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NUMERICAL ANALYSIS OF EXPLICIT ONE-STEP METHODS FOR
STOCHASTIC DELAY DIFFERENTIAL EQUATIONS

CHRISTOPHER T. H. BAKER and EVELYN BUCKWAR

Abstract

We consider the problem of strong approximations of the solution
of stochastic differential equations of Itô form with a constant lag in
the argument. We indicate the nature of the equations of interest, and
give a convergence proof in full detail for explicit one-step methods.
We provide some illustrative numerical examples, using the Euler–
Maruyama scheme.

1. Introduction

We shall study the evolutionary problem for Itô stochastic delay differential equations or
SDDEs of the form

dX(t) = f
(
t, X(t), X(t − τ)

)
dt + g

(
t, X(t), X(t − τ)

)
dW(t), t ∈ [0, T ], (1)

X(t) = 9(t), t ∈ [−τ, 0], (2)

(with the ‘lag’ τ > 0). SDDEs are a generalization of both deterministic delay differ-
ential equations (DDEs) and stochastic ordinary differential equations (SODEs). In many
areas of science (such as population problems, and the study of materials or systems with
memory) there has been an increasing interest in the investigation of functional differen-
tial equations incorporating memory or ‘after-effect’. These systems frequently provide
more realistic modelsfor phenomena that display time-lag or after-effect than do their
instantaneous counterparts. Deterministic models require that the parameters involved be
completely known, though in the original problem one often has insufficient information
on parameter values. These may fluctuate due to some external or internal ‘noise’, which
is random—or at least appears to be so. Thus we move from deterministic problems to
stochastic problems(or, respectively, stochastic ordinary differential equations [SODEs],
stochastic delay differential equations [SDDEs], and so forth). A range of basic stochastic
concepts are considered in [29]. For the theoretical prerequisites on SODEs we refer to [1]
or [14]; for the theory of SDDEs, see (for example) [16,19,23].

In general, there is no analytical closed-form solution of the problems considered here,
and we usually require numerical techniques to investigate the models quantitatively. The
analysis of numerical methods for SDDEs is based on the numerical analysis of DDEs
and the numerical analysis of SODEs. We refer to [3, 30] for discussions of issues in the
numerical treatment of DDEs. For an overview of applications and objectives of numerical
methods for SODEs, see [6], [7], [25] or [27]; for more extensive treatments, see [15,21].
There are few articles on numerical analysis of SDDEs to date (see [17,28]); the relevant
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Numerical analysis of SDDEs

numerical analysis has received insufficient attention in the literature, and the present paper
is intended to rectify this in some small measure.

In this paper we shall be interested in obtaining approximations to strong solutions of
an SDDE. One reason to be interested in this kind of approximation is the wish to examine
the dependence of the solution on the initial function, or on parameters that are contained
in the definition of the SDDE.

This paper is organized as follows: in Section2 we shall describe model problems,
Section3 contains background material of the theory of SDDEs, Section4 is devoted to
the mean-square analysis of general explicit one-step methods for SDDEs with constant
lag, and in Section5 we shall prove consistency of the Euler–Maruyama method. The main
theoretical results are Theorems3, 5 and6. In Section6 we present numerical illustrations,
and in the last section we draw the attention of the reader to open problems in this area.

2. Some model problems

We shall use a brief discussion of some model problems to introduce SDDEs to the
reader. A more extensive discussion can be found in [24].

Example 1 (Cell population growth). In a recent paper [4] several mathematical models
for cell proliferation are discussed. The deterministic models presented there range from
exponential growth to a neutral delay differential equation. The extension of the exponential
growth model by the introduction of delay terms can be justified by assuming that, once
activated, cell division is not instantaneous. Thus the use of delay differential equations
greatly increases the range of qualitative behaviour that can be modelled.

