the general theory, we refer the reader to [24, Chapter 1V].
Here, we restrict ourselves to the special case with kévn&l Z,. ThenU is a subgroup

of the center oG, and we have the following result [24, IV.7.2].

Proposition 6. Let N = L(/a), witha € L, be a proper solution of the given embedding
problem with kernelZ,. Then all solution fields are of the fori, := L(\/ax) with
aecK*.

Furthermore, we find a local-global principle. Lef K be a number field with Galois

group H, and suppose that we have the embedding problem

1—Z72,—>G— H— 1.
Denote byPx the set of prime ideals @k, including the infinite ones. Fare Px and’
a prime ideal of9,, lying overp, we denote by.q3/ K}, the corresponding local extension.
We write H for the Galois group oLy /Ky. We get the following induced embedding
problem: . .

1—Z2,—G— H— 1.
This embedding problem has a solution if it has a proper solution, or if the exact sequen
is split (see [24, p. 265] for the general definition of a ‘solution’).

Proposition 7. Let L/K be a finite extension with Galois group. Then the embedding
probleml - Z, - G — H — 1 has a proper solution if and only if the induced
embedding problems have a solution forja Px, with one possible exception.

Proof. The theorem follows fromJ4, Corollary 1V.10.2] and the subsequent remark, and a
theorem of Ikedag4, Theorem IV.1.8]. Recall that split embedding problems with Abelian
kernel have proper solutions [24, Theorem IV.2.4]. O
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In our special case with kerngb, it is easy to see that the induced embedding problems
have solutions for aly which are unramified i, or which have an odd ramification index
in L. If an infinite primep is ramified, the induced embedding problem is solvable if and
only if it is split.

These results give us a practical method of checking whether an embedding proble
with kernel Zo has a proper solution. If such a solution field of the embedding problen
exists, it then remains to compute such a field.

Proposition 8. LetN = L(./a) be a proper solution of an embedding problem with kernel
Z>. LetS C Pk be afinite subset containing all prime ideals with even ramification index
in L/K, all infinite primes, and all prime ideals lying abo2&. Furthermore, assume that

S contains enough prime ideals to generate the class groufiof Then there exists a
proper solutionN /L which is unramified outsidg, where

S:={P eP,|PDpforsomep € S}.

Proof. Denote bysS the set of all prime ideals i®; which are ramified inv and are not
contained inS. All prime ideals inS are tamely ramified. FurthermoreJif € S, it follows
that all conjugate prime ideals are contained ias well. Definex to be the product of all
prime ideals contained if. We see that = b@;, whereb is a square-free ideal i@ .

Then there exispy,...,p, € S andey, ..., e, € N such thatop?"---p;” is a principal
ideal in Ok with generatob, say. ThenV,, := L(+/ba) is a proper solution, unramified
outsides. O

Since there are only finitely many relative quadratic extensions that are unramified outsi
a finite set, the above technique furnishes a method of explicitly computing a solution. W
remark thatinthe case wheke= Q, the condition about the infinite primes can be dropped.
Inthe case wherg is totally real and. (\/«) is totally complex (both extensions are normal
overQ), the fieldL (v/—a) is a totally real solution field.

We now provide a few examples of how the solvability in thadic case can be decided.

Example 1. 1. Adegree 2 extensiah/Q is embeddable into 24 extension if and only
if L is totally real and all odd primes that are ramified ir. are congruent 1 mod 4.

2. Let L/Q be an extension with Galois groufy. ThenL is embeddable into &g
extension if and only ifL is totally real and all odd primes that are ramified ir_
have the property that = 1 mod 4 if and only ifp has odd inertia degree in.

3. LetL/Q be an extension with Galois group(), where is a prime with = 3 mod 8
or/ = 5mod 8. TherL is embeddable into an $Slp) extension if and only ifL
is totally real and all odd primep that are ramified inL have the property that
p =1 mod 4 if and only ifp has odd inertia degree in (see [5]).

The following example is more complicated, and demonstrates most of the effects th
may occur.

