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Systems of Weakly Coupled
Hamilton–Jacobi Equations with Implicit
Obstacles

Diogo Gomes and António Serra

Abstract. In this paper we study systems of weakly coupled Hamilton–Jacobi equations with implicit

obstacles that arise in optimal switching problems. Inspired by methods from the theory of viscosity

solutions and weak KAM theory, we extend the notion of Aubry set for these systems. This enables us

to prove a new result on existence and uniqueness of solutions for the Dirichlet problem, answering a

question of F. Camilli, P. Loreti, and N. Yamada.

1 Introduction

On a Riemmanian manifold M the basic Hamiltonian in classical mechanics is of the
form

H(x, p) =
|p|2

2
+ V (x),

where x ∈ M, p ∈ T∗
x M, and V is a scalar field (the potential). This Hamilto-

nian function is strictly convex in p, and it is coercive, i.e., it tends to infinity with
|p|, locally uniformly in x. Actually, in this case it is called superlinear, because
|p|−1H(x, p) still tends to infinity with |p|.

Let L denote the corresponding Lagrangian, which can be obtained from H via the
Legendre transformation. For two points x, y ∈ M, denote by dL(x, y) the infimum
of all the action integrals

∫

L(γ(t), γ̇(t))dt , where γ runs through all the continuously
differentiable paths on M leading from x to y in any positive time. For each fixed
x0 ∈ M, the function u(x) = dL(x, x0) is a viscosity solution of the Hamilton–Jacobi
equation H(x,Du(x)) = 0 on M \ {x0}. The study of the Hamilton–Jacobi equation
H(x,Du(x)) = 0 is of fundamental importance in many situations.

In this work we study a generalization of these types of Hamilton–Jacobi equations
on multi-layered domains of R

n, i.e., Cartesian products of some domain in R
n by a

finite discrete set. We are concerned with systems of quasi-variational inequalities of
the form

(1.1) max
i, j

{

Hi(x,Dui), ui(x) − u j(x) − k(x, i, j)
}

= 0,

where x belongs to a domain Ω ⊂ R
n, i, j run through a finite set of indices I, k

is a switching cost function described below in further detail, and the Hamiltonians
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Hi = Hi(x, p) are continuous, convex in p ∈ R
n, and satisfy a certain weak coercivity

condition. The difference from the former, one-layered, case is that now the paths γ
are allowed to jump occasionally between layers: the price to pay for each disconti-
nuity is that a jump at the point x from the layer i to the layer j represents a positive
increment k(x, i, j) to the action.

These types of systems of Hamilton–Jacobi equations appear naturally in many
applications. A typical example, which is discussed in [3], is the optimal manage-
ment of a power plant with several modes of energy production and a cost associated
with the switching of production modes. In that case the solution represents the
cost of an optimal strategy for energy production. These so-called optimal switching
problems have been the object of intensive study; see, for instance, [6, 11–13, 22, 29]
and references therein.

Important results and a synthesis of the problem for the case where the evolution
in each mode is governed by an ordinary differential equation are given in [5].

Our work is motivated by the results obtained in [4]. That article gives a complete
solution of the obstacle problem, which bears a close relation with the former. In
Remark 3, p. 1300, it is stated that a similar solution of the Dirichlet problem for the
system (1.1) would be desirable. We will describe our formulation and answer this
problem after a few preliminary remarks.

Given a real value H ∈ R, the stationary Hamilton–Jacobi equation looks for
functions u(x) on M such that

(1.2) H(x,Du(x)) = H .

A useful concept to deal with Hamilton–Jacobi equations is that of subsolution,
i.e., a function u such that H(x,Du(x)) ≤ H. Just like subharmonic functions as
compared to harmonic ones when dealing with the Laplacian, subsolutions form a
set that is stable under more operations than that formed by solutions, and even-
tually solutions can be obtained in a manner similar to Perron’s method (cf. [19]).
An important consequence of the coercivity of H is that the subsolutions of such
Hamilton–Jacobi equations are locally Lipschitz.

For many values of H no subsolutions will exist. For example, consider the Hamil-
tonian H(x, p) = |p|2. The minimum value of H for which subsolutions exist is
H = 0, the subsolutions being in that case the constant functions (which are actually
solutions). For H > 0, equation (1.2) is called the eikonal and it describes, e.g., the
propagation of light rays in the manifold M.

The smallest value of H (if any) for which subsolutions exist is called in [17] the
(Mañé) critical value. For compact manifolds, the existence of the critical value has
been stated in [24, 25] but, due to the untimely death of R. Mañé, the proof appears
in [9] (see also [7, 8, 16]). However, in a non-compact manifold, even strictly con-
vex superlinear Hamiltonians may have no critical value. A trivial way to see that is
just taking any convex, coercive Hamiltonian H(x, p) and adding to it a continuous
function w(x) with fast enough growth to plus infinity: for each k ∈ R, no matter
how negative, there will exist x such that H(x, p) + w(x) + k > 0 for all p, so no
subsolutions can ever exist. An example given at the end of Section 2 will show that
deeper obstructions may occur.
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In order to obtain general results for Hamilton–Jacobi equations on non-compact
manifolds, it is essential to assume the existence of a critical value. This will be done
here (as was also done in [21]), and, adding a constant to the Hamiltonian, there is
no loss of generality in assuming that the critical value is not positive. As in [4], the
subsolutions in our setting are the continuous functions which satisfy, in the viscosity
sense, the inequality

(1.3) max
i, j

{Hi(x,Dui), ui(x) − u j(x) − k(x, i, j)} ≤ 0 .

Applications have required the study of Hamilton–Jacobi equations with more
general Hamiltonians, with varied degrees of relaxation of their properties in the
classical case. For the general results, our basic conditions on the Hamiltonian are
the same as in [21]. Thus, we assume that it is continuous, convex (maybe not strictly
so) in p, and that the critical value is not positive (an additional condition is included
in the definition of subsolution to cope with the mode switching costs). Finally, the
coercivity condition is also relaxed, but it still guarantees that subsolutions are locally
Lipschitz.

The concept of the Aubry set has an essential role in our work. In the classi-
cal setting, it consists of those points a where any globally defined subsolution u of
H(x,Du(x)) ≤ 0 must satisfy H(a,Du(a)) = 0. Take M = R

n and H(x, p) = |p|2 + k

(this is equivalent to the example discussed above, in the form H(x, p) = |p|2 and
k = −H). The Aubry set is empty for k < 0 (H > 0 in the previous formulation)
and it is the whole R

n for k = 0 (H = 0). In the other cases the equation is im-
possible, so the Aubry set is also R

n. Another example is the oscillatory Hamiltonian
H(x, p) = |p|2 − | sin(2πx)|2 on the real line. In this case the Aubry set is the set of
the integers, Z.

The Aubry set is always a closed subset of the manifold M (maybe empty, maybe
all of it), and its quotient under a certain equivalence relation becomes an additional
boundary for the Cauchy problem, where the values of the solutions of a Hamilton–
Jacobi equation can be pre-assigned, respecting a certain compatibility condition. In
the important paper [17, Theorem 1.4], A. Fathi and A. Siconolfi give a very thorough
description of the Aubry set. In this paper, we are able to characterize the Aubry set in
terms of loops of arbitrarily low action, thus extending part (i)⇔(iv) of that theorem
to our setting. In [20] this is done under less general conditions.

While our exposition does not require any familiarity with weak KAM theory or
Aubry–Mather theory, it may serve as an introduction to some of its concepts and
methods. A further exposition of these fascinating topics is beyond our scope; we
refer the reader to Fathi’s book [14].

