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The Irreducibility of Polynomials That Have
One Large Coefficient and Take a Prime
Value

Anca Iuliana Bonciocat and Nicolae Ciprian Bonciocat

Abstract. We use some classical estimates for polynomial roots to provide several irreducibility criteria

for polynomials with integer coefficients that have one sufficiently large coefficient and take a prime

value.

1 Introduction

Many classical irreducibility criteria for polynomials with integer coefficients rely on

the existence of a suitable prime divisor in the canonical decomposition of some of

their coefficients. Other irreducibility criteria rely on the existence of a suitable prime

divisor of the value that a given polynomial takes at a specified integral argument. For

instance, in [13] Pólya and Szegö give the following nice result of A. Cohn:

Theorem (A) If a prime p is expressed in the decimal system as

p =

n
∑

i=0

ai10i, 0 ≤ ai ≤ 9,

then the polynomial
∑n

i=0 aiX
i is irreducible in Z[X].

This irreducibility criterion was generalized to an arbitrary base b by Brillhart,

Filaseta and Odlyzko [3]:

Theorem (B) If a prime p is expressed in the number system with base b ≥ 2

as

p =

n
∑

i=0

aib
i , 0 ≤ ai ≤ b − 1,

then the polynomial
∑n

i=0 aiX
i is irreducible in Z[X].
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Elementary proofs of these results have been obtained by M. Ram Murty in [14]

where an analogue of Theorem B for polynomials with coefficients in Fq[t] with Fq

a finite field was also established. Some classes of composite numbers enjoy this nice

property too. In this respect, Filaseta [6] obtained another generalization of Theorem

B by replacing the prime p by a composite number wp with w < b:

Theorem (C) Let p be a prime number, w and b positive integers, b ≥ 2, w < b,

and suppose that wp is expressed in the number system with base b as

wp =

n
∑

i=0

aib
i , 0 ≤ ai ≤ b − 1.

Then the polynomial
∑n

i=0 aiX
i is irreducible over the rationals.

Cohn’s Theorem was also generalized in [3] and [7] by permitting the coefficients

of f to be different from digits. For instance, the following irreducibility criterion for

polynomials with non-negative coefficients was proved in [7].

Theorem (D) Let f (X) =

∑n
i=0 aiX

i be such that f (10) is a prime. If the ai ’s

satisfy 0 ≤ ai ≤ an1030 for each i = 0, 1, . . . , n − 1, then f (X) is irreducible.

Similar irreducibility conditions for multivariate polynomials over an arbitrary

field have been obtained in [2].

In this paper we will establish some irreducibility conditions for polynomials with

integer coefficients that have one large coefficient and take a prime value, by using

several estimates on the location of their roots. The results we will prove rely on the

following lemma:

Lemma 1.1 Let f be a polynomial with integer coefficients and suppose that for an

integer m, a prime number p, and a nonzero integer q we have f (m) = p · q. If for two

positive real numbers A and B we have A < |m| − |q| < |m| + |q| < B, and f has no

roots in the annular region A < |z| < B, then f is irreducible over Q .

Our irreducibility conditions will be obtained by combining Lemma 1.1 with

some classical estimates for polynomial roots. The first irreducibility criterion that

we will prove is given by the following

Theorem 1.2 Let f (X) =

∑n
i=0 aiX

di ∈ Z[X], with 0 = d0 < d1 < · · · < dn

and a0a1 · · · an 6= 0. Suppose that for an integer m, a prime number p, and a nonzero

integer q we have f (m) = p · q. Suppose also that there exist a sequence of positive real

numbers µ0, µ1, . . . , µn and an index j ∈ {0, . . . , n} such that
∑

k6= j µk ≤ 1 and

max
k< j

( 1

µk

·
|ak|

|a j |

) 1/d j−dk

< |m| − |q| < |m| + |q| < min
k> j

(

µk ·
|a j |

|ak|

) 1/dk−d j

.

