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NUMERICAL ANALYSIS OF EXPLICIT ONE-STEP METHODS FOR
STOCHASTIC DELAY DIFFERENTIAL EQUATIONS

CHRISTOPHER T. H. BAKER anp EVELYN BUCKWAR

Abstract

We consider the problem of strong approximations of the solution
of stochastic differential equations of Ité6 form with a constant lag in
the argument. We indicate the nature of the equations of interest, and
give a convergence proof in full detail for explicit one-step methods.
We provide some illustrative numerical examples, using the Euler—
Maruyama scheme.

1. Introduction

We shall study the evolutionary problem for 1t6 stochastic delay differential equations c
SDDEs of the form

dX() = f(t. X(0), X(t — 1)) dt +g(t, X(1), Xt — 7)) dW (), t€[0,T], (1)
X(1) =w(@), te[-1,0], (2

(with the ‘lag’ T > 0). SDDESs are a generalization of both deterministic delay differ-
ential equations (DDEs) and stochastic ordinary differential equations (SODES). In ma
areas of science (such as population problems, and the study of materials or systems v
memory) there has been an increasing interest in the investigation of functional differe
tial equations incorporating memory or ‘after-effect’. These systems frequently provid
more realistic modeldor phenomena that display time-lag or after-effect than do their
instantaneous counterparts. Deterministic models require that the parameters involved
completely known, though in the original problem one often has insufficient informatior
on parameter values. These may fluctuate due to some external or internal ‘noise’, whi
is random—or at least appears to be so. Thus we move from deterministic problems
stochastic probleméor, respectively, stochastic ordinary differential equations [SODES],
stochastic delay differential equations [SDDES], and so forth). A range of basic stochas!
concepts are considered in [29]. For the theoretical prerequisites on SODEs we ré&fer to
or [14]; for the theory of SDDEs, see (for example) [16, 23].

In general, there is no analytical closed-form solution of the problems considered hel
and we usually require numerical techniques to investigate the models quantitatively. T
analysis of numerical methods for SDDEs is based on the numerical analysis of DDI
and the numerical analysis of SODEs. We refer3o30] for discussions of issues in the
numerical treatment of DDEs. For an overview of applications and objectives of numeric
methods for SODEs, see [6], [7], [25] d21]; for more extensive treatments, s&&,[21].
There are few articles on numerical analysis of SDDEs to date {§e28]); the relevant
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Numerical analysis of SDDEs

numerical analysis has received insufficient attention in the literature, and the present pa
is intended to rectify this in some small measure.

In this paper we shall be interested in obtaining approximations to strong solutions
an SDDE. One reason to be interested in this kind of approximation is the wish to examil
the dependence of the solution on the initial function, or on parameters that are contain
in the definition of the SDDE.

This paper is organized as follows: in Sectidwe shall describe model problems,
Section3 contains background material of the theory of SDDESs, Sectigndevoted to
the mean-square analysis of general explicit one-step methods for SDDEs with const
lag, and in Sectiob we shall prove consistency of the Euler—Maruyama method. The mait
theoretical results are Theore®$ and6. In Sectiort we present numerical illustrations,
and in the last section we draw the attention of the reader to open problems in this area

2. Some model problems

We shall use a brief discussion of some model problems to introduce SDDEs to tt
reader. A more extensive discussion can be found in [24].

Example 1 (Cell population growth). In a recent pape#]| several mathematical models
for cell proliferation are discussed. The deterministic models presented there range frc
exponential growth to a neutral delay differential equation. The extension of the exponent
growth model by the introduction of delay terms can be justified by assuming that, onc
activated, cell division is not instantaneous. Thus the use of delay differential equatiol
greatly increases the range of qualitative behaviour that can be modelled.

Consider a large populatioN (¢) of cells at timer evolving with a proportionate rate
po > 0 of ‘instantaneous’ and a proportionate rageof ‘delayed’ cell growth. (The pop-
ulation is assumed to Barge in order to justify continuous as opposed to discrete growth
models. By ‘instantaneous’ cell growth, we mean that the rate of growth is dependent
thecurrentcell population, and by ‘delayed’ cell growth, we mean that the rate of growth
is dependent on sonmeviouscell population.) The number > 0 denotes the average
cell-division time. A model is then

N'(t) poN () + p1N(t — 1), t >0, 3)
N(1) W (1), —1<t<0.

This equation may also be used to model a single-sex population evolving with a conste
birth ratep; > 0 and a constant death rate per capita€ 0). Then the occurrence of the
delay in the birth term denotes the development (maturation) period.

Now assume that these biological systems operate in a noisy environment with an ovel
noise rate thatis distributed like white noig&,W (¢). Then we shall have a populatiai(r),
now a random process, with growth that is described by the SDDE

dX(®) = (poX(t)+ p1X(t — 1)) dt + BdW (1), t>0, @)
X@® = (@), -7 <t <0.

This is a linear autonomous equation with a constant lag and additive noise (and the de
is only in the drift term).

Example 2 (Population growth again). Assume now that in equationt we want to
model noisy behaviour in the system itself; for example, the intrinsic variability of the
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cell proliferation, or other individual differences and interaction between individuals. Thi
leads to a multiplicative noise term in equation (4).

dX(t) = (poX(1)+mX(t—1))dt +BXN)dW (), >0, )
X(@) = v, —1<t<0.

More examples.For additional examples we can refer to applications in neural control
mechanisms: neurological diseasBf human postural swaylp] and pupil light reflex
[18].