Our approach to the study of (1.1) consists of considering it not as a system
of equations but as a scalar Hamilton–Jacobi equation on a finitely layered space.
This approach led to the variational formulation with paths with discontinuities,
described before. We have included the switching costs in the definitions of sub-
solutions and solutions, extending in a natural manner the corresponding concepts
from the theory of viscosity solutions of M. Crandall and P.-L. Lions [1, 23]. This
enabled us to apply the techniques of [21] to the study of equation (1.1). Our final
main result, Theorem 4.5, establishes the existence and uniqueness of solution for
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the Dirichlet problem. In order for the Dirichlet problem to become tractable, we
assume two conditions which impose some regularity to both the boundary of the
domain and the boundary behavior of the solutions. These conditions are also as-
sumed in [4, 21]. We prove that, under these conditions, if a continuous function
defined on the union of all layers of the boundary of the domain and on the Aubry
set satisfies a certain compatibility condition, then it has a unique continuous exten-
sion that is a viscosity solution of (1.1). Since the mentioned compatibility condition
is necessary for the existence of such an extension, we consider this to be a complete
accomplishment of the project suggested by [4, Remark 3].

We hope that the way in which some technical issues are settled deserves addi-
tional independent interest from the reader. The equality dH = dL has a partially
different proof from that in [20] to account not only for the plurimodal setting, but
also for the more general conditions. It requires Proposition 2.1, an existence result
on differential inclusions that we were unable to find in the literature.

This paper is organized as follows. In Section 2 we present the plurimodal setting.
We state the conditions on the Hamiltonian and on the switching cost function, and
we define the action and the subsolutions. The main result of this section is Theorem
2.7, which settles the Lagrangian formulation of the plurimodal Hamilton–Jacobi
equation. In Section 3 we define the Aubry set and the solutions. The section closes
with Theorem 3.6, the plurimodal version of (i)⇔(iv) of [17, Theorem 1.4]. Finally,
in Section 4 we follow the techniques of [21] to study boundary value problems,
concluding with the solution of the Dirichlet problem, Theorem 4.5.

2 Setting and Preliminairies

All functions are real valued unless explicitly stated otherwise.

We will denote by Ω an open connected subset of R
n and by I a discrete finite

set {1, . . . ,NI}, where NI is some positive integer. The elements of I will be called
modes, and the elements of Ω will be called states. Self-explanatory phrases like “state-
mode space” may be used when convenient. Functions on the state-mode space will
be called locally Lipschitz, differentiable, etc., meaning that they are so with respect
to the state-variable.

The Hamiltonian is a function H : Ω× I×R
n → R on which we impose the same

conditions as in [21]. These conditions are as follows:

(A1) it is continuous (I has the discrete topology);
(A2) for each (x, i) ∈ Ω× I the map p 7→ H(x, i, p) is convex in R

n;
(A3) H is locally coercive, i.e., for each compact subset K of Ω × I, there exists a

positive constant RK such that H(x, i, p) > 0 for every (x, i) ∈ K and |p| > RK .

An essential assumption (A4) will be formulated shortly.

Before we proceed, we will prove the following result concerning Hamiltonians
that satisfy these conditions.

Proposition 2.1 Let µ : Ω → R
n be a continuous (co-)vector field. For every (x0, i) ∈

Ω × I there exist δ > 0 and a Lipschitz path γ0 : [−δ, δ] → Ω such that γ0(0) = x0

and, for almost all s, γ̇0(s) ∈ D−
p H(γ0(s), i, µ(γ0(s))).
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It is well known that convex functions on open convex subsets of R
n are locally

Lipschitz. A slight adaptation of the usual argument shows that H(x, i, p) is locally
Lipschitz in p, with Lipschitz constant locally uniform in (x, i). This fact is used in
the proof of Proposition 2.1, so we include its proof for the reader’s convenience.

Lemma 2.2 The Hamiltonian is locally Lipschitz in p, locally uniformly in (x, i).

Proof Let K be a compact subset of Ω× I, let B be a closed ball in R
n, and let S be a

sphere (i.e., the boundary of a ball) with the same center as B and a larger radius. Let
Λ be the maximum of

{ |H(x, i, q) − H(x, i, p)|

|q − p|
: p ∈ B, q ∈ S, (x, i) ∈ K

}

.

Let p1, p2 be two different elements of B and suppose that H(x, i, p2) ≥ H(x, i, p1).
Let q be the intersection with S of the half-line beginning at p1 passing by p2. Then,
by the convexity of H(x, i, · ),

|H(x, i, p2) − H(x, i, p1)|

|p2 − p1|
=

H(x, i, p2) − H(x, i, p1)

|p2 − p1|

≤
H(x, i, q) − H(x, i, p1)

|q − p1|
≤ Λ.

Proof of Proposition 2.1 Let ρε be a smooth non-negative mollifier, and for each
ε > 0 define Hε(x, i0, p) :=

∫

H(x, i0, q)ρε(p−q)dq. For each ε > 0, ∂Hε

∂p
(x, i0, µ(x))

is a continuous (co-)vector field on a neighborhood of x0. By Peano’s theorem, there
exists for some δ > 0 a continuously differentiable path γε such that γε(0) = x0 and
γ̇ε(s) = ∂Hε

∂p
(γε(s), i0, µ(γε(s)). By Lemma 2.2, the same δ may be used for all (small

enough) ε, and the paths γε are Lipschitz uniformly on ε. Take this δ and for γ0 take
a uniform sublimit of the γε as ε → 0, whose existence is asserted by Ascoli–Arzela’s
theorem. A common Lipschitz constant of the γε will be a Lipschitz constant of γ0.

It only remains to prove that γ̇0(s) ∈ D−
p H(γ0(s), i, µ(γ0(s))) for almost every

s ∈ [−δ, δ]. Let h ∈ R
n be an arbitrary, but fixed, vector. As a function of s,

β0(s; h) := H
(

γ0(s), i, µ
(

γ0(s)
)

+ h
)

− H
(

γ0(s), i, µ
(

γ0(s)
)

)

− γ̇0(s)h

is defined almost everywhere on [−δ, δ]. We need to prove that it is non-negative.
For ε > 0, define:

βε(s; h) := Hε

(

γε(s), i, µ
(

γε(s)
)

+ h
)

− Hε

(

γε(s), i, µ
(

γε(s)
)

)

− γ̇ε(s)h.

These functions are continuous and non-negative (everywhere) on [−δ, δ] due to the
convexity of Hε(x, i, · ). Since β0(s; h) is a weak sublimit of the βε(s; h) as ε → 0, we
see that β0(s; h) must be a.e. non-negative.

Hence, for each vector h ∈ R
n, there exists a null subset E(h) ⊂ [−δ, δ] such that

β0(s; h) is defined and non-negative for s 6∈ E(h). Now let (hk) be a dense sequence in
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R
n and let E ⊂ [−δ, δ] be the null set ∪kE(hk). Now fix s ∈ [−δ, δ] \E. The function

h 7→ β0(s; h) is defined and continuous on R
n and non-negative at each hk, so it must

be non-negative for all h. Thus, β0(s; h) ≥ 0 for all s ∈ [−δ, δ] \ E and for all h ∈ R
n,

which means that γ̇0(s) ∈ D−
p H(γ0(s), i, µ(γ0(s))) for s out of E.

Following [5], the switching cost function is a continuous function k on Ω× I× I

such that, for all x ∈ Ω and i, j, j ′ ∈ I with i 6= j,

• k(x, i, i) = 0,
• k(x, i, j) > 0, and
• k(x, i, j) + k(x, j, j ′) ≥ k(x, i, j ′).

Thus, each k(x, · , · ) may only fail to be a distance on I for lack of symmetry.
Assuming the triangular inequality represents no loss of generality, as is observed in
[22, p. 467].