Then f is irreducible over Q .
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Here we obviously have to ignore the left-most inequality if j = 0, and the right-

most one if j = n. Note that the inequalities in the statement of Theorem 1.2 are

satisfied if

|m| > |q| and |a j | > max
k6= j

|ak| · (|m| + |q| · sign(k − j))dk−d j

µk

,

so if f (m) is a prime number for an integer m with |m| ≥ 2, and f has one sufficiently

large coefficient, then it must be irreducible over Q .

One may obtain various irreducibility conditions by choosing different sequences

of positive real numbers µ0, µ1, . . . , µn satisfying
∑

k6= j µk ≤ 1. For instance, one

may simply choose µk = 1/n for k 6= j, or µk = 2−n
(

n
k

)

for k 6= j. For an example

when the µk’s depend on the coefficients of f , take µk = |ak|/
∑

i 6= j |ai | for k 6= j.

Then we obtain the following.

Corollary 1.3 Let f (X) =

∑n
i=0 ai X

di ∈ Z[X], with 0 = d0 < d1 < · · · < dn

and a0a1 · · · an 6= 0. Suppose that for an integer m, a prime number p, and a nonzero

integer q with |m| > |q| we have f (m) = p · q. If for an index j ∈ {1, . . . , n − 1} we

have

|a j | > (|m| + |q|)dn−d j ·
∑

i 6= j

|ai |,

then f is irreducible over Q .

For the remaining cases j = 0 and j = n we obtain sharper conditions by a direct

use of the triangle inequality. These conditions are given by the following two results.

Proposition 1.4 Let f (X) =

∑n
i=0 aiX

i ∈ Z[X], a0an 6= 0. Suppose that for an

integer m, a prime number p, and a nonzero integer q we have f (m) = p · q and

|a0| >

n
∑

i=1

|ai | · (|m| + |q|)i .

Then f is irreducible over Q .

Proposition 1.5 Let f (X) =

∑n
i=0 aiX

i ∈ Z[X], a0an 6= 0. Suppose that for a prime

number p, and two nonzero integers m and q with |m| > |q| we have f (m) = p · q and

|an| >

n−1
∑

i=0

|ai | · (|m| − |q|)i−n.

Then f is irreducible over Q .

In particular, from Propositions 1.4 and 1.5 one obtains the following irreducibil-

ity conditions respectively.

Corollary 1.6 If we write a prime number as a sum of integers a0, . . . , an, with

a0an 6= 0 and |a0| >
∑n

i=1 |ai |2
i , then the polynomial

∑n
i=0 aiX

i is irreducible over Q .
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Corollary 1.7 If all the coefficients of a polynomial f are ±1, and f (m) is a prime

number for an integer m with |m| ≥ 3, then f is irreducible over Q .

We will also prove the following related results.

Theorem 1.8 Let f (X) =

∑n
i=0 aiX

di ∈ Z[X], with 0 = d0 < d1 < · · · < dn

and a0a1 · · · an 6= 0. Suppose that for an integer m, a prime number p, and a nonzero

integer q we have f (m) = p · q and let µ0 = 0, µn = 1 and µ1, . . . , µn−1 be arbitrary

positive constants. If

|m| − |q| > max
1≤ j≤n

{ (1 + µ j−1)|a j−1|

µ j |a j |

}
1

d j−d j−1
,

then f is irreducible over Q .

Theorem 1.9 Let f (X) =

∑n
i=0 aiX

di ∈ Z[X], with 0 = d0 < d1 < · · · < dn

and a0a1 · · · an 6= 0. Suppose that for an integer m, a prime number p, and a nonzero

integer q we have f (m) = p · q and let µ0 = 1, µn = 0 and µ1, . . . , µn−1 be arbitrary

positive constants. If

|m| + |q| < min
1≤ j≤n

{ µ j−1|a j−1|

(1 + µ j)|a j |

}
1

d j−d j−1
,

then f is irreducible over Q .