3. General formulation

Let (2, 4, P) be a complete probability space with a filtratiof, ) satisfying the usual
conditions; that is, the filtratiog4,), >0 is right-continuous, and each;, wherer > 0,
contains allP-null sets inA. For the general theory we refer @d]. With&(X) = [, X d P
we say for 1< p < cothatX € L7 = LP(Q2, A, P) if

€ (1XI7) < oo, and we define || X, = (€ (|X|p))% :

Here,& denotes the expectation; for a useful summary of the properties of expectation a

conditional expectation that will be used here, refer to the work of Mao [19, pp. 8-9].
Inthe literature of stochastic numerical analysis, convergence is usually considered eitt

in the mean-square sense or in the absolute mean; that igy witB or p = 1, respectively,

in the following definition.

Definition 1. Let {X,},>0 be a sequence of random variables definedfdiis2, 4, P).
Thenconvergencasy — v, of X, to a random variabl& in L7(2, 4, P) in the pth
mean takes place when

€1X, — X|P—=0 as v—,, (6)
or, equivalently, when
X, — X[,—0 as v—v,. (7

Remark 1. Due to Jensen’s inequality (which states thaE(Z)) < E(g(2)) for any
convex functiorg : R—R) we have

€(1217) < (6(zIM)¥?  forall0<gq < p, Z € LP(Q, A, P), 8)
soifX € LP(Q, A, P)andp > ¢, thenX € L9(Q, A4, P). Also, ontakingZ = X, — X,
we see that if condition7() holds forp > ¢, it is also valid withp replaced byy; thus, in

particular,convergence in the mediy = 1) is implied by convergence in the mean-square
(p=2).

Let W(r) be a 1-dimensional Wiener process given on the filtered probability spac
(2, A, P). We consider the scalar stochastic delay differential equatienf< T < 00):

dX(@t) = f(6,X(0), X0 —1))dr+g(t, X@®), Xt —1))dW(), 1€][0,T], }
X)) = W), te[—t,0],
9)
with one fixed lag, wher® (¢) is ans,,-measurabl€ ([—, 0], R)-valued random variable
suchthag || W2 < co. (By C([—1, 0], R) we mean the Banach space of all continuous paths
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from [-7, 0] — R equipped with the supremum norm|| := SUR¢[_. g In(s)], where

n € C.) The first term on the right-hand side is called ¢t function, characterizing the
local trend, and the second term denotedliffasion function, which influences the average
size of the fluctuations of.

If the functionsf andg do not explicitly depend onthe equation is calledutonomous,
and we consider this case for simplicity. Equati®h ¢an then be formulated equivalently
as
t

t
X(t) :X(O)—i—/ f(X(s),X(s—t))ds—i—/ g(X(s), X(s — 1)) dW(s), (10)
0 0

fort € [0, T] and withX (¢) = W(¢), fort € [—t, 0]. The second integral in equatiohd)
is a stochastic integral which is to be interpreted in the 1t6 sense.

3.1. Assumptions on the functiorfsg, and W
We havef :RxR - R, g : RxR — RandV¥ : [-7,0] — R, and we shall, at
various points, assume subsets of the following set of conditions.
Al. The functionsf andg are continuous.
A2. (a) The functionsf andg satisfy a uniform Lipschitz condition; that is, there exist
positive constanté.1, L», L3z and L4 such that for allp, ¢2, ¥1, ¥2 € R and
t €[00, T]
|f (1, Y1) — f(¢2, ¥2)| < L1l — p2| + L2 1 — 2| , (11)

and
lg (1. ¥1) — g(¢2, ¥2)| < Lalgp1 — ¢2| + Lalyr — ¥r2|. (12)

(b) The functionV is Hoélder-continuous with exponemt; that is, there exists a
positive constant s such that for, s € [—t, O]

& (W) — WE)IP) < Lslt — s, p=12 (13)

A3. The functionsf andg satisfy a linear growth condition; that is, there exist positive
constantsk’; andK» such that for all, ¢1, ¥, ¥1 € Randr € [0, T],

£ 6017 < K1 (14191 + 9a]) (14)
and g U2 < Kz (1412 +1v1?). (15)
A4. The partial derivatives of (¢, V),
of of 0 9 0

_7 _7 _’ _5 a b

o’ Iy 992" dy? 99 Oy
exist and are uniformly bounded.

A5. (a) The functiorg does not depend oK.

(b) The functionf (¢, ¥) is decomposable a& (¢) + f2(¥).

Concerning Assumption Zb), if y > 1/2, its value does not impinge upon the theory
given in Sectiorb unless Assumption Bholds, in which case its value is irrelevant when
y > 1. Assumption A is the natural extension of an assumption made by Milst&in [

p. 20] in his discussion of Euler's method for SODEs. If assumption A5(a) is valid, the
SDDE hasadditive noise; otherwise, the equation hadgtiplicative noise.

https://doi.org/10.1112/51461157000000322 Published online by C3At8dge University Press


https://doi.org/10.1112/S1461157000000322

Numerical analysis of SDDEs

Definition 2. An R-valued stochastic proce&q) : [—z, T] x 2 — R is called astrong
solutionof equation 9), if it is a measurable, sample-continuous process suclXti@at7']
is (A;)og/<r-adapted,f andg are continuous functions anxi satisfies equatiordj or,
equivalently equation (10), almost surely, and satisfies the initial conditioh = W (1),
wherer € [—1, 0]. A solutionX () is said to bgath-wise uniqué any other solutioni(\(t)
is indistinguishable from it; that is,

P(X(t) = X@) forall —t <t < T) —1.
Theorem 1. Assume that the functionsand g satisfy the assumptiorsl to A3 above.
Then there exists a unique strong solution to equaf@n

Proof. Proofs of Theorem can be found in [19], [22] and [23]. O

We cite a theorem from Mao 1P, Lemma 5.5.2]), which we shall use in our analysis. It
was originally stated and proved for more general equations.