We will denote by S−H the set of the continuous functions u on Ω × I that satisfy
the following conditions:

(C1) For every state-mode (x, i) and every p in the superdifferential of u( · , i) at x,
we have H(x, i, p) ≤ 0.

(C2) Given x ∈ Ω and i, j ∈ I, u(x, i) − u(x, j) ≤ k(x, i, j).

Condition (C1) states that on each mode i, the function ui = u( · , i) is a viscosity
subsolution of H(x,Dui(x), i) = 0 ([1, 2, 18]). Condition (C2) represents the com-
patibility with the mode switching costs. The elements of S−H are called subsolutions,
and they are the continuous functions that satisfy inequality (1.3) in the viscosity
sense.

Condition (A4) can now be formulated:

(A4) The set S−H is not empty.

This condition is independent of the previous ones in a very essential way. This will
be shown at the end of this section.

The conditions (A1) and (A2) on H allow the following simple criterion to check
condition (C1).

Lemma 2.3 Let u be a locally Liscphitz function on Ω× I. Then u satisfies (C1) if and

only if for all i ∈ I, H( · , i,Du( · , i)) ≤ 0 almost everywhere on Ω.

Proof To simplify the notation, fix any mode i ∈ I and let u denote u( · , i). By the
Rademacher theorem u is differentiable almost everywhere, and the “only if” part is
obvious. Suppose now that H(x, i,Du(x)) ≤ 0 a.e., let ρε be smooth non-negative
mollifiers (ε > 0). Then Duε(x) =

∫

ρε(x − y)Du(y)dy. By (A2) and Jensen’s
inequality, H(x, i,ε (x)) ≤

∫

ρε(x − y)H(x, i,Du(y))dy. By (A1), for every δ > 0
we will have H(x, i,Du(y)) < δ for y on the support of ρε(x − y) and small enough
ε > 0, so H(x, i,Duε(x)) < δ. Sending ε → 0, the usual argument of stability
of viscosity subsolutions under locally uniform convergence ([2, 18]) completes the
proof.

Condition (A3) provides a local Lipschitz constant for all subsolutions. This fact
is standard material,, but we find it convenient to state it explicitly.
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Proposition 2.4 Let i ∈ I and let B be an open ball whose closure B is contained in

Ω. Let K = B × I and let RK be a constant as assigned to K by condition (A3). Then,

for every u ∈ S−H , u( · , i) is RK -Lipschitz on B.

The proof is similar to that of [2, Lemme 2.5, pp. 33-34] (although the statement
there is not exactly the same).

A very important consequence of Proposition 2.4 is that, by the Ascoli–Arzela the-
orem, any locally uniformly bounded subset of S−H is relatively compact in C(Ω× I)
for the topology of locally uniform convergence, because it is equicontinuous on each
compact.

The set of subsolutions has a considerable structure, summarized in the proposi-
tion below. The second part of the proof is abbreviated as it also follows from closely
standard material. See, for example, [1, 2, 18].

Proposition 2.5 The set S−H is closed under the lattice operations max and min. It is

actually a convex complete lattice.

Proof Let u, v ∈ S−H . It is easy to check that both max(u, v) and min(u, v) satisfy (C2)
and max(u, v) satisfies (C1). To prove that min(u, v) satisfies (C1), we note that it is
locally Lipschitz too, and we will apply Lemma 2.3. Once more, to simplify the nota-
tion, fix any mode i ∈ I and let u, v denote u( · , i), v( · , i), respectively. If u(x) < v(x)
then min(u, v) is differentiable at x if and only if u is, and in that case its differential
is Du(x) (ikewise if v(x) < u(x)). If u(x) = v(x) and both u and v are differentiable at
x, it can be checked that min(u, v) is differentiable at x if and only if Du(x) = Dv(x)
and in this case these differentials equal that of min(u, v) as well. Since u, v, and
min(u, v) are differentiable a.e. on Ω, we have H( · , i,min(u, v) ′( · , i)) ≤ 0 a.e. on
Ω, and Lemma 2.3 applies.

The convexity of S−H is a consequence of condition (A2), and its completeness is a
consequence of the remark following Proposition 2.4 and the stability of conditions
(C1) and (C2) under locally uniform convergence.

2.1 The Lagrangian

The Lagrangian L of H is the R ∪ {+∞}-valued Legendre transform

L(x, i, ξ) = sup{ξ · p − H(x, i, p) : p ∈ R
n} .

We note two useful facts about the Lagrangian in the following lemma.

Lemma 2.6 For every (x0, i0) ∈ Ω× I there exist ρ > 0, a > 0, and b > 0 such that

(i) L(x, i0, ξ) ≤ b when |x − x0| ≤ ρ and |ξ| ≤ a, and

(ii) |ξ|−1L(x, i0, ξ) → +∞ uniformly on |x − x0| ≤ ρ when |ξ| → +∞.

Proof (i) We claim that for some p0 ∈ R
n, H(x0, i0, p0) ≤ 0. Indeed, by local

coerciveness, given a closed ball K centered at x0, there exists RK > 0 such that
H(x, i0, p) > 0 for x ∈ K and |p| ≥ RK . If p0 as above did not exist, there would
exist a possibly smaller closed ball K ′ centered at x0 such that the minimum of the
continuous function H(x, i0, p) for x ∈ K ′ and |p| ≤ RK were positive. That would
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mean that H(x, i0, p) was positive for all x ∈ K ′ and p ∈ R
n. This is impossible

because S−H is not empty, and its elements have non-empty superdifferentials almost
everywhere.

Now let p0 ∈ R
n be such that H(x0, i0, p0) ≤ 0, let K be a closed ball centered at

x0, and let RK > 0 be such that H(x, i0, p) > 0 for x ∈ K and |p−p0| ≥ RK . For some
smaller closed ball K ′ centered at x0, the number h0 := max{H(x, i0, p0) : x ∈ K ′}
is smaller than the positive number h1 := min{H(x, i0, p) : x ∈ K, |p − p0| = RK}.
Let ρ be the radius of K ′ and let a be any positive number smaller than (h1 − h0)/RK .
For each |ξ| ≤ a and x ∈ K ′ the concave function ϕ(p) = p · ξ − H(x, i0, p) − p0 · ξ
satisfies ϕ(p0) ≤ h0 and for all |p − p0| = RK , ϕ(p) > h0. By concavity, ϕ must
attain its maximum on the RK ball of p0, and that maximum equals L(x, i0, ξ)− p0 ·ξ.
This shows that L(x, i0, ξ) is finite for x ∈ K ′ and |p − p0| ≤ a, and a crude estimate
for b is, e.g., (RK + |p0|)a + max{H(x, i0, p) : x ∈ K ′, |p − p0| ≤ RK}.

(ii) Let C > 0 be any large constant and hρ := max{H(x, i0, p) : |x − x0| ≤
ρ, |p| = C + 1}. Then for all |ξ| ≥ hρ and |x − x0| ≤ ρ,

|ξ|−1L(x, i0, ξ) ≥ max{p · |ξ|−1ξ − |ξ|−1H(x, i0, p) : |x − x0| ≤ ρ, |p| = C + 1}

≥ C.

Note that it may happen that, for large enough |ξ|, L(x, i, ξ) takes the value +∞,
because we do not require H(x, i, p) to be superlinear in p.

2.2 Distance-like Functions

Given two state-modes A = (x, i) and B = (y, j) and a positive real t > 0, we will
denote by Γt (A,B) the set of all paths γ = (γΩ, γI) : [0, t] → Ω × I such that γΩ is
Lipschitz, γ(0) = B, γ(t) = A and, for some finite partition 0 = t0 < t1 < · · · <
tm = t of [0, t], on each subinterval [ta, ta+1) the mode component γI is constant. In
these conditions, we will define:

S(γ) =

m−1
∑

a=0

∫ ta+1

ta

L
(

γ(s), γ̇Ω(s)
)

ds + k
(

γΩ(ta+1), γI(ta+1), γI(ta)
)

.

