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STOCHASTIC STABILITY OF ANOSOV DIFFEOMORPHISMS
KAZUHISA KATO

§0. Introduction

R. Bowen [1] introduced the notion of pseudo-orbit for a homeomor-
phism f of a metric space X as follows: A (double) sequence {x;};c; of
points x; in X is called a d-pseudo-orbit of f iff

Ad(fw;, ) <0

for every ic Z, where d denotes the metric in X. We say f is stoch-
astically stable if for every ¢ > 0 there exists 6 > 0 such that every o-
pseudo-orbit {x;};c; of f is etraced by some ze X, i.e.,

d(fix, x) < e

for every i€ Z. He proved in [1] that if a compact hyperbolic set 4 for
a diffeomorphism f of a compact manifold M has local product structure
then the restriction f|4 of f to 4 is stochastically stable, using stable
and unstable manifolds.

In this paper we prove first that an Anosov diffeomorphism [
of a compact manifold M is topologically stable, in the set of all con-
tinuous maps of M into M, in a sense (Theorem 1). Next, making use
of Theorem 1 we give another proof for Bowen’s result, in the case of
f an Anosov diffeomorphism (Theorem 2). The idea of this paper is
ingpired by a result of A. Morimoto [2], which says that a topologically
stable homeomorphism f of a manifold M with dim M > 3 is stochastically
stable. The method of the proof follows that of P. Walters [3].

The author would like to express his gratitude to Professor A. Mori-
moto for several useful conversations and his advices.

§1. Preparatory lemmas

M will always denote a compact C~ manifold without boundary.

Received February 18, 1977.
121

https://doi.org/10.1017/50027763000017980 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017980

122 KAZUHISA KATO

DEFINITION 1. A (' diffeomorphism f of M is called an Anosov
diffeomorphism if there exist a Riemannian metric ||-| on M and con-
stants C >0, 0 <2 <1 such that the tangent bundle of M can be written
as the Whitney sum of two continuous subbundles, TM = E*@® E*, and
the following conditions are satisfied:

1.1 Tf(E") = F° (e =su).
1.2 ITf*@| < Ca|vl|, veE, n>0,
' ITF @) < C|lv|]|, wveE* n>0.

Jf will always denote an Anosov diffeomorphism of M. We can find
a Riemannian metric for which we can take C =1, and fix it (cf. [3]).
Let X(M) denote the Banach space of all continuous vector fields with
the norm

vl = sup lv@| , veXM) .

Let X°(M) denote the subspace of all ve X¥(M) with v(x) ¢ E¢ for every
xeM (¢ = s,u). Clearly £(M) = X5(M) ® X*(M) (direct sum). We define
a linear operator f,: X(M) — X(M) by

Jiw) =T fovof, veX¥M) .

Let d(, ) denote the metric on M induced by |||, and for each x € M exp,, :

TM,— M denote the exponential map with respect to ||-|. Let Map (M)
denote the metric space of all continuous maps of M into M with the
metric

A, V) = sup d(px, ) , &,y € Map (M) .

For >0 we put Map (M, = {peMap (M): d(¢g,id) < 4}, and 3, =
{x,)e M X M: d(x,y) < 6}
The following lemma is due to P. Walters [3].

LEMMA 1. There exist §, > 0 and =, > 0 satisfying the following con-
ditions :

(1.3) For every (x,y) € >, there exists a linear isomorphism L, : TM,
— TM, such that L,,,,(E;) = E; (¢ = s,u), and L, 18 continuous
with respect to (x,y) €.

(1.4) For every (z,y) €, there exists a cONtiNUOUS MAP T4,y TM(z)
~ TM, such that
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exp, (v) = exp, L,y @) + 1@ @) veTM ()

and 7., 9 continuous with respect to (x,y)e€>.,, where TM,(z) =
{ve TM,:|v|| < =}

1.5) z=exp, (@), (@Y e, .