Theorem 2. Let inequalitieg14) and (15) hold. Then the solution of equatig®) has the
property

g sup IX(?|<Ca (16)
—t<t<T
with
1
Cy:= (E + 48||\IJ||2> SKTT+4) K := max(K1, K2). (17)

Moreover, forand < s < ¢ < T witht —s < 1,
EIX(—X®IP < Cat—s), (18)
whereCy = 4K (1 + 2C1).

It is well known in the theory of deterministic DDEs that a scalar DDE with a single
fixed lag may be interpreted on each interval of lengths a system of ODEs. Denote
vot) =t, y1(t) =t — 7, andy;(t) = y1(yi-1(t)), wherei > 2; also,X () = Y, (1),
wheret € [mt, (m + 1)1], Y_1() = ¥ (t) anddW,,,(t) = dW (y,,—»(¢)). Then equation
(9) becomes

dY,(t) = ¥y, () f (Ym—r @), Yo (1), Yr_1(2)) dt

+V,;1_r(t)g()/m—r(t), Y. (1), Yr—l(t)) AWy (1),
fort € [mt,(m + Dtlandr =0, ..., m. (19)

With this approach, the problem of solving an SDDE is reduced to one of solving a s
quence of systems of SODEs of increasing dimension on successive intervala: + 1)].
If one wishes to solve the SDDE on an unbounded interval, the dimensionality of the syste
of SODEs, obtained by the above procedure, is also unbounded. This approach has b
followed in [17].
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4. Numerical analysis for an autonomous SDDE

For simplicity we shall in the sequel consider equation (9) in the autonomous form; th:
is, we shall work with

dX() = f(X@0), X0 —1)dt+g(X®), Xt —1))dW (1), te[0,T], }
X)) = W), t €[—r,0].
(20)
We define a mesh with a uniform step on the intef@all’],» = T/N, t, = n-h, where
n =0, ... N, and where we assume that for the givethere is a corresponding integ€
such that the lag can be expressed in terms of the stepsize-as, - &.

We consider strong approximatioﬁg of the solution to equatior2Q), using a stochastic
explicit one-step method of the form

Xps1=Xn+¢ (0, Xp, Xu-n, Ig),  n=0,...,N—1, (21)

where the initial values are given ®n_N, = Y(t, — 1) forn — N; < 0. The increment
function¢(h, -, -, Iy) : R x R—R incorporates a finite number of multiple 1t6-integrals
(see [15] or p1]) of the form

wherej; € {0,1} anddWO(r) = dr, and withr = 1, in the caseZ1). We denote by
the collection of Ito-integrals required to compute the increment fungtidrhe increment
function¢ is assumed to generate approximatiaiswhich are,, -measurable.

4.1. Assumptions on the increment functipn

We suppose that there exist positive const&at<,, C3 suchthatforalg, &', n,n € R
€ (¢(h. &0, Ip) — d(h. & 0" 1p))| < Cah (1& — &1+ 1n—n'l), (22)
& (16(h.6.n.1p) = ¢ &' 0 IpIP) < Con (16 —6'P+ I —n'P).  (23)
and
& (I8, 6.0, 15)?) < Cah (1+ 1612 + nf?) (24)
Lemma 1. If the increment functiory in equation (21) satisfies condition(24), then
€|1X,12 < ocoforalln < N.
Proof. We have
& (1% 140) = € (K1 + 00 Kuos Kucaon, 1) 1)
< 26 (})?n_1|2 |At0) 4+ 26 (|¢>(h, Xp 1. Xn1n,. Ip) [ |A,O>
< 26 (| %1l 1) +2Cah€ (14 [Kuoal* + Koz, | 141

=21+ Cah) € (|Xa-af® 1) +2C3hE (|Fum1on,

2 |A,0) +2C3h.
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The lemma follows from this result. To display the argument in detail, we define

~ 2 S |2
= max 8(X A), = max&(X A),
£0 N <0 | r| | Pn O<rn | r’ [ A
~ ~ S 12
o = po. pw = max & (!Xrl IAto) = max(po. pn)-
—N;<r<n

Note that the sequencés, },,>1 and thereforép, }, >0 are monotonically non-decreasing.
Thus, we obtain

- 2(1+ C3h) py—1 + 2C3hpo + 2C3h, for0 <n < Ny,
"=\ 21+ 2C3h) Pr—1+ 2C3h, forn > Ny;

whence
on < 2(1+4 C3h) pu—1+ 2Cshpo + 2C3h, forn > 0.
By induction, wherp,, < ap,_1 + ¢ forn > 0, we find that
pn <o"C+ A +a+-+a”)po;
settinge = 2(1+ C3zh) and¢ = 2 C3hpg + 2C3h, and using the assumptions on the initial
function ¥ to boundpg, we deduce the desired result. O

Notation 1. We degote byX (7,41) the value of the exact solution of equatidtdy at the
meshpoint,1, by X,,+1 the value of the approximate solution using equatii) (and by
X (t,+1) the value obtained after just one step of equation (21); that is,

X(ta41) = X (1) + & (hy X (00), X (14 — 1), 1) .

Using the above notation we can give the following definitions, employing terminology
used for SODEs by Artemiev and Averina [2, pp. 89-91].