Now we define two distance-like functions between state-modes. In the unimodal
case, the function dL is called Mañé potential in Aubry–Mather theory, and the sym-
bol dH for the other function is used in [21]. For each pair of state-modes A, B:

dH(A,B) = sup{u(A) − u(B) : u ∈ S−H }

dL(A,B) = inf {S(γ) : t > 0, γ ∈ Γt (A,B)} .

Some remarks are in order:

(1) The function dH is well defined because subsolutions exist by condition (A4),
Ω is connected and k takes finite values, so by Proposition 2.4 the set of dif-
ferences defining dH(A,B) is bounded. In particular, for every state-mode A,
dH(A,A) = 0.
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(2) Both dH and dL satisfy the triangular inequality, but may fail to be distances,
because they may not be positive or symmetric.

(3) The Lagrangian L must be locally bounded below: for instance, L(A, ξ) ≥
−H(A, 0). Thus, by Lemma 2.6(i) and the triangular inequality, dL is locally
Lipschitz in both state variables.

(4) The same is true for dH , as a consequence of condition (A3) and Proposition 2.4.

The following theorem asserts that these two functions are actually the same. This
has been proved under slightly stronger conditions in [20] and elsewhere.

Theorem 2.7 For all state-modes A and B, dH(A,B) = dL(A,B).

Proof Let A and B be state modes. To prove that dH(A,B) ≤ dL(A,B) it is enough
to show that given u ∈ S−H , t > 0, and γ ∈ Γt (A,B), we have u(A) − u(B) ≤ S(γ).
Let ta, 0 ≤ a ≤ m be the partition mentioned in the definition of Γt (A,B). Let
x, y ∈ Ω be two states connected by a continuously differentiable path η on Ω and let
i ∈ I be a mode. Due to the continuity of H and to its convexity in p, for each small
enough ε > 0 there exists a δ = δ(ε) > 0 such that the mollification uε of u( · , i) is a
subsolution of H + δ on a neighborhood of the image of the path (η, i). Then

uε(x) − uε(y) =

∫

u ′
ε(η(s))η̇(s)ds ≤

∫

(L(η(s), η̇(s)) + H(η(s), u ′
ε(η(s)))ds

≤

∫

(L(η(s), η̇(s)) − δ)ds ,

and letting ε tend to zero, δ = δ(ε) can also tend to zero, and we obtain

(2.1) u(x) − u(y) ≤

∫

L(η(s), η̇(s))ds .

Now we have:

u(A) − u(B) =

m−1
∑

a=0

(u(γ(ta+1)) − u(γ(ta))) =

m−1
∑

a=0

(u(γΩ(ta+1), γI(ta)) − u(γΩ(ta), γI(ta)))+

m−1
∑

a=0

(u(γΩ(ta+1), γI(ta+1)) − u(γΩ(ta+1), γI(ta))) .

Applying inequality (2.1) to the next-to-last sum and the condition (C2) in the defi-
nition of S−H to the last sum, it is proved that u(A) − u(B) ≤ S(γ).

We now prove that dH(A,B) ≥ dL(A,B), by showing that for each state-mode B

the function u(A) = dL(A,B) belongs to S−H . Firstly, we will prove that u satisfies
condition (C2). Let x ∈ Ω, i, j ∈ I. It suffices to prove that for every ε > 0,
u(x, i)−u(x, j)−ε < k(x, i, j). For some t > 0 there must exist γ ∈ Γt ((x, j),B) such
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that S(γ) < u(x, j) + ε. For each δ > 0, let γδ be the extention of γ to [0, t + δ] such
that γδ(s) = γ(t) for t < s < t + δ and γδ(t + δ) = (x, i). Then γδ ∈ Γt+δ((x, i),B)
and S(γδ) → S(γ) + k(x, i, j) when δ → 0, which shows that u(x, i) < u(x, j) + ε +
k(x, i, j).

To prove that u satisfies condition (C1) we first note that by remark (3) after the
definitions of dH and dL, u is locally Lipschitz and so, by Rademacher’s Theorem, for
every i ∈ I u( · , i) is differentiable almost everywhere in Ω.

Now let (x0, i) ∈ Ω×I and suppose that u( · , i) has differential p0 at x0. By Lemma
2.3, it suffices to prove that H(x0, i, p0) ≤ 0. Suppose that H(x0, i, p0) > c > 0, and
we will arrive at a contradiction. Define on Ω the constant field µ(x) = p0. By Propo-
sition 2.1 there exist a δ > 0 and a Lipschitz path γ0 : [−δ, δ] → Ω such that γ̇0(s) ∈
D−

p (H(γ0(s), i, p0)) a.e. on [−δ, δ], i.e., p0γ̇0(s) − H(γ0(s), i, p0) = L(γ0(s), i, γ̇0(s))
for almost every s ∈ [−δ, δ]. For 0 < t < δ small enough, H(γ0(s), i, p0) > c > 0
for all s ∈ [0, t] and then we have

dL

((

γ0(t), i
)

, (x0, i)
)

≥ u
(

γ0(t), i
)

− u
(

γ0(0), i
)

= p0 ·
(

γ0(t) − γ0(0)
)

+ o
(

|γ0(t) − γ0(0)|
)

=

∫ t

0

p0 · γ̇0(s)ds + o
(

|γ0(t) − γ0(0)|
)

=

∫ t

0

(

H
(

γ0(s), i, p0

)

+ L
(

γ0(s), i, γ̇0(s)
)

)

ds + o
(

|γ0(t) − γ0(0)|
)

≥ ct +

∫ t

0

L
(

γ0(s), i, γ̇0(s)
)

ds + o
(

|γ0(t) − γ0(0)|
)

≥ ct + dL

((

γ0(t), i
)

, (x0, i)
)

+ o
(

|γ0(t) − γ0(0)|
)

,

(the first inequality is a consequence of the triangular inequality for dL) so, cancelling
out dL((γ0(t), i), (x0, i)), dividing over by t , making t → 0, and observing that γ0 is
Lipschitz, we have c ≤ 0, a contradiction.

We make the two following remarks about this theorem and its proof:

(1) One consequence of the theorem is that dL(A,A) = 0 for every state-mode A and
thus there can be no loops (paths beginning and ending at the same state-mode)
of negative action. This fact will be important in the next section.

(2) In the first part of the proof it is shown that if u is a subsolution and γ is a
Lipschitz path with initial and final times t1 and t2 respectively, then u(γ(t2)) −
u(γ(t1)) ≤ S(γ). This fact will be used right ahead.

We conclude this section with an example of a Hamiltonian H such that for every
k ∈ R, H + k satisfies conditions (A1) through (A3), but it does not satisfy condition
(A4). In other words, H does not have a critical value.

Let Ω be the open square {(x, y) ∈ R
2 : |x|, |y| < 1} and let I be a singular set.

Since this is an unimodal example, the mode variable will be suppressed to simplify
the notation. Let α = α(x, y) be a continuous (or even smooth) function on Ω,
which is never smaller than 1 and constant equal to 1 outside of the square [− 1

2
, 1

2
]×
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[−1, 0] and equal to 1/(y + 1) on the square [− 1
3
, 1

3
] × (−1,− 1

3
]. Let e1 denote the

vector (1, 0), q = (x, y) (“position”), p = (px, py) (“moment”), and v = (vx, vy)
(“velocity”). The Hamiltonian and the corresponding Lagrangian are

H(q, p) =
|p|2

2
+ α(q)px +

α(q)2

4
,

L(q, v) =
1

2
|v − α(q)e1|

2 −
α(q)2

4
.