Theorem 1.10 Let f (X) =

∑n
i=0 aiX

i ∈ Z[X], with a0an 6= 0. Suppose that for an

integer m, a prime number p, and a nonzero integer q we have f (m) = p · q and let

µ1, . . . , µn be arbitrary positive constants. If

|m| − |q| > max
{ µ2

µ1
,
µ3

µ2
, . . . ,

µn

µn−1
,

n
∑

j=1

µ j

µn
·
|a j−1|

|an|

}

,

then f is irreducible over Q .

Theorem 1.11 Let f (X) =

∑n
i=0 aiX

i ∈ Z[X], with a0an 6= 0. Suppose that for an

integer m, a prime number p, and a nonzero integer q we have f (m) = p ·q. Let µ0 = 0

and µ1, . . . , µn be arbitrary positive constants. If

|m| − |q| > max
0≤ j≤n−1

{ µ j

µ j+1
+

µn

µ j+1
·
|a j |

|an|

}

,

then f is irreducible over Q .

In particular, for µ1 = µ2 = . . . = µn = 1 we obtain the following irreducibility

criterion.

Corollary 1.12 Let f (X) =

∑n
i=0 ai X

i ∈ Z[X], with a0an 6= 0. Suppose that for an

integer m, a prime number p, and a nonzero integer q we have f (m) = p · q. If

|m| − |q| > max
{ |a0|

|an|
, 1 +

|a1|

|an|
, 1 +

|a2|

|an|
, . . . , 1 +

|an−1|

|an|

}

,

then f is irreducible over Q .
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Our results are quite flexible and may be useful in various applications when most

of the classical irreducibility criteria fail. The proofs of the main results are presented

in Section 2 below. In order to keep this paper self-contained, we will also include

the proofs of the estimates for polynomials roots needed in our results. We will also

give a series of examples in the last section of the paper.

2 Proofs of the Main Results

Proof of Lemma 1.1 Let f (X) =

∑n
i=0 aiX

i and assume that f decomposes as

f (X) = f1(X) · f2(X), with f1, f2 ∈ Z[X], deg f1 ≥ 1 and deg f2 ≥ 1. Then, since

f (m) = p · q = f1(m) · f2(m) and p is a prime number, one of the integers f1(m),

f2(m) must divide q, say f1(m) | q. In particular, we have | f1(m)| ≤ |q|. Assume now

that f factorizes as f (X) = an(X − θ1) . . . (X − θn), with θ1, . . . , θn ∈ C. Since f1 is a

factor of f , it will factorize over C as f1(X) = bt (X − θ1) · · · (X − θt), say, with t ≥ 1

and |bt | ≥ 1. Then one has

(1) | f1(m)| = |bt | ·
t

∏

i=1

|m − θi | ≥
t

∏

i=1

|m − θi|.

The fact that the roots of f lie outside the annulus A < |z| < B shows that for each

index i ∈ {1, . . . , t} we either have

|m − θi| ≥ |m| − |θi | ≥ |m| − A, if |θi | ≤ A,

or

|m − θi | ≥ |θi | − |m| ≥ B − |m|, if |θi | ≥ B.

Since by hypothesis we have A < |m| − |q| < |m| + |q| < B, we conclude that

|m − θi | > |q| for each i = 1, . . . , t , so by (1) we obtain | f1(m)| > |q|, which is a

contradiction. This completes the proof of the lemma.

Proof of Theorem 1.2 Assume that f factorizes as f (X) = an(X − θ1) · · · (X − θdn
),

with θ1, . . . , θdn
∈ C, let

A = max
k< j

( 1

µk

·
|ak|

|a j |

)
1

d j−dk
and B = min

k> j

(

µk ·
|a j |

|ak|

)
1

dk−d j
,

and note that according to our hypotheses, A must be strictly smaller than B.

M. Fujiwara proved the following elegant and flexible result on the location of the

roots of a complex polynomial in [8]:

Let P(z) =

∑n
i=0 aiz

di ∈ C[z], with 0 = d0 < d1 < · · · < dn and

a0a1 . . . an 6= 0. Let also µ0, . . . , µn−1 ∈ (0,∞) such that 1
µ0

+ · · · + 1
µn−1

≤ 1.