Definition 3. Theerror of the above approximatidiX,, } onthe mesh-points is the sequence
of random variables

€n =Xty — Xy, n=1,...,N. (25)
Note thate, is A, -measurable since botki(s,) and )N(,, are A, -measurable random
variables, and tha(18|en|2)1/2 is the.£2-norm of (25).
Definition 4. Let
841 = X(tn41) — X(tns1), n=0,...,N—1 (26)

The method (21) is said to lw®nsistentvith order p1 in the mean and with order, in the
mean-square sense if, with

1 1
p2 > > and P12P2+§, (27)
the estimates
max |€(8.s1)| < ChPL  ash—0, (28)
0<n<N—1
and )
max (e§.°|(s,,+1|2)2 < Ch?”?  ash—0, (29)
o<n<N—-1

hold, where the (generic) constafitdoes not depend on but may depend of, and on
the initial data.
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We now state the main theorem of this paper, which is the analogue in the case of del
equations of a theorem by Milstein for SODEs (s2&][ in particular for a discussion of
the necessity to employ consistency in the maadin the mean-square, as well as the
application of conditional versions of the inequalities (28) and (29)).

Theorem 3. We assume that the conditions of Theorkare fulfilled. Suppose that the
method defined by equati¢®l)is consistent with ordep; in the mean and ordep, in the
mean-square sense, withi, p» satisfying inequality27), and that the increment function
¢ in equation(21) satisfies the estimat€22) and (23). Then the approximatiof21) for
equation(20) is convergent int? (ash — 0 with t/h € N) with orderp = pp — 1/2.
That is, convergence is in the mean-square sense, and

1
max <8|en|2>2 < Ch?  ash—0. (30)
1<n<N

Proof. Using Notationl, adding and subtractirg(z,) ande (k, X (t,), X (t, — ), 1), and
rearranging, we obtain

~

€1 = X(tht1) — Xus1
= X(tn) — Xn + X(tnt1) — X(t2) — @ (hv X(tn), X (tn — 1), I(f))
———

€n

Sn41
+ (hy X (ta), Xty — ©), Ig) — & (hy Xy Xuen,, Ip)

Un

=€, + 841+ up,
whereu,, is defined as
n = ¢ (h, X(tn). Xt — 7). ) — ¢ (h. X, Xnn,, 1) - (31)

Thus, squaring, employing the conditional mean with respect to thigebras,,, and
taking the modulus, we obtain

E(lens1l? 1) < E(lenl® Ap) + E(180111? [41) + & (lunl® [Ar)

@ 2
+2[8 (St - €n | Arp)|+2|8 (Susr - un |Ay)]

(©) ()]
+2|8 (en - un 1Ag)], (32)

(©)

which holds almost surely.

We shall now estimate the separate terms in inequa#yigdividually and in sequence;
all the estimates hold almost surely. We shall frequently use the Hdélder inequality, tt
inequality 2:b < a2 + b2 and properties of conditional expectation, which can be found in
[29]. In the sequel we shall uggo denote an unspecified constant, which depends only or
the constanté.1, Ly, L3, L4, K1, K2, C1 andC», and onT and the initial data.

e For the term labelled (1) in inequality?), we have, due to the assumed consistency
in the mean-square sense of the method,

& (18011 14i) = € (1604112 141,) 1 A) < ch?2.
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e For the term labelled (2) in inequality8?), we have, due to propert3) of the
increment function,

& (Iual? 1) < ch (1eal? 1) +chE (lenn, 2 1A
e For the term labelled (3) we have, due to the consistency condition,
21€ (St - €n lAp)| < 2|6 (E(Bns1ln)en [Hs)|

) (€ 14)
<2(s@im?)’ - (s 140))°

-2 (g(chzl’lfl)) . <h8(|€n|2 |<74’to))

< ch®P7 4 g (Jenl | As).

NI

<2(€[6Gn 1)

NI
NI

e For the term labelled (4) in inequality?), we obtain, by employing the consistency
condition and property (23) of the increment functipn

S

1

218Gus1 -t 140)| < 2 (81814117 1) ) (& (1 l? 4s))
< & (E(180111 14,) [ ) + & (lal? [ Arg)
< ch?P2 + ch&(ef | Ar) + ch€(e2_y. Ay).

e For the term labelled (5) in inequalit?) we have, using definitior3{) and property
(22) of the increment functiog,

z‘g(un © €n |<A>to)} <26 (‘g(un [AL)] - l€nl |=A>to)
< ch&(|enl? |Ar) + 2¢hE (lenl len—n, | |Ar)

N
Nl

ch&(|en|? |Ap) + ch {2(8<|en|2 |Ato>)% - (EUen—n, * |A))

|

< ch8(lenl? |Ar) + ch&(lenl® 1Ay) + ch€(len—n, 1 | A1),
< ch8(lenl? |Ar) + ch€(len—n, 12 |Ar)-
Combining these results, we obtain, with2< 2p1 — 1,
(€21 14n) < (L4 ch)&(€2 |Ay) + ch?P? + ch& (Jen—n, 12 |Ap)-

Now we shall prove the assertion by an induction argument over consecutive interve
of lengtht up to the end of the intervd0, T']. Since we have exact initial values, we set
€, =0forn=—Ng,,...,0.

Step 1.Suppose thag, € [0, 7]; thatis,n = 1, ..., N; ande,_y, = 0.