There exists a subdirect produ@t= SL»(3) xg(, [4213 with a faithful transitive permu-
tation representation of degree 12, usually denoted lg712s we have noted ir?[l, 4.1]
in order to construct an extension with this group, we have to fin?l aaxtension which
is embeddable both into an $(3)-extension and into g2]3-extension. Fop # 2, the
possible non-trivial local Galois groups of @8n-extension ar&Z,, Zz andZ2 x Zo. Let
E/Q,, wherep # 2, be ap-adic field. If the local Galois group is totally ramified with
Galois groupZ,, we find that both local embedding problems are solvakpesif 1 mod 4.
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If the local Galois group i¥> x Zs, it cannot be a totally ramified extensiop & 2, by
Abhyankar’s lemmai5, p. 236]). In this case, the embedding problem inte(S8Lcan be
solved only wherp = 3 mod 4. But then the 4th roots of unity are not containe@jnand
the embedding problem infd?]3 cannot be solved. Therefore we IetQ be an extension
thatis embeddable into a Tgy extension. Thed is totally real, and all odd primgswhich
are ramified have inertia degree 1 and satis¢ 1 mod 4. The converse is true wheéns
unramified in 2, or when the degree of the completion at 2 has degree divisible by 3.

Proposition 9. Let L/Q be an extension with Galois gro@fy. ThenL is embeddable into
a 12Ts7 extension if and only if the following statements hold.

1. L istotally real.
2. If p # 2is aramified prime irL, thenp = 1 mod 4and p has inertia degred in L.
3. If 2is ramified, then the corresponding embedding problenpfer 2 is solvable.

Denote byM the subfield of. which has Galois groufZs. Suppose that is embeddable
into al12T57 extension. Denote Wythe set of prime ideals i@, containing all prime ideals
above2Z, all infinite primes, all prime ideals that are ramified in, and enough prime
ideals to generate the class group®j;. Then there exists B2757 extension containing
which is unramified outsid&, whereS := {8 € P | 2 p for somep € S}.

Proof. The firstpart ofthe theorem has already been proved. We can solve the correspond
embedding problems independently. For the @l part we can apply Propositiéh Denote

by K one of the degree-6 subfieldsof As noted in [21, 4.1], the embedding problem into
[4%]3 is solvable if and only ik /M is embeddable into Zs-extension. Therefore we can
again apply Propositioa. O

If 2 is ramified, we cannot decide the solvability of the embedding problem just by
looking at the ramification behaviour. We have to determine whekh@y is embeddable
into a Z, extension, which is the case if and only-fl is a norm inK /M. This can be
decided by applying the methods described in [1].

3.5. Computing polynomials from other representations

Suppose that we want to compute polynomials for a permutation group which alreac
has a faithful representation on fewer points; that is, we want to construct a different ste
field of a given Galois extension. 1”21, 3.3], we have described how to compute such
polynomials when we know a polynomial belonging to the other representation. In thi
paper, we strive to control the discriminants of these fields. The proof of the followinc
theorem can be found in [22, Proposition 6.3.1].

Theorem 10. Let N/K be a normal extension with Galois groh and letL be the fixed
field of a subgroufH of G. Let3 # (0) be a prime ideal o® with ramification index,
and letp := PN Ok . Denote byDy; and Iz the decomposition group and the inertia group,
respectively. LeRy := {g1, ..., gn} be a system of representatives of the double cosets o
H and Dy in G; thatis, G = |J;_, Hg; Dy Then

1. The prime divisors of in Oy arep; := g PN YL forl <i < m.

2. pOr =[]/ p{", wheree; :=e/|gilpg; * N HI.
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Table 1: Permutation types for7) in degrees 7 and 8

17 18
13.22 24
1.32 12.32
1.2.4 42

7 1.7

Corollary 11. Suppose thaff is not wildly ramified ovem. In this case, we denote
by = a generator of the cyclic grougy. Then vy (disc(L/K)) = ind(r), where
ind(w) := [G : H]— the number of orbits ot onG/H.

Proof. Suppose thai©0; =[], pf". In the case of tamely ramified extensions, we find
that vy (disc(L/K)) = YL, fi(e; — 1), wheref; denotes the degree of the residue field
extension(Oy,/p;) /(O /p). Obviously, this formula does not depend on the number of
primes lying above, or on their inertia degrees, but only on the indexrof O

Example 2. Let G = L»(7), the second smallest non-abelian simple group. Tables-
trates the assertion of Corollafyl. The two columns give the cycle types of elements of
G in the transitive degree-7 and degree-8 representations, respectively. This allows us
compare the contribution made to the discriminant by tamely ramified prime ideals.

We can see that, independently of the cycle type, the discriminant in the degree-8 re
resentation remains at least the same as in the degree-7 representation, in the case of
ramification. A case-by-case study shows that the same is true when wild ramification o
curs. This opens a way to determining the smallest fields of degree 8 with Galois grot
L2(7), by computing enough fields of degree 7 with the corresponding Galois group.