Then all the roots of P are contained in the disk |z| ≤ R, where

R = max
0≤ j≤n−1

(

µ j

|a j |

|an|

)
1

dn−d j
.
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We will adapt Fujiwara’s classical method here to find information on the location

of the roots of f . More precisely, we will prove that f has no roots in the annular

region A < |z| < B, as required in Lemma 1.1. To see this, let us assume that

A < |θi | < B for some index i ∈ {1, . . . , dn}. Then from A < |θi | we deduce

that µk|a j | · |θi |
d j > |ak| · |θi |

dk for each k < j, while from |θi | < B we find that

µk|a j | · |θi |
d j > |ak| · |θi|

dk for each k > j. Adding these inequalities term by term

and using the fact that
∑

k6= j µk ≤ 1, we obtain

(2) |a j | · |θi |
d j >

∑

k6= j

|ak| · |θi |
dk .

On the other hand, since f (θi) = 0 we must have

0 ≥ |a j | · |θi|
d j − |

∑

k6= j

akθ
dk

i | ≥ |a j | · |θi |
d j −

∑

k6= j

|ak| · |θi |
dk ,

which contradicts (2). The conclusion follows now by Lemma 1.1.

Proof of Proposition 1.4 Here we only need to observe that our assumption on the

size of |a0| forces the absolute values of the θi ’s to be greater than |m| + |q|. Indeed, if

|θ j| ≤ |m|+ |q| for an index j ∈ {1, . . . , n}, then since a0 = −
∑n

i=1 ai ·θ
i
j , we would

obtain |a0| ≤
∑n

i=1 |ai | · |θ j|
i ≤

∑n
i=1 |ai | · (|m|+ |q|)i , which is a contradiction. The

rest of the proof follows now in a manner similar to that given for Lemma 1.1.

Proof of Proposition 1.5 In this case our assumption on the size of |an| forces all the

the θi ’s to have absolute value smaller than |m|− |q|, for otherwise, if |θ j | ≥ |m|− |q|
for an index j ∈ {1, . . . , n}, we would have

0 =

∣

∣

∣

n
∑

i=0

aiθ
i−n
j

∣

∣

∣
≥ |an| −

n−1
∑

i=0

|ai | · |θ j|
i−n ≥ |an| −

n−1
∑

i=0

|ai | · (|m| − |q|)i−n,

a contradiction.

Proof of Theorem 1.8 In order to find information on the location of the roots of

f , we use now a classical result of Cowling and Thron (see [4, 5]):

Let P(z) = a0zd0 + a1zd1 + · · · + anzdn ∈ C[z] with all a j 6= 0, 0 = d0 < d1 <
· · · < dn, and m j = (d j − d j−1)−1, j = 1, 2, . . . , n. Let µ0 = 0, µn = 1 and

µ1, . . . , µn−1 be arbitrary positive constants. Then all the zeros of P lie in the

disc

|z| ≤ A = max
1≤ j≤n

{ (1 + µ j−1)

µ j
·
|a j−1|

|a j |

} m j

.
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Indeed, if P would have one root z0 with |z0| > A, then we would obtain

µ1|a1| · |z0|
d1 > (1 + µ0)|a0| · |z0|

d0

µ2|a2| · |z0|
d2 > (1 + µ1)|a1| · |z0|

d1

µ3|a3| · |z0|
d3 > (1 + µ2)|a2| · |z0|

d2

...

µn|an| · |z0|
dn > (1 + µn−1)|an−1| · |z0|

dn−1 ,

which after summation and cancellation of equal terms on each side would imply

that |an| · |z0|
dn >

∑n−1
i=0 |ai | · |z0|

di . On the other hand, since P(z0) = 0, we must

have |an| · |z0|
dn ≤

∑n−1
i=0 |ai | · |z0|

di , which is a contradiction. We note here that the

estimate in the case when µ1 = µ2 = · · · = µn = 1 was established earlier by Kojima

(see [9, 10]).