E(€2,1 |Ay) < (L4 ch)&(€2 | Ar) + ch?P?

n
< ch®2y (L ch)t
k=0

A+4ch)rtt—1

— ch?P2
¢ (It+ch)—1
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< ch?P2t ((eCh)n+l - 1)
< ch?ra1 (eCT — 1) .
Step 2.Suppose that, € [kt, (k + 1)7], and make the assumption that
E(len—n,1? |Ap) < ch?27L,
Then
E(€2,1 |1An) < (L4 ch)&(€2 |Ay) + ch?P? + ch& (Jen—n, 12 |41)
< (L+ ch)&(€l |Ay) + ch?P? + heh?2~t
= (14 ch)&(eZ | Ar) + ch??
< chzm_l(eCT -1),
by the same arguments as above. This implies, almost surely, that

1

1
(8(e21110)) 7 < chre 2,
which proves the theorem. O

The above theorem is an analogue ®f [ Theorem 1.1], but our proof follows different
lines. In the remainder of this section we shall discuss stochastic zero-stability. We ade
the definition given in [12].

Definition 5. The stochastic one-step methatl) is zero-stable in the quadratic mean-
square sens#, givene > 0, there is & = §(¢, ho) > 0 such that for all 0< & < hg and
positive integers < T/ h,

PO = _Nr,“Séo@ % -XP<s = m=6X X <e

holds, where?f;l“ denotes the sequence defined by the metRajl \With the initial values
X, forr = —N,,...,0 replaced byX* for r = —N;, ..., 0. If the method is stable and,
further, if o,— 0 whenevepyg is sufficiently small, the method &symptotically zero-stable
in the quadratic mean-square sense.

Theorem 4. If the increment functiorp of the approximation methofP1) satisfies the
estimateg22)and(23), then the one-step meth@l) s zero-stable in the quadratic mean-
square sense.

Proof. We have, forO<n < N =T/h,
(% - %)? < (X2 = %)’
+2(Xo1— X3 _y) -
<¢> (h X1, Xn-1-n. Ip) — ¢ (. X1, Xy, 1¢~))

~ ~ ~ ~ 2
+(¢ (h, Xn—1, Xn-1-n,. Ip) — & (h, X531, X5 1y, 1) ) :

Now we take expected values conditioned ondhalgebra(+4,,), take the modulus and
use properties of conditional expectation and the estima®sahd (23), and proceed with
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the manipulations in the same way as we did for the terms labelled (2) and (5) in inequali
(32). We obtain

&(1%n — X317 140)

< E(|Xuma = X[ 140)
+2le( (R - Xp_y)-

(¢ (h Xn—lv in—l—Nw 1¢) - ¢(h Xn 1 X;:flfo’ 1¢)> M"’O)

S (P T AR A RIS G I I K
& (1K1 = X5 4140
+ch8<|)~(n_1 - )?;;_lﬁmto) + ch8<|§n_1_Nr ~X |2|A,0)
+h8(|35,,_1 - §:71|2|AZO) + ch8(|)~(,,_1_NT N o |A,O)
= @+ emE(|Kus— Xpo*1Ag) + che(|Kamaom = K5y 140

wherec denotes a generic positive constant.
The proof now follows similar lines to the proof of LemriaWe define the quantities

N

Ro= max EOX — X |A,O> and R, = max8(|X — X |A,O)
—N.<r<0 O<r<n

Ro = Ro, Ro= max &(|%, = X" 14, ) = max(Ro. Ry).
—N<r<n

and we note thatR, },,-0 andL ,,},,>0 are monotomcally non-decreasing. We now obtain,
tgr 0<n< N, the resAuItR 1+ ch)Rn 1+ chRo, whilst forn > N; we have
R, < (A4 ch)R,—1+ chR;u) for somej(n) < n. Thus
R, <1+ ZCh)ﬁn,l forn > 0.
It follows (by induction, and using the property that-12ch < exp(2ch)) that
R, < exp(2cT)Ro.

We deduce that, givesn > 0, we have

o~

R,<e if Ro<é=cexp(—2cT), whenn <N,

which proves the theorem. O

Conjecture. We conjecture that if the metho@X) is consistent in both the mean and the
mean-square senses, and is asymptotically zero-stable in the mean-square, then the me
is convergent in the mean-square sense. We have not located the corresponding discus
for SODEs in the literature.

5. The Euler—Maruyama scheme

The most widely used approximation method for stochastic differential equations is tf
Euler—-Maruyama scheme, which we shall use to provide some numerical illustrations.
this section we shall prove that it satisfies the consistency condiz@)s0d 29), as well
as conditions (22) and (23).
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Recall that we consider strong approximations with a fixed step-size on the interv
[0, T]; thatis,h = T/N,t, =n-h,n =0,..., N, and that we assume the existence of
an integertN; = N/(m - r), such that the lag can be expressed in terms of the step-size
T =N;-h.

The Euler—-Maruyama method has the following form for equation (20):

gan-[ Z\Ij(tn_f), n_N‘[ <0

Xnt1=Xn +hf (Xna Xn—Nr) +g (an Xn—Nf) AWyia, 1<n<N-1 (33)
with AW, 41 := Wpt1)n — Wai, denoting independem (O, h)-distributed Gaussian ran-
dom variables. We denote the increment function of the Euler—Maruyama sc8&ne (

by ¢£um. It contains only the most basic multiple Ité-integrals, namgly, = # and
Iayn = AWpi1.

Theorem 5. (1) If the functionsf, ¢ and ¥ in equation(20) satisfy the conditions of
Theorenl (that is, assumption&1 to A3 and, in addition, assumptiof4), then the
Euler—Maruyama approximation is consistéaj with order p; = min(1+ y, 3/2)
in the mean, andgb) with order p» = min(1/2+ y, 1) in the mean-square, wheye
is the exponent of Holder-continuity @f in assumptiorA2.