4. Minimal discriminants
4.1. Results known to date

One goal of our database is to provide fields with small (absolute values of the) discrin
inant for each Galois group and signature. In small degrees, it is even possible to determ
the field(s) with the smallest discriminant. We comment on the present state of knowled:
in this area (which is restricted to degrees less than 10).

It is very easy to enumerate the discriminants of quadratic fields. Bel@basvgs a
very efficient algorithm for enumerating cubic number fields. For higher degrees, metho
from the geometry of numbers and class field theory are applied.

In [6], all quartic fields with absolute discriminant smaller tharf #0e enumerated.
Huge tables of the smallest quintic fields are also available, due to SchetatA31].
These tables are sufficient to extract the smallest discriminants for all Galois groups a
classes of involutions for degrees 4 and 5.

The general enumeration methods are not powerful enough to give the minima for ¢
Galois groups in degree 6. The minimal discriminants for all signatures of degree 6 a
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Table 2: Minimal discriminants in degree 7

G rn=1 r1=3 rn=>5 ri=7
7 — — — 594823321
7:2 —357911 — — 192100033
7:3 — — — 1817487424
7:6 —38014691 — — 12431698517
L3(2) — 2007889 — 670188544
A7 — 3884841 — 988410721
&7 —184607 612233 —2306599 20134393

computed in [30]. Olivier [26] and Ford and Pohst [1B, 19] have completed the com-
putation of the minimal discriminants of all signatures and all primitive Galois groups o
degree 6. Olivier and other&T, 4] have also computed the minimal fields for imprimitive
groups of degree 6. This yields enough information to determine the minimal fields for a
the groups and all the conjugacy classes of that degree.

In degree 7, the minimal fields of each signature are known, dugltd B, 29]. This
covers all the signatures of the symmetric groups. We complete the determination in degre
by proving the following theorem.

Theorem 12. The minimal discriminants for the possible pais, r1) of Galois groupG,
and the number of real places, in degree 7are as shown in Tabl2.

Proof. The fields generated iif,13,29] are sufficient to prove the minimal discriminants
for all signatures of the symmetric group and the non totally real dihedral case. The minin
for 27 and L3(2) are found by using methods from the geometry of numbers (see Sectic
3.1), using the fact that the discriminant has to be a square. The minimal discriminant f
the cyclic case can easily be determined using the theorem of Kronecker—Weber and
fact that a ramified prim@ must be either equal to 7 or congruentto 1 mod 7. All the other
groups are Frobenius groups, where we can apply class field theory as descrit@dan [
prove the minima. O

The polynomial
X7 —2x°% - 7x°+11x* +16X% — 14x% — 11X + 2
generates a totally re@l;-extension with minimal discriminant, while
X" —8x%—2x*+15x3 +4x2 - 6X -2

generates one of the two totally real(R)-extensions with minimal discriminant. (The other
one is arithmetically equivalent to the first one, which means that these two non-isomorpt
fields have the same Dedekipefunction.)

The smallest totally real octic number field is computed?d][ Diaz y Diaz [L2] deter-
mined the smallest totally complex octic number field. To the best of our knowledge, th
smallest totally real octic field with symmetric Galois group was previously unknown. The
following theorem can be proved using the methods of Se&ibn
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Table 3: Minimal discriminants of primitive groups in degree 8

G r1=0 rp=2 rn=4
87155 594823321 — —
8736 1817487424 — —
8737 < 37822859361 — —
8Tu3 < 418195493 > —1997331875 —
8Tys < 32684089 — < 351075169
8Tx9 < 20912329 — < 144889369
8750 < 1282789 > —4296211 < 15908237
G r1==6 rn=28
8715 — 9745585291264
8736 — 6423507767296
8737 — < 8165659002209296
8Ty3 — < 312349488740352
8Tys — < 81366421504
8Tx9 — < 46664208361
8750 > —65106259 483345053

Theorem 13. The minimal discriminant for a totally real primitive field of deg@is given
byd = 483345053. The corresponding extension is unique up to isomorphism, with Galc
group &g, generated by the polynomial

X8 - x7" —7x8 +4x°+15x* —3x3 —9x%+ 1.

For imprimitive octic fields with a quartic subfield, Cohetral.[9] computed huge tables
using class field theory; these cover all the imprimitive groups and all the possible signatur
such that the corresponding field has a quartic subfield. These tables are not sufficien
find all the minimal fields of that shape, such that complex conjugation lies in a given clac
of involutions. In [16], the minima for octic fields having a quadratic subfield are given.