(1.6) || Lyl and ||(Lez,yy) || converge uniformly to 1 as d(x,y) — 0 .

@.7) For every (x,y) € ), there exists K(x,y) > 0 such that
170 @) = 1@p@) < K@,y [|[v — V||, 0,0 e TM,(z)

and K(z,y) converges uniformly to 0 as d(z,y) — 0.

Proof. See Lemma 1 [3].

DEFINITION 2. For ¢e Map (M, s,) we define continuous linear maps
Js Ryt X(M) — X(M), a continuous map 7,: X(M)(z) — X(M), and a con-
stant K(¢) >0 as follows: For veX(M) and xe M

J¢(v)(x) = L(¢z,x)(v(¢x)) ’
R,0)(@) = (Lg,42)) " (0(g)) .

For ve X(M)(z) and xe M
16 @) = 70,0 (0(P2)) 5
where X(M)(z) = {v e X(M): ||v|| < 7.}
K(g) = sup K(¢w, x) .
By Lemma 1 we have the following lemma:

LEMMA 2. For ¢eMap (M,d), v,v' e XM)(z) and xeM

1.8) J (X (M) € X°(M), R, (X(M)) C X°(M) (6 =su,
1.9) exp,, v(¢x) = exp, (J4(v) + r,(v)(@) ,

(1.10 exp, 1,(0) = ¢(x) ,
o~ < KBl 1

(1.12) 1,0, IR, —> 1 as  d(g,id) —> 0 .

LEMMA 3. If ¢, € Map (M,d) and a subset S of M satisfy
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Vo) = x
for every x ¢S, then
(1.13) R, J,(0)(gx) = v(gx) ,
(1.14) JyR,(v)(x) = v(x)

for every xeS and ve X(M).

Proof. By Definition 2 we have

SR (0)(@) = Liy,0(B(0)(g2))
= Ly, 0y (Liig0,02) " (0 (rd))
= v(x) ,

which proves (1.14). Similarly, we have

R¢J¢(v)(¢x) = (L(¢z,w;&x;)‘l(l]qi(v)(\lfﬁzsx))
= (L(¢x,x))_1L<¢z,z)(’0(¢ﬂ?))
= v(gx) ,

which proves (1.13).

LEMMA 4. There exists =, > 0 satisfying the following conditions:
Foyr every v e X(M)(z,) there exists s(v) e X(M) such that

Jexp-., v(f'x) = exp, (f;(v) + s()(@) , reM,

(1.15) S0) = 0,
(1.16) [s(v) — s()]| < C(z) [l — ||

for every v,v’ e X(M)(z,), where C(z,) — 0 as ¢, — 0.
Proof. See Lemma 2 [3].

LEMMA 5. There exist constants 0 < g, < g, and « > 0 satisfying the
following conditions: For every ¢, € Map (M, d,) there exist a constant
1@, ) > 0 and a continuous linear map P = P, : X(M) — X(M) such that
if a subset S of M satisfies

V@) = @
for every xS, then

1.17 (I — R, f)PW)(gx) = v(gx)
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for every xe S, and

1Pl <

(44
(1.18) 1 — p(g, )2
W) —> 1 as d(g,id), d(y,id) —> 0 .

’

Proof. There exists e > 0 such that
(1.19) Vsl + llvull < aflvs + vull
for every v,eX°(M) (¢ = s,u). For ¢,+ € Map (M, s,) we put

(1.20) ﬂ(¢’ IP') = Max {”J¢ ”’ ”R%”} .
Then, by (1.12) there exists 0 <4, < d, and 4, such that
(1.21) g, 2 <2, <1

for every ¢, € Map (M, 3,).
By (1.1) and (1.8) we can define as follows: fi = f,|X°(M), J; =
J,| (M) and R, = R,|X°(M) (¢ = s, w). By (1.2),(1.20) and (1.21) we have

IR S3 < IR S3 < gy )2 < 1.
Therefore, the Neumann series > =, (R5f9)" is convergent. Putting P,
= > o (RfD™ we have
1
< T
Similarly, since ||(f#) /%] < p(4, ¥)2 <1 the Neumann series > -, ((f{) ' J§)"

(1.22) P

is convergent. Putting P, = —> 7., (fHJH™ we have
1

1.23) Pl<——m .