(2) For equationg20) with additive noise and a decomposable drift functjp(that is,
assumptiorA5 holds), the Euler—Maruyama approximation is consistent with order
p1 = min(1 + y, 2) in the mean, and with ordep, = min(1/2+ y, 3/2) in the
mean-square.

Proof. We concentrate first on part (1). We shall frequently make use of the fact (se
[1, Remark 6.1.7]) that for all & « < r < T the equation

t

X)) — X0 = /OI f(X(s), X(s — 1)) ds +/0 g(X (), X(s —1)) dW(s)
is equivalent to
X(t) — Xu) = /ut F(X(5), X(s — 1) ds + /Ml g(X(5), X(s — 1)) dW(s).  (34)
First we prove consistency in the mean with orger= min(1+ y, 3/2). We thank Dr.

Tretyakov for pointing out, in a private communication, a gap in an earlier version of th
proof. We have

Sn+1 = X(tnt1) — X (tn) — PEM (hs X (), X (ty — 1), I¢EM)
tht1l Int1
:/ f(X(s),X(s—r)) ds—i—/ g(X(s),X(s—t)) dW (s)
In In
SR (X (1), Xt = D) = (X (1), Xty — ) AWpp1

Iny1
=/ F(X(), X(s = D) = f(X(t), X(ta — 1)) ds
In

tht1
+/ : g(X (), X(s — 1) — g(X(tn), X (14 — 7)) dW (s);
1,

n
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Int
hence|€& (8,41)] _‘ / ' F(X (), X(s = 1) = f(X(t), X(1a — 7)) ds

Int
‘ f ' {a_f X (tn), X (tn — 7)) (X (s) — X(fn))}ds
@

Iny1 af
+‘8/ {_(X(tn)vx(tn_f)) (X(S_T)_X(tn_t))}ds
t 0x2

(@3]

In+1
+ ‘8/ p(s)ds|, (35)
In

—_—
3

using Taylor’s theorem for and denoting by f /dx; the derivative off with respect to
theith argument.

We have two cases to consider for the integrands in equadion (i) s — ¢ < 0 for
s € [ty, ty11] (SOWe haveX (s — t) = V(s — 1)), and (ii)z, — 7 > 0.

¢ For the term (1) in equation (35) we obtain in both cases, by invoking equation (34
and assumption Aén f,

In+1 af
‘gf, {8—M(X(tn), Xty — 1)) (X(5) _X(,n))}dg

iyl S
8/ / f(X(u),X(u—r))duds
tn t)l
Tny1 s
< c€ <\/1<(1+2 sup |X(r)|2)> : (/ / du ds>
_T<V<T tn tn

¢ (\/K(1+ 26 sup |X(r)|2)> 2
—Tt<r<T

¢ (VEA+2Ca(1v], 1)) 4

with C1(J|W ||, T) = (1/2+ 48| ¥ %) 8K T+DT  due to inequality (16).
¢ Forthe term (2) in equatior86) assumption Aon f and assumption 2on ¥ yield
in case (i):

In+1 af
‘g/ {—(X(tn),‘l—'(tn—f)) (\Il(s—f)—‘ll(fn—f))}d-‘
” d0x2

Int1
<s
In

(7B}
<c/ Lg|s —t,|” ds
1,

n

E(X(tn)a U(t, — )| (s —1) = W(t, — )| ds
0x2

< chity,
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In case (ii) we obtain:

Int1 af
8/ {—(X(tn),X(tn 1) (X6 —1) = Xt —t))}ds
tn dx2

i+l §f 2
<./€ (/ 5% ——(X(t), X(ta — D) (X(s — 1) — X(tn — 7)) ds)
1

Int1 2
\/h8/ X(tn) Xty — z))) (X(s = 1) = X(ty — 1)) ds

i1
< hc/ s —t,ds
tn

3
< ch2.

« For the term (3) in equation (35), the remain@és) has the form

19%f

o) =5~ g¢¢xxw> X (tn))?
82f
e @ O(XE) = X)) (X6 =) = Xty — 1)
19%f 2
+3 o 2(¢ OXGs—1)— Xty — 1),

where the derivatives of are evaluated at appropriate intermediate vakigg) <
¢ < X(s)andX (1, —1) < ¢ < X(s—1). We can then calculate, using®2 < a?+b?
and assumption Adn f,

() <c (IX(S) —XU)PH X —1) — X(t — f)lz) . (36)
We have, by inequality (36), assumption A& ¥ and inequality (18), in case (i):
(78N}
‘8/ p(s) ds
Iy

In+1 2 2
<£/ 1X(5) = Xt + [W(s — 7) — Wty — 7)[2 ds
17

1 Iyl 5 5 5
<c/ (s—tn)ds—l—c/ (s —t,)% ds < ch®+chtt?,
1, In

n

In case (ii), we obtain

Int1
‘8/ p(s) ds
1,

n

t)H»l
< ce:/ IX(s) — X(t)2+ | X(s — 1) — X(t, — 7)[%ds
1,

n

i1 2
gc/ (s—t,)ds < ch”.
In
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In summary, we obtain
H 3
€ Bny)| < ch™MNHY2),

so part 1(a) of the theorem follows. We have used properties of multiple Ité-integrals, whic
may be found in19] and R1]. We have also employed the following estimate of the drift
term:

| f(Xw), X(u—1))| < J K <1+ 2 sup |X(r)|2),

—Tt<r<T

which is an immediate consequence of the linear growth bound (14).