This result shows that the roots of our polynomial f satisfy |θi| ≤ A for i =

1, . . . , dn, and the conclusion follows by Lemma 1.1.

Proof of Theorem 1.9 We will prove here that the roots of f satisfy

|θi | ≥ B = min
1≤ j≤n

{ µ j−1|a j−1|

(1 + µ j)|a j |

}
1

d j−d j−1

uniformly for i = 1, . . . , dn. To see this, let us assume that |θi | < B for some index i.

Then we obtain successively

(1 + µ1)|a1| · |θi |
d1 < µ0|a0| · |θi |

d0

(1 + µ2)|a2| · |θi |
d2 < µ1|a1| · |θi |

d1

(1 + µ3)|a3| · |θi |
d3 < µ2|a2| · |θi |

d2

...

(1 + µn)|an| · |θi |
dn < µn−1|an−1| · |θi |

dn−1 .

Recalling that µ0 = 1 and µn = 0, adding term by term these inequalities, and

canceling the equal terms on both sides, we find that |a0| · |θi |
d0 >

∑n
j=1 |a j | · |θi |

d j .

On the other hand, since f (θi) = 0 we must have |a0| · |θi |
d0 ≤

∑n
j=1 |a j | · |θi |

d j ,

which is a contradiction.

Let us assume now as in the proof of Lemma 1.1 that f decomposes as f = f1 f2,

with deg f1 ≥ 1 and deg f2 ≥ 1. Then we obtain | f1(m)| ≤ |q|, while the roots of f1

satisfy

|m − θi | ≥ |θi | − |m| ≥ B − |m| > |q|, i = 1, . . . , t,

which by (1) gives the contradiction | f1(m)| > |q| and completes the proof.
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Proof of Theorem 1.10 For the proof we use the following classical result given in

[12]:

If µ = (µ1, µ2, . . . , µn) is an arbitrary set of positive numbers, then all the

characteristic roots of the n × n complex matrix M = (ai j) lie on the disk

|z| ≤ Aµ where

(3) Aµ = max
1≤i≤n

n
∑

j=1

µ j

µi
|ai j |.

Indeed, for any characteristic root λ of M the system of equations

(4)

n
∑

j=1

ai jx j = λxi , i = 1, 2, . . . , n

has a non-trivial solution (x1, x2, . . . , xn). Let us set x j = µ j y j and denote by ym the

y j of maximum modulus. By the mth equation of (4) we then infer that

|λµm ym| ≤

n
∑

j=1

|am j |µ j |y j | ≤
(

n
∑

j=1

|am j |µ j

)

|ym|.

Hence, |λ| ≤ Aµ.

If we apply this result to the companion matrix of the polynomial f̄ (X) =
1
an

f (X):

M f̄ =













0 1 0 · · · 0 0

0 0 1 · · · 0 0

· · · · · · · ·
0 0 0 · · · 0 1

− a0

an
− a1

an
− a2

an
· · · − an−2

an
− an−1

an













,

we find that all the roots of f lie on the disk

|z| ≤ A = max
{ µ2

µ1
,
µ3

µ2
, . . . ,

µn

µn−1
,

n
∑

j=1

µ j

µn
·
|a j−1|

|an|

}

,

so the roots of f1 satisfy

|m − θi | ≥ |m| − |θi| ≥ |m| − A > |q|, i = 1, . . . , t,

which by (1) gives the contradiction and completes the proof.

Proof of Theorem 1.11 In this case we use a classical result of Ballieu (see [1,11]) on

the location of the roots of a complex polynomial:
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Let P(z) = a0 + a1z + · · · + anzn ∈ C[z] with a0an 6= 0 and let µ0 = 0 and

µ1, . . . , µn be arbitrary positive constants. Then all the roots of P lie in the disc

|z| ≤ A = max
0≤ j≤n−1

{ µ j

µ j+1
+

µn

µ j+1
·
|a j |

|an|

}

.

This result follows immediately by using (3) for the transpose of M f̄ .