It is easily checked that for every k ∈ R, H + k satisfies conditions (A1) through (A3),
and its Lagrangian is L − k.

First let k = 0. For −1 < b < −1/3 let γb be a rectangular path starting at
(− 1

2
, 0), travelling downwards at speed one until (− 1

2
, b), then right at speed α(x, b)

until ( 1
2
, b) and then upwards at speed one until ( 1

2
, 0). The Lagrangian L is negative

on the horizontal track, so the action here must not only be negative, but also smaller
than the action of the part where |x| ≤ 1/3, which is −1/(6(b + 1)). The sum of the
actions of the vertical tracks of γb is −3b/2. Hence, the action of γb tends to −∞ as
b → −1.

Now let k be any real value. The action of each path γb equals its action in the
previous case minus k times the total travelling time, which is no greater than three.
This shows that there cannot be a subsolution u of H + k for any value of k ∈ R,
no matter how negative, because the difference u( 1

2
, 0) − u(− 1

2
, 0) should be smaller

than the action of any γb. However, unlike the example in the introduction, this time,
for every k < 0 H(q, p) + k has a negative value at each position q: take p = −α(q)e1.

This type of Lagrangian goes back to Mañé’s works; see [15] and the references
therein.

3 The Aubry Set

We will denote by SH the set of those u ∈ S−H that satisfy one of the following condi-
tions at each state-mode (x, i):

(C1’) For every p ∈ D−u( · , i)(x), H(x, i, p) ≥ 0.
(C2’) For some mode j 6= i, u(x, i) − u(x, j) = k(x, i, j).

Conditions (C1) and (C1’) together mean that on each mode i, ui = u( · , i) is a
viscosity solution of H(x, i,Dui(x)) = 0. Here condition (C2’) replaces the weaker
condition (C2). The mode switching costs must now have the exact prescribed val-
ues. The elements of SH are called solutions, and they are the continuous functions
that satisfy equality (1.1) in the viscosity sense. Note that both sets S−H and SH are
preserved by the addition of constants. Given a suitable subset U of the state-mode
space, we will use S−H (U ) to denote S−

H|U
and likewise for SH(U ). The following

proposition extends a well-known property of unimodal Hamiltonians to the present
setting, under a minor adaptation of its standard proof.

Proposition 3.1 For each state-mode B, dH( · ,B) ∈ SH(Ω× I \ {B}) ∩ S−H .

Proof Let B = (y, j) be a state-mode. For notational convenience, we will call u

to dH( · ,B). Suppose that there exists a state-mode A = (x, i) different from B,
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where u yields strict inequalities in condition (C2) and for some p ∈ D−u( · , i)(x),
H(x, i, p) < 0. Then there exists a smooth function φ defined on a neighborhood of
x such that φ ′(x) = p and u( · , i) − φ(·) attains zero as a strict local minimum at x

(see, e.g., [2, pp. 18–19] or [18, Prop. 26, pp. 70–72]). Let ρ > 0 be small enough so
that, for |z − x| ≤ ρ and i ′ 6= i, H(z, i, φ ′(z)) < 0 and u(z, i) − u(z, i ′) < k(z, i, i ′).
Let ε > 0 be smaller than the positive maximum of u(z, i) − φ(z) on |z − x| = ρ and
the positive maximum of k(z, i, i ′)−u(z, i) + u(z, i ′) on |z− x| ≤ ρ and i ′ 6= i. Then
define v(z, i) = max(φ(z) + ε, u(z, i)) for |z − x| ≤ ρ and v = u on the remaining
state-modes. Then v ∈ S−H and v(A) > u(A), while v(B) = u(B) = 0. Hence,
dH(A,B) = u(A) − u(B) < v(A) − v(B), a contradiction.

The Aubry set is the set A of those state-modes B such that for all (equivalently,
for some) T > 0 the infimum of the actions of all paths in ∪t≥TΓt (B,B) is zero.

Proposition 3.2 If B = (y, j) ∈ A, then dH( · ,B) ∈ SH .

Proof If H(B, · ) ≥ 0, then the conclusion follows. Otherwise let p ∈ R
n be

such that H(B, p) < 0. Assume that B ∈ A and let (γn) be a sequence of paths
in ∪t≥1Γt (B,B) such that S(γn) → 0. For small enough ρ > 0, H( · , j, p) has a
negative minimum −c < 0 on the closed ρ-ball centered at y. If some γn stays in
{(x, j) : |x−y| ≤ ρ}, then its action is no less than

∫ t

0
p·γ̇(s)−H(γ(s), p)ds ≥ ct ≥ c,

so, taking a subsequence if necessary, one may assume that no path γn stays in that
set. This means that every path γn must pass through some state-mode En in the set K

that is the union of the sets {(x, j) : |x − y| = ρ} and {(x, j ′) : |x − y| ≤ ρ, j ′ 6= j}.
Using, respectively, the triangle inequality for dH , Theorem 2.7, the definition of dL,
and the fact that γn passes through En, we have

0 ≤ dH(B, En) + dH(En,B) = dL(B, En) + dL(En,B) ≤ S(γn),

hence dH(B, En) + dH(En,B) tends to zero. Let E ∈ K be a sublimit of the state-
modes En, which must exist because K is compact. Then E 6= B and by continuity
of dH , one has dH(E,B) + dH(B, E) = 0. The argument employed in [21, p. 2169],
can be directly adapted to this situation to show that dH( · ,B) is a solution (and so
is dH( · , E), because the roles of E and B may be switched). Applying the triangle
inequality twice and the previous equality once, we have

dH( · ,B) ≤ dH( · , E) + dH(E,B) ≤ dH( · ,B) + dH(B, E) + dH(E,B) = dH( · ,B),

so dH( · ,B) = dH( · , E) + dH(E,B) and, by Proposition 3.1, dH( · ,B) is a solution
away from B, and dH( · , E) is a solution away from E, but a solution plus a constant
is still a solution. Given any state-mode A, repeated usage of the triangle inequality
for dH gives:

dH(A, E) ≤ dH(A,B) + dH(B, E) = dH(A,B) − dH(E,B), so

dH(A, E) + dH(E,B) ≤ dH(A,B) ≤ dH(A, E) + dH(E,B),

showing that dH(A,B) = dH(A, E)+dH(E,B). Since E 6= B, Proposition 3.1 states that
dH( · , E) is a solution on a small enough neighborhood of B, and solutions are closed
under addition of constants. Thus, dH( · ,B) is a solution near B (and everywhere
else, by Proposition 3.1 once more), so the proof is complete.
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We distinguish a set of state-modes B ∈ Ω× I that satisfy a special locality condi-
tion:

(LC) For every neighborhood U of B there exists a neighborhood V of B such that
for every A ∈ V there exists a sequence of paths γn ∈ Γtn

(A,B) in U such that
S(γn) → dL(A,B).

Proposition 3.3 If B = (x0, i0) does not satisfy (LC), then B ∈ A.

The proof uses the following Lemma.

Lemma 3.4 Let (x0, i0) ∈ Ω × I and ρ > 0 be as in Lemma 2.6. For each natural

n let γn ∈ Γtn
(xn, i, x0, i0) be a path whose state component γn,Ω remains in the closed

ρ-ball about x0 Bρ(x0), with |xn − x0| = ρ. If tn → 0, then S(γn) → +∞.

Proof Let rn =
ρ

2tn
, Fn = {s ∈ [0, δn] : |γ̇n,Ω(s)| > rn} and Sn = [0, tn]\Fn. We have

∫

Sn

L
(

γn(s), γ̇n,Ω(s)
)

ds ≥ −

∫

Sn

H
(

γn(s), 0
)

ds,

which are bounded below because H( · , 0) is bounded below on Bρ(x0) × I. Now,
for r > 0 let C(r) be the minimum of {|ξ|−1L(x, i0, ξ) : |ξ| ≥ r, |x − x0| ≤ ρ}. By
Lemma 2.6(ii), C(r) → +∞ as r → +∞. Then

∫

Fn

L(γn(s), γ̇n,Ω(s))ds ≥

∫

Fn

C(rn)|γ̇n,Ω(s)|ds ≥ C(rn)
ρ

2
→ +∞ as n → ∞.