( 174 1 — u(g, )2

Now we put P = P, + P,. By (1.19),(1.22) and (1.23) we get
[44
”PH < o Max {“Ps”’ ”Pu”} < tm
which proves (1.18). Next, we shall prove (1.17). By (1.13) and (1.14)
we have
I — RyfHP(0)(g2) 3}

= P,(w)(¢x) + Ryfe(fH)~ Ty LZ(.) - g)”(v)] (¢x)

= P,)(g2) + 3 ()T () (g2)

= v(¢)

’
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for veX“(M) and x¢S. Clearly, I — R,/)P, = 1.
Thus, we have proved (1.17).

§2. Proof of Theorem 1

THEOREM 1. An Anosov diffeomorphism f of M is topologically stable
i the following sense: For every ¢ >0 there exists § = d(e) > 0 satis-
fying the following conditions: If g,de Map (M) with d(f, q), d(f§,id)
< 6 and a subset S of M satisfy

gg(x) =
for every xS, then there exists h e Map (M) such that

2.1 hg(x) = fh(x)

for every xeS, and

2.2) d(h,id) < e .

Proof. TFirst, take & < Min{c,,z,,¢} so small that for every ¢,
Y € Map (M, 3,
(2.3) o) gy < L

1 — ulg, )2 e

This is possible since C(g) — 0 as ¢ — 0. Next, take 0 < 4§ < d, so small
that for every ¢, € Map (M, §)

2.4 ,,,_9_‘8@’,}1’,),_,_5 < 1 .
@4 1= ulgh 2
and

2.5) ) gg) < 1

1 — g, ¥)2 4

This is possible since K(¢) — 0 as d(¢g,id) — 0.
For ¢,yeMap (M, 5) we define a continuous map @ : X(M)(e,) — X(M) by

D) = P, Ry(s(v) — 1,(v)),  veX(M)(e) .

To find a fixed point of @ we shall first show that the Lipschitz constant
of &® <1 Take two elements v,v e X(M)(,). By (1.11),(1.16), (1.18),
(1.20), (2.3) and (2.5) we have
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|O() — O]
< [P | R, (Is(@) — s + lly,®) — 7,0

0‘#(?5, \If')_ Y oy
< T— s, )7 (Clep) [[v — V|| + K(p) ||v — V|

SGF+DIv=vI=%lv—-2].

Next, we shall show @(XM)(s)) C X(M)(s)). By (1.10), (1.15), (1.18), (1.20)
and (2.4) we have

16@)]| < 10O + [0@) — D)
< IPIIR + d o)
o ey 1,
ST g i TR

1, _
3%50‘1'750—50

for ve X(M)(s). Thus, @ is a contraction of a complete metric space
X(M)(e). Therefore, @ has a unique fixed point v, = v(¢, V) € X(M)(ey), i.e.

(2.6) vy = Py 4Ry (s(v)) — 7,(0)) .

We put & (= k) = exp v,.

Now assume that g, § € Map (M) with d(f, 9), d(f§,id) < ¢ and a sub-
set S of M satisfy that gg(x) = « for every xeS. Putting ¢ = gf* and
W = fg we see that ¢,+ € Map (M, and ¢(fz) = f(x) for every xzeS.
By Definition 2, (1.14), (1.17) and (2.6) we obtain

