
MULTIPLIERS OF DIFFERENCE SETS 

MORRIS NEWMAN 

Introduction. Let X, ft, v be integers such that 0 < X < ft < v. Then the 
set of integers 

D = {dt}, 1 < i < ft 

is a difference set with parameters v, ft, X if each non-zero residue modulo v 
occurs precisely X times and zero occurs precisely ft times among the ft2 

numbers 
di — dj, 1 < i, j < ft. 

It is immediate that \(v — 1) = ft (ft — 1). 
The integer t is a multiplier of Z> if there is an integer a such that the 

numbers {tdt} coincide modulo v with the numbers {dt + &}, apart from order. 
A well-known theorem of M. Hall and H. Ryser (see 2, 3) states that if q is 
a prime such that 

q\k — X, q > X, (g, z;) = 1 

then g is a multiplier of D. The proof of this theorem is a complicated affair 
depending on polynomials in the indeterminates x, x_1, and double modulus 
arguments. The purpose of this paper is to prove the Hall-Ryser theorem by 
arguments involving incidence matrices alone. One valuable feature of this 
approach is that the undesirable assumption q > X can be eliminated in some 
cases. 

The referee points out that the authors' approach through circulant matrices 
that follows is closely related to the work of R. H. Bruck (1), which uses 
elements in the group ring of a cyclic group. 

Let P be the v X v permutation matrix 

0 1 0 
0 0 1 

0 0 0 
1 0 0 

and let C be the matrix 

c = E pdi. 
i=\ 
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Then P is the cycle of length v, and C satisfies 

(1) CC = CC = ni + \J, CJ = JC = kJ, 

where / is the v X v matrix all of whose entries are 1, and 

n = k — X. 

(Notice that Pv = I, I + P + P2 + . . . + P*-1 = J.) 
Define 

Cq = è PQdi. 

Then the matrix Cq also satisfies (1) since (q, v) = 1 and {qdi} must also be 
a difference set. The matrices C and Cq commute (since they are each poly­
nomials in P , or circulants) and in fact all matrices considered here will be 
circulants and so will commute. 

The matrix C is non-singular since k > X > 0 {CC has the eigenvalue 
n v — 1 times and k2 once since J has the eigenvalue 0 v — 1 times and v 
once) and so we can define 

(2) M = C~lCq. 

Then 

MM' = M'M = / 

since CC = CqCq . Multiplying in (1) by C~l we find that 

(3) C-1 = - C - \ j 
n nk 

and substituting (3) into (2) we find that 

M = ~{C'Cq - \J}. 
n 

Put 

(4) T=nM= CCq - \J. 

Then 

(5) TTf = T'T = rc2/, JT = TJ = nJ. 

Since g is prime it is clear that 

(6) Cff = C« + <?P, 

where R is an integral circulant. 
Substituting (6) into (4) and making use of (1) we find that 

T = nC*-1 + Xik*-1 - 1)J + qCR. 

Since q\n, q\\(kQ~l — 1), this implies that T = qS, where 5 is an integral 
circulant. By (5), 6" satisfies 
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(7) SS' = S'S = ( - Yj, SJ = JS = - J. 

Furthermore by (4) 

C'Cq = XJ + qS. 

If we now assume that q > X then S can have no negative entries. 
Suppose that 

v-l 

S = Z CiP\ Ci > 0. 

Then 
v-l 2 v—1 

i=a q i=o q 

Since ct > 0 this is only possible if 

where a is an integer such that 0 < a < v — 1. But then 

M = -- P = £ 5 = P a 

n n 

and the conclusion follows from the relationship 

Cq = PaC. 

We now drop the assumption that q > X. We can prove: 

THEOREM. If n = q then q is always a multiplier of D. If n = 2q and (v, 7) = 1 
then q is always a multiplier of D. 

Proof. We must show that 5 = (n/q)Pa, for some integer a satisfying 
0 < a < v — 1. Suppose that n = q. Then (7) becomes 

SS' = S'S = I, SJ = JS = 7, 

the solutions of which are clearly S = P a , 0 < a < y — 1. Now suppose that 
n = 2q. Then (7) becomes 

SS' = S'S = 4/ , 57 = JS = 27, 

the solutions of which are 5 = 2Pa, 0 < a < v — 1 and possibly 

(8) 5 = P a (P a i + Pa 2 + P ° 3 - / ) , 0 < a < v - l , y > a 1 > a 2 > a 3 > 0. 

Wre shall show that (8) is a solution only if v = 0 (mod 7), when 5 (or 5') 
becomes 

p a / p 4 w / 7 • p2v/7 , p » / 7 _ j x 

We notice first that v is odd. For if v is even, then n = 2q is a square (see 
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3), which implies that q = 2 since q is prime. But then (g, v) = 2, a contra­
diction. Next a necessary and sufficient condition that 51 given by (8) satisfy 

SS' = S'S = 4 / 

is that the sets 

{ai, a2, a3, » — oi, v — a2, z> — a3{ 

and 

{ai — a2, ai — a3, a2 — a3, z> — #i + a2, z; — ai + a3, fl — a2 + a3} 

coincide, apart from order. Comparing a3 with each element of the latter set 
we find three possibilities: 

(i) ai = a2 + a3, 
(ii) ai = 2a3, 

(iii) a2 = 2a3. 

Condition (i) implies immediately that v is even, which cannot happen. 
Condition (ii) implies that 

a\ = 6z;/7, a2 = 5^/7, a3 = 3^/7; 

and Condition (iii) implies that 

d! = 4^/7, a2 = 2A/7, a3 = p/7. 

Since 

6? _ _ ^ ^ _ ?^ ^ ? _ ^L 
7 - v - 7 , 7 - v - 7 , 7 - v - 7 , 

these results are the desired ones and the theorem is proved. 
It is clear that further progress depends on a study of the solutions of (7) 

in integral circulants S. 
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