The last inequality is due to the fact that the distance ran on the state space during
Sn cannot exceed ρ/2. Now note that for each n, the action S(γn) equals the sum of
these two integrals plus positive mode switching costs.

Proof of Proposition 3.3 Suppose that B = (x0, i0) does not satisfy condition (LC).
Then there exists ρ > 0 such that:

(1) for every j ∈ I, Lemma 2.6 holds on Bρ(x0) × { j};
(2) for every x, x ′ ∈ Bρ(x0) and i, i ′ ∈ I, both |dL(x, i, x ′, i)| and |dL(x ′, i, x, i)| are

smaller than both k(x, i, i ′)/3 and k(x, i ′, i)/3;
(3) there exists a sequence xn → x0 and a sequence of paths γn ∈ Γtn

(xn, x0) that do
not stay in Bρ(x0) × {i0} and whose actions satisfy dH(xn, i0, x0, i0) ≤ S(γn) <
dH(xn, i0, x0, i0) + 1/n.

By continuity of dH , S(γn) tends to zero. Condition (2) on ρ implies that the state
components of γn can not stay in Bρ(x0). If they do, since each path of constant
mode i from x to x ′ cannot have action lower than −|dL(x ′, i, x, i)|, the action S(γn)
must exceed one third of the positive minimum switching cost for states on Bρ(x0), a
contradiction.

Each γn may be continued to a loop closing at B in such a way that the actions
of such loops still tend to zero (e.g., just move from xn straight to x0 at a constant
speed smaller than the a in Lemma 2.6(i)). The proof is complete if we show that the
sequence tn cannot tend to zero. Suppose then that it does.
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For each n, let δn be the first instant when γn hits the boundary ∂Bρ(y) × I. By
Lemma 3.4,

∫ δn

0
L(γn(s), γ̇n(s))ds tends to +∞. In that case the actions of the γn on

[δn, tn] tend to −∞, thus becoming lower than −dL(γn(δn),B) for large enough n.
For such an n, one might continue the restriction of γn to [δn, tn] to a loop closing at
γn(δn) with negative action, contradicting the remark at the end of Section 2.

Proposition 3.5 If dH( · ,B) ∈ SH , then B ∈ A.

Proof By Proposition 3.1, the hypothesis simply means that dH( · ,B) satisfies one of
the conditions (C1’) or (C2’) at B = (x0, i0).

Suppose first that dH( · ,B) satisfies condition (C1’) at B. If H(B, · ) ≥ 0, then
the constant path γ(s) = B has zero action for every time length and the conclusion
holds. So, once more, let p ∈ R

n such that H(B, p) < 0.
By Proposition 3.3, if B does not satisfy condition (LC), then B ∈ A. If it does, let

U be a neighborhood of B where H( · , p) has a negative upper bound −c < 0. For
any path γ in U (say, of duration t),

S(γ) ≥

∫ t

0

p · γ̇Ω(s) − H
(

γ(s), p
)

ds ≥ p · (x − x0) + ct ≥ p · (x − x0) .

Let V be a neighborhood of B as prescribed by condition (LC). Then we argue as in
the first part of the proof of [20, Proposition A.3, p. 264]. Given any A ∈ V , dH(A,B)
can be approximated by actions S(γ) of paths γ in U , so, by the above inequality, p

belongs to the subdifferential of dH( · , i0,B) at x0. This contradicts the hypothesis,
since H(B, p) < 0.

Suppose now that dH( · ,B) satisfies condition (C2’) at B. Then for some mode
i 6= i0, dH(x0, i, x0, i0) = −k(x0, i, i0). Let A = (x0, i). There exists a sequence of
paths γn ∈ Γtn

(A,B) such that S(γn) → −k(x0, i, i0). For each n we may remain at
A for time 1/n, if necessary, and then switch mode back to B with cost k(x0, i, i0).
This creates a sequence of loops at B whose actions tend to zero. The proof will be
complete if we show that tn cannot tend to zero.

Suppose that tn → 0. Choose ρ > 0 so to fulfill condition (2) in the proof of
Proposition 3.3, preventing the state components of the loops from remaining in
Bρ(x0). An argument similar to the end of that proof leads once more to a contradic-
tion.

Propositions 3.2 and 3.5 are thus summarized by the following theorem.

Theorem 3.6 Let B be a state-mode. Then B ∈ A if and only if dH( · ,B) ∈ SH .

This is part (i)⇔(iv) of [17, Theorem 1.4] for the present setting.
We make the following observations.

(1) The Aubry set A is closed in Ω× I. This can be seen either directly from its defi-
nition or by noting that solutions are stable under locally uniform convergence.

(2) Given a suitable subset U ⊂ Ω × I, the Aubry set of the restriction H|U is con-
tained in the the Aubry set of H. This follows from the definition. In particu-
lar, for each mode i ∈ I, let Ai be the Aubry set of the unimodal Hamiltonian
H( · , i, · ). Then Ai × {i} ⊂ A.
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The following example shows that the Aubry set may have elements not arising
from the subsets mentioned in observation (2) above. It consists of translations of
the eikonal equation on two half-lines. The switching cost tends to zero at the origin
and, until the point 1, it turns a specific subsolution into a solution. Further ahead,
it grows quadratically, and the two layers become independent there.

Example 3.7 Let Ω = (0,+∞), I = {1, 2}, and

H(x, i, p) =

{

|p − 1| − 1, i = 1

|p + 2| − 1, i = 2
k(x, 1, 2) = k(x, 2, 1) =

{

x, 0 < x ≤ 1

x2, x > 1.

Conditions (A1)–(A3) are easily verified, and u(x, i) = (1 − i)x is a subsolution
(actually, a solution), so (A4) holds too. The Lagrangian is

L(x, i, ξ) =

{

1 + ξ, i = 1

1 − 2ξ, i = 2
if |ξ| ≤ 1 and +∞ if |ξ| > 1.

Both sets A1, A2 as defined in observation (2) above are empty, but A = (0, 1] ×
{1, 2}. On A, every subsolution u must equal (1− i)x +C , where C = limx→0 u(x, i),
i = 1, 2.

Note that this example, well within our setting, is slightly more general than the
systems considered in [4]. No continuous function u can satisfy both inequalities
H(x, 1,Du(x)) ≤ 0 and H(x, 2,Du(x)) ≤ 0 (even in the viscosity sense), so this
Hamiltonian does not satisfy [4, condition (7), p. 1293], which assumed the existence
of smooth functions ψ and fi ≥ 0 (i ∈ I) such that H(x, i,Dψ) ≤ − fi(x). In order
to highlight a new feature in our approach we generalize that condition. Let ψ ∈ S−H
be of class C1 (in the state variable) and let B denote the set of state-modes where ψ
satisfies any of the conditions (C1’) or (C2’). With the straightforward adaptations
to the plurimodal case, this function ψ can be used in the same way as the function ψ
in the proof of [20, Proposition A.3] to prove that A ⊂ B. In particular, the disjoint
union of the zero sets of the functions fi (denoted by Bi in [4]) contains the Aubry
set as we define it here.

4 Boundary Values

We recall that regularity properties, differentials, subdifferentials, etc., of functions
on the state-mode space refer to the state variable.

Let U be an open subset of Ω×I and let UΩ be the projection onto Ω of its closure
U . We define the extended boundary of U in the following way: ∂IU := UΩ× I \U .