It remains to say something about primitive groups in degree 8. In Bable give the
primitive groups, together with the smallest discriminants that we know. If there is’no *
or ‘>’ sign, this means that this entry has been proved to be minimal. The totallpeeal
case has already been proved in Theot&nThe minima for the groupsigs and 8¢ are
proved in [L6].

If we knew enough fields of degree 7 with Galois groutd), it would be possible to
compute the minima for the groups 7= L»(7) and 87%g = 23.L»(7).

Diaz y Diaz and Olivier 14] have applied a relative version of the geometry of numbers
methods to compute tables of imprimitive fields of degree 9. These tables do not, howev
cover all the imprimitive Galois groups of that degree.
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Table 4: Reality types for non-solvable groups

Group Number of real zeroes
9T27 = L2(8) 9
9750 = PI'L2(8) 9
127518 = PGLy(11) 12
1377 = L3(3) 13
1375 = 13 5,9,13
14730 = Lo (13) 14
14T39 = PGLy(13) 14
14T = Aq4 6
157103 = Q15 7,11,15

5. The database

In this section we report on the content of the database. As was mentioned in the inti
duction, it contains about 100,000 polynomials generating distinct number fields over tt
rationals. Especially in smaller degrees (up to degree 5), there already exist much lar
tables of number fields covering all the fields up to a given discriminant bound. It is nc
very surprising that most of these fields have a symmetric Galois group. The aim of ol
database is different; we want to cover all the groups. More precisely, we want to look .
the following problems, which are of increasing difficulty.

1. For each transitive grou, find a polynomialf € Z[x] such that Gdalf) = G.

2. For each transitive groug and each clas§ of involutions, find a polynomialf e
Z[x] such that Gdlf) = G, and complex conjugation lies in cla€s

3. For each transitive groufi and each clas§' of involutions, find a polynomia)f e
Z[x] such that Galf) = G and complex conjugation lies in cla€s and the stem
field K of f has minimal absolute discriminant, subject to these restrictions.

We have a positive answer to problem 1 for all transitive groups up to degree 15,
shown in [21]. Problem 2 is inherently much more difficult. Let us first look at a slightly
easier variant of problem 2. Here, we ask only that complex conjugation should cover ¢
cycle types of involutions irG. The easier problem has a positive answer for all transitive
groups, with the possible exception of the groups shown in Table

The missing signatures for the alternating groups are simply a practical problem, as \
have proved in Theoref In all the other cases, the missing signature is the totally real one
we do not even know of a theoretical argument to indicate that such an extension shot
exist.

Letus come backto problem 2. Write:= Ng, (G) forthe normalizerirs, of G < &,,.
LetL/K be an extension of degreegenerated by a polynomiglsuch that is the Galois
group of the Galois closure @f/ K as a permutation group on the rootsffThen conju-
gation of G by an element oV amounts to a renumbering of the rootsjafin particular,
if C1 andC2 are two conjugacy classes 6ffused inN, then whenever we have found an
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Table 5: Contents of the database

Degree # Groups # Classes # Polynomials

2 1 2 549

3 2 3 619

4 5 13 2292
5 5 10 1489
6 16 48 5979
7 7 14 1360
8 50 233 15269
9 34 83 6174
10 45 184 12448
11 8 19 502

12 301 1895 43200
13 9 23 248

14 63 331 5155
15 104 395 4107

extension such that complex conjugation lies in cl@gsa simple renumbering provides
an extension with complex conjugationdh. Thus, in problem 2 we may restrict ourselves
to considering classes 6f modulo the action olV. We have constructed extensions for all
these possibilities up to degree 11, with the three above-mentioned exceptions.

Problem 3 has been completely solved up to degree 7. In degree 8, most transitive gro
are covered, but there are some primitive groups left where we cannot prove that we he
found the minimal discriminant.

We close by giving a table containing some statistics about the number of polynomia
in each degree (see Taldlg The ‘# Classes’ column denotes the total number of conjugacy
classes of elements of orders 1 and 2 up to conjugation in the symmetric normalizer.

Appendix A. Accessing the database

This appendix, which includes a zip file containing the database, is available to sul
scribers to the journal at:

http://www.Ims.ac.uk/jcm/4/lms2001-004/appendixa/.
The database is also downloadable from either

www.iwr.uni-heidelberg.de/iwr/compalg/minimum/minimum.htmi
or www.mathematik.uni-kassel.de/"malle/minimum/minimum.html

The computer algebra system KANTI(], required to utilise the database, can be found
at

http://www.math.tu-berlin.de/algebra/.
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