Now we prove part 1(b)—in other words, consistency in the mean-square, with orde
p2 = min(1/2+ y, 1). We use the Holder inequality, the Schwarz inequality for integrals,
2ab < a® + b2, (a + b)? < 2(a? + b?) and property (17). We have:

Int1 2
€lduralP < € (/ |f(X(), X(s = 1)) = f(X (1), X (12 — )| dS)
1

oe | (B 17 (X0 X6 = 0) = 7 (X @), Xty = )] as)
x (f,i"“ 9(X (), X(s — 7)) — g(X(ta), X (ta — D)) dW(s))
2

Ih+1
+& <f ' 8(X($), X(s — 1)) — g(X(tn), X (tn — )| dW(s))
In

2

Iyl
< 8(/ ' |f(X(), X(s = D)) = f(X (1), X (12 — )| dS)
1)

n

o 1/2

(8 (ft;"“ |F(X(), X(s — 7)) = F(X(t0), X (s — )| ds)
x (f[fj“ &(|g(X(9), X(s — ) — g(X (1), X(ta — D)|)? ds)

+2 >

In+1
+/ e (|g(X(), X (s — 1) — g(X (1), Xty — 0))|)? dis
In

tn 2
<2¢ ([ " |F(X (), X(s — D) — f(X ), X(tn — 1)) ds>
1,

n

2

h+1
+2f : € (lg(X (), X(s — 1) — g(X (1), X(ta — 1))|)* ds
1,

n

Int 2
<26 (/ "LLIX(S) = X ()] + L2 |X (s — ©) — X(tn — )| ds)
n

Int+1
+28/ (LalX (5) = X (t)| + LalX (s — 7) — X (1, — 7)[)* dis
In

t)l
< 2h€ (/ T (LaX () = X ()] + LalX (s — T) — Xty — )])° ds>
1,

fhy1
+2/ E(L3lX(s) — X(ta)| + LalX (s — 1) — X (1 — r)|)2 ds
t)l
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Int
< 4h/ ' L28(1X(s) — X)) + L3E(1X (s — 1) — X (ty — D)|?) ds
1,

ntn+l
+4/ L3&(1X(s) — X(t)I?) + L3 E(1X (s — 7) — X (t, — 7)) ds.
In
(37)

Again, there are the two cases to consider for the delayed arguments. In case (i) we obt:
by using assumption A@n ¥, that the value of inequality (37) is

Int1
< 4h/ L3 Co(II¥]|, T)(s — 1) + L3 Ls(s — 1,)? ds
ty

Int1
+4/ L3Co(|W |, T)(s — ty) 4 L3 Ls(s — 1,)? ds
tn

< cCo(| V||, THA? + cht? .

In case (ii) we calculate that inequality (37) is

Iny1
< 4h/ LECo(I% 1, T)(s — ty) + L3 Co(|W|, T)(s — 1) ds
1,

n

Iny1
+4/ LECo(|1% 1, T)(s — ta) + L5 C2(1% |, T) (s — 1) ds
In

< cCa (W], THR?.
This implies that

1 . (1
<8|5n+1|2>2 < chmm(?”’l).
Now consider part (2), and note that

tn+1
8n+1=/ F(X(), X(s = 1) = f(X(t), X1y — 7)) ds
1,

n

for equations Z0) with additive noise. In the case that assumptidnhalds (that is, the
equation (20) has additive noise and a decomposable drift funglipwe obtain for the
term (2) in inequality (35) and case (ii)

Int1 af
’8/ {—(X(tn—f)) (X(s—‘L’)—X(tn—‘t))}ds
tn 0x2

<c

Int1 ST
é’f / (X)), X(u—1))duds
tn th—T

iyl pS—T
< c€ \/K(1+2 sup X (r))2) (/ / duds)
—t<r<T n th—T

< c<\/1{(1+2£; sup |X(r)|2)> h2

—t<r<T

<ec <\/K(1+ 2C1 (V. T)) K2

with C1(|| W, T) = (1/2+4 48 ||W||?) 8K T+DT  due to inequality16). Using this bound
to modify the proof of part (1), the result in part (2) follows. O
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Remark 2. A modification of the proof gives, witlv; = 2 andp, = 1, the corresponding
result for the case of an SODE; see [21].

Lemma 2. If the functionsf and g in equation(9) satisfy the conditions of Theorei
then the increment functiapy ), of the Euler—-Maruyama schenfgiven by equatioi(33))
satisfies the estimaté®2) and (23)for all £, &', n, n’ € R.

Proof. We use the Lipschitz-continuity of the drift and diffusion function and properties of
multiple 1t6-integrals, which may be found in [19] and [21].

€ (¢em(h &1 AW,1) — pem(h, E' 0/, AW,11)))|
=& (hf €, ) +gE MAW,y1 —h fE 7)) —gE  n)AW,11)|
h|fE ) —fE M|+ |gE n —gE 0| [E(AW,11)|

<
<h(Li|E—€'1+Laln—1'l)

& (6w, &0, AWs2) = deu (. €', AW,42)[°)
=& (|hf & m + g€ MAWs1 = hF € 1) — g 1) AW )
202 | f(E, ) — fE )P+ 2|6 n) — g& )| € 1AW,4a]?
4h2(L3 | — €'+ LS In—n'1P) + 4h(L3 1€ — &2+ L3 In —n'?),
from which the estimates follow. O

<
<

Lemma 3. If the functionsf and g in equation(9) satisfy the conditions of Theorei
then the increment functiape ), of the Euler—Maruyama schen@given by equatioi33))
satisfies the estima{@4)for all &, n € R.