The result below is the essence of the proof of [21, Theorem 2.3]. We extend their
argument to present setting, the plurimodal case.

Theorem 4.1 Let U be the interior of a compact subset of Ω × I \ A and let v ∈ SH .

Then for every A ∈ U , v(A) = min{v(B) + dH(A,B) : B ∈ ∂IU}.
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If U is empty, then the theorem is trivially true, so we will assume that it is not.
The proof requires the following lemma.

Lemma 4.2 There exists a smooth function ψ on a neighborhood of U such that, for

all (x, i), (x, i ′) in its domain, H(x, i, ψ ′(x, i)) < 0 and ψ(x, i) − ψ(x, i ′) < k(x, i, i ′)
if i 6= i ′.

Proof First we proceed as in the proof of Proposition 3.1. For notational conve-
nience, given a state-mode A, we will call uA to dH( · ,A). Since U does not intersect
A, for each A = (x, i) ∈ U there exists a smooth function φA on a neighborhood
of x such that uA − φA has a zero strict local minimum at A and a radius ρA > 0
such that, in the closed ball |z − x| ≤ ρA, H(z, i, φ ′

A(z)) has a negative maximum
and uA yields strict switching cost inequalities. Let ε > 0 be smaller than the pos-
itive maximum of uA(z, i) − φA(z) on |z − x| = ρA and the positive maximum of
k(z, i, i ′) − uA(z, i) + uA(z, i ′) on |z − x| ≤ ρA and i ′ 6= i. Define the function ψA by
ψA(z, i) = max(φA(z) + ε, u(z, i)) for |z − x| ≤ ρA and by ψA = dH( · ,A) elsewhere.
Then ψA ∈ S−H and, on some neighborhood UA of A, it is smooth, its differentials
have negative Hamiltonian, and it yields strict switching cost inequalities.

The rest is similar to the proof of [21, Theorem 1.5], so we only provide a sketch
here. Since U is compact, a finite number of such neighborhoods UA must cover it.
On the union of these neighborhoods, the average of the corresponding functions
ψA is differentiable a.e., its differentials have negative Hamiltonians, and it yields
strict switching cost inequalities. A sharp enough mollification of this function is the
desired function ψ.

Proof of Theorem 4.1 For A ∈ Ω × I, define ṽ(A) = min{v(B) + dH(A,B) : B ∈
∂IU}. The minimum exists by the compactness of ∂IU , and ṽ is continuous, because
dH is locally Lipschitz in both (state) variables. By Proposition 2.5, ṽ ∈ S−H . It follows
from the definition of dH that ṽ ≥ v and ṽ = v on ∂IU because dH(B,B) = 0. It
remains to prove that for all A ∈ U , ṽ(A) ≤ v(A).

Suppose that for some A ∈ U we have ṽ(A) > v(A). Then ṽ − v attains a positive
maximum β > 0 over U at some point in A0 = (x0, i0) ∈ U .

Let ψ be the function from Lemma 4.2 and let ν be the maximum of |ψ − v| over
U . Let λ > 0 be a positive real smaller than β

β+2ν < 1 and define vλ = (1 − λ)ṽ + λψ
on the domain of ψ. Being a convex combination of ṽ and ψ, vλ is a strict subsolution
on the domain of ψ, i.e., it is a subsolution on that set and it does not satisfy (C1’) or
(C2’) anywhere. For B ∈ U \ U , vλ(B) − v(B) = λ(ψ(B) − v(B)), since B ∈ ∂IU .
Hence, for B ∈ U \U , vλ(B) − v(B) ≤ λν.

We have vλ(A0)−v(A0) ≥ (1−λ)β−λν > λν, so vλ−v has a positive maximum
over U . Let T be the set of the points where that maximum is attained. By the
inequalities above, T ⊂ U . We claim that v cannot satisfy condition (C2’) at any
point of T.

Suppose that v satisfies condition (C2’) at A1 = (x1, i1) ∈ T. Then for some
i2 6= i1, v(x1, i1) − v(x1, i2) = k(x1, i1, i2). If A2 := (x1, i2) ∈ U , then vλ(x1, i1) −
vλ(x1, i2) < k(x1, i1, i2), so vλ(A1)−v(A1) < vλ(A2)−v(A2), which is a contradiction.
Thus, we must have A2 ∈ ∂IU \ U . But then ṽ(A2) = v(A2) and ṽ(A1) − ṽ(A2) ≤
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k(x1, i1, i2), so

vλ(A1) − v(A1) = (1 − λ)
(

ṽ(A1) − v(A1)
)

+ λ
(

ψ(A1) − v(A1)
)

≤ λ
(

ψ(A1) − v(A1)
)

≤ λν

could not even reach (1 − λ)β − λν ≤ vλ(A0) − v(A0), again a contradiction.
By the continuity of the switching cost functions, v cannot satisfy condition (C2’)

on a neighborhood W of T in U . We are now ready for the final step, the well-known
argument of doubling variables [1, 2, 18, 23].

Let A,B ∈ U , where A = (x, i), B = (y, j) and let ε > 0. Define

Ψε(A,B) = vλ(A) − v(B) − ε−2(|x − y|2 + 1 − δi j),

where δ is the usual Kronecker symbol. For each ε > 0, Ψε is continuous on U ×U ,
and for A1 ∈ T, Ψε(A1,A1) = vλ(A1)− v(A1) is the positive maximum of vλ− v over
U , which we shall now denote by βλ. Thus, for each ε > 0 there exists (Aε,Bε) ∈ U ×
U , which maximizes Ψε and Ψε(Aε,Bε) ≥ βλ. Let Aε = (xε, iε) and Bε = (yε, jε).
We have

0 ≤ |xε − yε|
2 + 1 − δiε jε ≤ ε2

(

βλ − vλ(Aε) + v(Bε)
)

.

This inequality leads to the following conclusions:

(1) Since both vλ and v are bounded on U , for small enough ε we have iε = jε, and
|xε − yε| → 0 as ε→ 0.

(2) By the compactness of U , there exist in U ×U sublimits of (Aε,Bε) as ε→ 0.
(3) By the uniform continuity of vλ− v, such sublimits must be of the form (A,A) ∈

T × T.

Now take ε > 0 small enough so that iε = jε and (Aε,Bε) ∈ W × W . Let
pε = 2ε−2(xε − yε). Fixing Bε, we have that pε belongs to the superdifferential of
vλ( · , iε) at xε. Note that vλ is Lipschitz on U , so the vectors pε form a bounded set.

By the convexity condition (A2), we have that H(Aε, pε) ≤ −λc < 0, where −c <
0 is the negative minimum of {H(A, ψ ′(A)) : A ∈ U}. On the other hand, fixing Aε,
we have that pε belongs to the subdifferential of v( · , iε) at yε. Since v ∈ SH does not
satisfy condition (C2’) at Bε ∈ W , it must satisfy condition (C1’), so H(Bε, pε) ≥ 0.
Taking any sublimit of (Aε,Bε, pε) as ε → 0, we obtain a contradiction. Hence βλ
cannot be positive, and the proof is complete.

As in [21, Proposition 6.1, p. 2176], the technique in the above proof establishes
which continuous functions on A have an extension in SH and describes how to con-
struct such an extension that is maximal.

Proposition 4.3 A continuous function g on A has an extension in SH if and only if

for all B,B ′ ∈ A,

(4.1) g(B ′) − g(B) ≤ dH(B ′,B).

Moreover, define on Ω × I g̃(A) = inf{g(B) + dH(A,B) : B ∈ A}. Then g̃ ∈ SH ; it

extends g, and for all extension u ∈ SH of g, u ≤ g̃.
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We will need the following lemma. Unlike S−H , the set of solutions SH may not be
convex or closed under maxima, but two important properties remain.