Using again the same notations as in the proof of Lemma 1.1, we have | f1(m)| ≤
|q|, while the roots of f1 satisfy

|m − θi | ≥ |m| − |θi| ≥ |m| − A > |q|, i = 1, . . . , t,

which by (1) gives the desired contradiction.

3 Examples

(i) Let f (X) = 1−X + X2 + X3 + 191X4 −X5 −X6 −X7, m = 2, q = 1, and j = 4.

Since f (2) = 2843, which is a prime number, and

191 = |a4| > (|m| + |q|)d7−d4 ·
∑

i 6=4

|ai | = 33 · 7 = 189,

it follows by Corollary 1.3 that f is irreducible over Q . We note that given

an integer polynomial, one may obtain sharper irreducibility conditions by a

suitable choice of the µi ’s in Theorem 1.2, rather than testing a single inequality

as in Corollary 1.3.

(ii) Let f (X) = p · q + a1X + a2X2 + · · ·+ anXn ∈ Z[X], with qan 6= 0 and p a prime

number. If p >
∑n

i=1 |ai | · |q|
i−1, then f must be irreducible over Q . This

follows immediately by taking m = 0 in Proposition 1.4. One such polynomial

is f (X) = 614 + 2X − 2X2 − X3 + X4 − 6X5 + 6X6. Here we have p = 307,

q = 2, and 614 >
∑6

i=1 |ai |2
i−1

= 612, so f is an irreducible polynomial.

(iii) Let k ≥ 2 and let f (X) = a0 + a1X + . . . + anXn ∈ Z[X] be such that |an| >
|a0|+|a1|+. . .+|an−1| and f (2k) is a prime number. Then the polynomial f (Xk)

is irreducible over Q . Here we observe that the polynomial fk(X) = f (Xk)

satisfies the hypotheses of Proposition 1.5 with m = 2 and q = 1, therefore

being irreducible over Q . For instance, for f (X) = 1 + X + X2 + X3 − 3X4 + 8X5

we have f (23) = 250 441, which is a prime number, so the polynomial f (X3) is

irreducible over Q .

(iv) Let us take f (X) = 1379 − 340X + 85X2 + 21X3 + 5X4 + X5. Here
∑5

i=0 ai =

1151, which is a prime number, and |a0| >
∑n

i=1 |ai |2
i , so f is irreducible by

Corollary 1.6.

(v) Let f (X) = 1+X +X2−X3−X4 +X5−X6 +X7 +X8. Here we have f (3) = 8167,

which is a prime number, so f is irreducible by Corollary 1.7.

(vi) If we take µ j = 1 for j = 1, . . . , n in Theorem 1.8, we see that a polynomial

f (X) =

∑n
i=0 aiX

i ∈ Z[X] with a0a1 . . . an 6= 0, |a0| < |a1|, and 2|a j−1| < |a j |
for j = 2, 3, . . . , n is irreducible over Q if f (m) is a prime number for an integer

m with |m| ≥ 2. One such polynomial is f (X) = 1−2X−5X2−11X3−23X4 +

51X5, since f (2) = 1153, which is a prime number.
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(vii) From Theorem 1.10 with µ1 = µ2 = . . . = µn = 1 and q = 1 it follows

that a polynomial f (X) =

∑n
i=0 aiX

i ∈ Z[X] with a0an 6= 0, |an| < |a0| +

|a1| + · · · + |an−1| and such that f (m) is a prime number for an integer m with

|m| > (|a0|+|a1|+· · ·+|an|)/|an|, must be irreducible over Q . Take for instance

f (X) = −2 − X + 2X2 − 2X3 − X4 + X5 and m = 11. Here f (11) = 143 977,

which is a prime number, so f must be irreducible.

(viii) For a result related to Corollary 1.12, let us consider the polynomial f (X) =

1− X −X2 + 11X3 + 11X4 + X5 − 2X6 + 11X7. Here f (4) = 176 557, which is a

prime number, and |m| − |q| = 3 while max0≤i≤6(1 + |ai |/|a7|) = 2, so f is an

irreducible polynomial.
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