Proof. We use the linear growth bounds of the drift and diffusion function and propertie:
of multiple Ité-integrals, which may be found in [19] and [21].

€ (I¢em(h, & 0, AW, 11)[?)
=& (|hf(E.n) + gE MAW,11[?)
217 | f & )7 + 2|8 (&, ) [2E| AW, 41]?
2h2K1 (1+ [€1% + In12) + 2K2 (1 + &% + In|?) A,
from which the estimates follow. O

<
<

The next theorem follows from our previous results in TheoBsand Lemmag and3.

Theorem 6. (1) Theoren3 is valid, for the Euler—Maruyama method applied to equa-
tions(20), under condition&\1 — A4, with order of convergence = min(y, 1/2) in
the mean-square sense.

(2) With the additional assumptioA5 (that is, for equations with additive noise and
decomposablg’) Theorem3 is even valid for the Euler—-Maruyama method with
order of convergence = min(y, 1) in the mean-square sense.
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6. Numerical experiments

The theoretical discussion of numerical processes is intended to provide an insight ir
the performance of numerical methods in practice. We have used the equation

dX(t) = (aX () +bX(t — 1)) dt + (B + B2X (1) + B3X (t — 1)) dW (1)

as a test equation for our Euler-Maruyama method; we shall use this section to report
some numerical results for this equation, and to relate them (to a limited extent) to the thec
presented above.

Concerning ‘exact solutions’, in the case of additive noige £ g3 = 0) we have
calculated an explicit solution on the first interyal =] by the method of steps (see, for
example, [9]), usingl(r) = 1+ ¢ for ¢t € [—1,0] as an initial function. The solution on
t € [0, 1]is given by

b\ b b P
X (1) = e (1+ —2) —t-—5+t ﬁe‘”/ e dW(s).
a a a 0

We have then used this solution as an initial function to compute an ‘explicit solution’ o
the second intervdll, 2] with a standard SODE-method and a small step-size. In the cas
of multiplicative noise we have computed an ‘explicit solution’ on a very fine grid (usually
2048 steps) with the Euler—-Maruyama scheme.

Our tests concerned the illustration of the theoretical order of convergence. If we squa
both sides of inequality30) in Theoren®, conditions for which are satisfied in the examples,
we see that the mean-square el€dK (7) — §N|2 should be bounded bg#2” for some
C:

&|x() - Xn|> < cn?. (38)
In our experiments, the mean-square error at the final fime 2 was estimated in the
following way. A set of 20 blocks, each containing 100 outcores;; 1 < i < 20,
1 < j £ 100), were simulated, and for each block the estimator

100

~ 2
6 = 160 ; X (T, ;) — Xn (i )|

was formed. In Tabld, ¢ = ¢(h) denotes the mean of this estimator, which was itself
estimated in the usual way. Thus we have

emy=5-3e and e ~E|X(T) - Xy[. (39)

We therefore ask whether the numerical results suggest the existence of a corstaht
that

e(h) < Ch?. (40)
Using the set of coefficients
L a=-20b=01,8=18=p83=0,
I a=-2b=01,=1,=p63=0,
M: a=-2,b=0.1,3=1,1=82=0,
we obtained the results (correspondingito= 1/4,h1 = ho/2,h2 = h1/2,h3 = h2/2)
shown in Tablel.
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Table 1: Estimated erroksfor the Euler—Maruyama method

h I, € , ratio I, € 1, ratio I, € 1, ratio
0.25 0.0184 * 0.1089 * 0.02011 *
0.125 0.00404 0.22 0.04913 0.45 0.00987 0.5
0.0625 0.000973 0.24 0.02437 0.5 0.004823 0.5
0.03125 0.000244 0.25 0.012135 0.5 0.0025 0.5
Suggested 1 1/2 1/2
values ofp

Itis, of course, impossible to prove a result such as that in inequabytly numerical
experimentation. In fact, however, the computed ratio of ter(hg2) /e (h) approximates
{1/2}27 for an appropriate ( as suggested in the table), which is suggestive of the stronge
resulte(h) = phzl’ +O@(h?r*1), atleast for arestricted class of problems. Observe that for
very smalliz, rounding error effects can obscure the behaviour predicted by such aresult.
the best of our knowledge, the existence of an expansion of the error in the case of stocha
differential equations is established only for weak approximations.

In summary, the ‘ratio’ of errors, given in Tablefor the approximations to the test
equation, are consistent (in the sense indicated above) with the property

(EIX(T) = X P)? = pp(DI? + O (h?+h)

and hence with the theoretical order of convergence as stated in The®esds.

7. Further directions

This paper provides an introduction to the numerical analysis of stochastic delay diffe
ential equations. We concentrated here on autonomous SDDEs; for an indication of the w
in which the theory extends to non-autonomous equations refer to the comparable extens
for SODEs R1]. When one seeks to advance the study further, one observes a number
open questions, involving (for example):

(a) classification of the terms involving time-lag (for example, a bounded or a fadin
memory);

(b) the design of numerical methods for more general problems;
(c) weak approximation methods;

(d) the stability and dynamic properties of the numerical methods;
(e) variable time-step algorithms.

For stochastiordinary differential equations, the issues (d) and (e) have only recently
attracted attention (see, for exampl26] and the relevant articles i8], and [11,13, 20],
respectively). We hope to address such issues in sequels to this paper.
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