Lemma 4.4 Given an open subset U of Ω × I, SH(U ) is stable under the operation

min and locally uniform convergence.

Proof Let u, v ∈ SH(U ) and A ∈ U . If min(u, v)(A) = u(A) and u satisfies condition
(C2’) at A, then so does min(u, v), and likewise for v. Otherwise both u and v satisfy
condition (C1’) at A.

Let v be a locally uniform limit of a sequence (vn) in SH . If v does not satisfy
condition (C2’) at A ∈ Ω × I, then neither do the functions (vn) for large enough n

on a some neighborhood of A (independent of n).

To prove that in the remaining cases condition (C1’) is satisfied at A, one may now
follow the usual stability argument introduced in [10, Theorem 1.2, pp. 5–6], which
can also be found in, e.g., [1, 2, 18, 23].

Proof of Proposition 4.3 Condition (4.1) is necessary by the definition of dH . Sup-
pose now that it holds. It follows from Lemma 4.4 that g̃ ∈ SH . If A ∈ A, then choos-
ing B = A we get g̃(A) ≥ g(A) and by (4.1), for all B ∈ A, g(B) + dH(A,B) ≥ g(A),
so g̃ = g on A. The maximality follows once more from the definition of dH .

In response to [4, Remark 3, p. 1300], we come now to the solution of the Dirichlet
problem. Given a continuous function g on ∂Ω× I∪A, find a continuous extension
v of g to Ω× I whose restriction to Ω× I belongs to SH . The function g is called the
boundary data of the Dirichlet problem.

Following the notation of [21], formulate following the conditions.

(A3’) The Hamiltonian H is uniformly coercive, i.e., there exists a fixed positive real
R > 0 such that for all A ∈ Ω× I, if |p| > R, then H(A, p) > 0.

(A6) The domain Ω is bounded, and it is a Lipschitz manifold with boundary.

By Proposition 2.4, condition (A3’) implies that dH is uniformly locally Lipschitz
in both state variables.

Let us expand on condition (A6). It means that given z ∈ ∂Ω, there exists ε > 0
and an index 1 ≤ k ≤ n in the following conditions. For x ∈ R

n, call x ′ to the
element of R

n−1 obtained by removing the k-coordinate from x. Let U be the open
cylinder Bε(z ′) × (zk − ε, zk + ε) (where Bε(z ′) is the open ε-ball about z ′ in R

n−1).
Then there exists a Lipschitz map Φ : Bε(z ′) → R such that Ω ∩ U is one of the sets
{xk > Φ(x ′)} or {xk < Φ(x ′)}.

Proposition 8.1 [21, p. 2181] carries through, mutatis mutandis, to the pluri-
modal case: if both conditions (A3’) and (A6) hold, then dH extends continuously
to Ω× I× Ω× I.

In view of the above remarks, we believe that the following theorem is quite a
complete answer to [4, Remark 3, p. 1300]. While only the uniform continuity of
dH is used in the proof, which follows along the lines of that of [21, Theorem 3.3],
we choose to include condition (A6) in the statement. This condition is quite essen-
tial for the present formulation of the Dirichlet problem, as is shown in [21, Ex-
ample 5.6, pp. 2174–2175]. The functions dH( · , y) for the eikonal Hamiltonian
H(x, p) = |p| − 1 on a disk with a radial slit have two different sublimits at each
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point of the slit. As for condition (A3’), it is assumed throughout in [4], where it
is simply called coercivity, but the explicit reference in the proof of [4, Lemma 3.1,
p. 1293], identifies it with the hypothesis (H3), [2, p. 32].

Theorem 4.5 Assume that condition (A6) holds and that dH is uniformly continuous.

Let g be a continuous function on ∂Ω×I∪A. Then the Dirichlet problem with boundary

data g has a unique solution v if and only if for all B,B ′ ∈ ∂Ω× I ∪A,

(4.2) g(B ′) − g(B) ≤ dH(B ′,B).

In that case, for all A ∈ Ω× I, v(A) = min{g(B) + dH(A,B) : B ∈ ∂Ω× I ∪A}.

Proof We denote by dH its continuous extension to Ω × I × Ω × I. By continuity,
condition (4.2) is obviously necessary for the existence of a solution.

Suppose now that condition (4.2) holds. For A ∈ Ω× I define

g̃(A) = inf{g(B) + dH(A,B) : B ∈ ∂Ω× I ∪A}.

The infimum is actually a minimum, because ∂Ω× I ∪ A is compact, and g and dH

are continuous on their domains. Hence g̃ is well defined.
We claim that if B ∈ ∂Ω × I, then g(B) + dH( · ,B) ∈ SH . Let (Bn) be a sequence

in Ω × I tending to B. Then g(B) + dH( · ,Bn) converges locally uniformly to g(B) +
dH( · ,B), so it belongs to S−H . Let U be the interior of any compact subset of Ω × I.
For large enough n, Bn 6∈ U , so g(B) + dH( · ,Bn) ∈ SH(U ) by Proposition 3.1. The
claim now follows from Lemma 4.4.

To prove that g̃ is continuous and that its restriction to Ω× I is in SH , let (Bn) be
a dense sequence in ∂Ω× I ∪A. Let N ∈ N and A ∈ Ω× I, and define

gN (A) = min{g(Bn) + dH(A,Bn) : 1 ≤ n ≤ N}.

By Lemma 4.4, each function gN has the two properties we want to establish for g̃.
These functions converge pointwisely to g̃. Moreover, they are uniformly bounded
because g is bounded, Ω is compact and connected, and I is finite, and they are
uniformly locally Lipschitz by condition (A3’) and a previous remark. Thus, by the
Ascoli–Arzela theorem they converge locally uniformly to g̃. This proves both prop-
erties for g̃ (using once more Lemma 4.4).

To prove that g̃ extends g, let B,B ′ ∈ ∂Ω × I ∪ A. By condition (4.2), g(B ′) +
dH(B,B ′) ≥ g(B) = g(B) + dH(B,B), which shows that g̃(B ′) = g(B).

To prove the uniqueness of the solution, let v be any solution of the Dirichlet
problem with boundary data g. By continuity and the original definition of dH , we
have that v ≤ g̃. To prove the reverse inequality, let Un be a sequence of open sets of
compact closure such that for all n, Un ⊂ Un+1 ⊂ Ω × I \ A, and whose union is
Ω× I \A. Let A ∈ Ω× I. For all large enough n, A ∈ Un and by Theorem 4.1 there
exists Bn ∈ ∂Un such that v(A) = v(Bn) + dH(A,Bn). Let B be a sublimit of (Bn),
which must belong to ∂Ω× I∪A. Taking the same sublimit in the previous equality,

v(A) = v(B) + dH(A,B) = g(B) + dH(A,B) ≥ g̃(A).
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Example 4.6 In Example 3.7, conditions (A3’) and (A6) hold. Any solution of
the Dirichlet problem is uniquely determined by one value prescribed at any point
of [0, 1] × {1, 2} because given A,B in that set, dH(A,B) = u(A) − u(B), where
u(x, i) = (1 − i)x.

The binary relation dH(A,B) = −dH(B,A) is an equivalence relation (the transi-
tivity follows from the triangular inequality for dH) and dH-compatible functions in
the sense of condition (4.2) are actually defined on the space of equivalence classes.
In the particular case of the example above, the Aubry set and the boundary form a
single equivalence class. In general this is false, even in the scalar (unimodal) case
and under much less general conditions than the ones assumed here (see, e.g., the
oscillatory Hamiltonian shown in the introduction), and J. Mather [27] has recently
shown that the quotient Aubry set may be isometric to an interval. Discussions of
the concept of a quotient Aubry set may be found in [26, 28].
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