() (f2) — fi(v)(f2)
= J,()(f2) — IR, [ (v)(fx)
= J,(I — Ryfpw)(f)
=J,I — R,f)PR,(s(vy) — r,(v))(fx)
= Lsa, 10l — Ry fIPR,(s(v)) — 71,(v))(pSf®)]
= L(¢fz,fx) [Rq,(s(v,,) - 7’¢(’l)0))(¢fx)]
= Lsa, 12/ (Lig ga,0850) 7 ((8(00) — 7,(0) (Y4 f))
= 8(v)(fx) — 7,(v)(f )

for every xe€S. Thus we have
2.7 €) ¢('Uo) + 7’¢('Uo))(f %) = (fy(v) + s(@))(fx)

for every xe¢S. By (1.9),(1.15) and (2.7), for every xS we have
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hg(®) = exp,;, v(gS%)
= exPy, (J,(v) + 7,(v))(f2)
= €XPysy (fi(wp) + s))(fx)
= J €XPs-1s5 V(S TS )
= fh@) ,
which proves (2.1). Clearly, d(k,id) = ||v,|| < & < &, which proves (2.2).
This completes the proof of Theorem 1.

Remark. Let g e Map (M) be a homeomorphism of M with d(f, g) < é.
Clearly, we see that d(fg~',id) < é and g7 'g(x) = 2 for every xe M. By
Theorem 1 there exists & ¢ Map (M, ) such that

hg(x) = fh(x)

for every xe M. Thus, Theorem 1 is a generalization of P. Walters’
result (Theorem 1 [3]), except the uniqueness of the semiconjugacy k with
d(h, id) < e.

§3. Proof of Theorem 2

THEOREM 2. An Amnosov diffeomorphism f of M is stochastically
stable.

Proof. For ¢> 0 we put §, = d(¢/2), where d(¢/2) is as in Theorem
1, and 6 =4,/3. For every d-pseudo-orbit {z;};c; of f, we shall find
xze M such that

3.1 d(fix, x) < e, 1eZ.

CLAIM 1. For every positive integer k and d-pseudo-orbit {x};c, of
f, there exists ze M such that

3.2 d(fiz,a) <e, i=0,1,---,k.
Proof. There exists a (£d,)-pseudo-orbit {z/};c, such that

d@,2) <e/2, i=0,1,--+,k,

3.3
@3 AL 0<it#7<k+1.

Since f(x}) # f@}) 0<i#j<k+ 1) and d(fz},«},,) < 26, we can find
é, 4 € Map (M, ,) such that

¢f(x;) = x;+1’ '\P(%:“) = f(x:) ’ 1= 0’ 19 ) k.
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Put S={x,---, 2}, 9 =¢f and § = f~'v. Then we see that d(f,9) =
d(g,id), d(f9,id) = d(y,id) < &, and gg(x) = [ paf (@) = x;, 1=0,1,
-++,k. By Theorem 1, there exists % e Map (M,/2) such that hg(z) =
Sfh(x), for i =0,1,..-,k. Therefore, we have

(.4 Fih(ay) =h@), i=0,1,---,k.
Putting 2 = (z), by (3.3) and (3.4) we obtain

a(f'z, z;) < d(f*m(wy), x7) + d(@;, 2,
< d(h(=)), x) + ¢/2
< d(h,id) + ¢/2
<ef2+4+¢/2=c¢,

which proves (3.2).

CLAIM 2. Let {x};c, be a d-pseudo-ordbit of f. For every positive
integer k there exists z = z, e M such that

Proof. Take a positive integer k and fix it. Putting y; = 2_,,; we
see that {¥;}icz is a d-pseudo-orbit. By Claim 1 there exists 2/ ¢ M such
that d(fz’,y,) <e, for i = 0,1, ---,2k. Putting z = f*2’) we get d(fiz, z;)
= d(f***, Yy < & 11| < k, which proves (3.5).

By the compactness of M we can find a subsequence {z;,} of {z;} such
that lim,.. z;, = « for some e M. Take ieZ and fix it. By (3.5) we
have that d(fiz.,, x;) < ¢ for every v with |¢| < k,. Therefore we obtain
a(fix, x;) = lim,_.,, d(fz,, ;) < e, which proves (3.1).

This completes the proof of Theorem 2.
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