Consider a large populationN(t) of cells at timet evolving with a proportionate rate
ρ0 > 0 of ‘instantaneous’ and a proportionate rateρ1 of ‘delayed’ cell growth. (The pop-
ulation is assumed to belarge in order to justify continuous as opposed to discrete growth
models. By ‘instantaneous’ cell growth, we mean that the rate of growth is dependent on
thecurrentcell population, and by ‘delayed’ cell growth, we mean that the rate of growth
is dependent on somepreviouscell population.) The numberτ > 0 denotes the average
cell-division time. A model is then

N ′(t) = ρ0N(t)+ ρ1N(t − τ), t > 0,
N(t) = 9(t), −τ 6 t < 0.

(3)

This equation may also be used to model a single-sex population evolving with a constant
birth rateρ1 > 0 and a constant death rate per capita (ρ0 < 0). Then the occurrence of the
delay in the birth term denotes the development (maturation) period.

Now assume that these biological systems operate in a noisy environment with an overall
noise rate that is distributed like white noise,βdW(t). Then we shall have a populationX(t),
now a random process, with growth that is described by the SDDE

dX(t) = (
ρ0X(t)+ ρ1X(t − τ)

)
dt + βdW(t), t > 0,

X(t) = 9(t), −τ 6 t < 0.
(4)

This is a linear autonomous equation with a constant lag and additive noise (and the delay
is only in the drift term).

Example 2 (Population growth again). Assume now that in equation (4) we want to
model noisy behaviour in the system itself; for example, the intrinsic variability of the
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cell proliferation, or other individual differences and interaction between individuals. This
leads to a multiplicative noise term in equation (4).

dX(t) = (
ρ0X(t)+ ρ1X(t − τ)

)
dt + βX(t) dW(t), t > 0,

X(t) = 9(t), −τ 6 t < 0.
(5)

More examples.For additional examples we can refer to applications in neural control
mechanisms: neurological diseases [5], human postural sway [10] and pupil light reflex
[18].

3. General formulation

Let (�,A, P ) be a complete probability space with a filtration(At ) satisfying the usual
conditions; that is, the filtration(At )t>0 is right-continuous, and eachAt , wheret > 0,
contains allP -null sets inA. For the general theory we refer to [29]. WithE(X) = ∫

�
X dP

we say for 16 p 6 ∞ thatX ∈ Lp = Lp(�,A, P ) if

E
(|X|p) < ∞, and we define ‖X‖p = (

E
(|X|p)) 1

p .

Here,E denotes the expectation; for a useful summary of the properties of expectation and
conditional expectation that will be used here, refer to the work of Mao [19, pp. 8–9].

In the literature of stochastic numerical analysis, convergence is usually considered either
in the mean-square sense or in the absolute mean; that is, withp = 2 orp = 1, respectively,
in the following definition.

Definition 1. Let {Xν}ν>0 be a sequence of random variables defined onLp(�,A, P ).
Thenconvergenceasν → ν∗ of Xν to a random variableX in Lp(�,A, P ) in thepth
mean takes place when

E |Xν −X|p→0 as ν→ν∗, (6)

or, equivalently, when

‖Xν −X‖p→0 as ν→ν∗. (7)

Remark 1. Due to Jensen’s inequality (which states thatg(E(Z)) 6 E(g(Z)) for any
convex functiong : R→R) we have

E
(|Z|q) 6

(
E(|Z|p))q/p for all 0< q 6 p, Z ∈ Lp(�,A, P ), (8)

so ifX ∈ Lp(�,A, P ) andp > q, thenX ∈ Lq(�,A, P ). Also, on takingZ = Xν −X,
we see that if condition (7) holds forp > q, it is also valid withp replaced byq; thus, in
particular,convergence in the mean( q = 1) is implied by convergence in the mean-square
(p = 2).

Let W(t) be a 1-dimensional Wiener process given on the filtered probability space
(�,A, P ). We consider the scalar stochastic delay differential equation (0= t0 < T < ∞):

dX(t) = f
(
t, X(t), X(t − τ)

)
dt + g

(
t, X(t), X(t − τ)

)
dW(t), t ∈ [0, T ],

X(t) = 9(t), t ∈ [−τ, 0],
}
(9)

with one fixed lag, where9(t) is anAt0-measurableC([−τ, 0],R)-valued random variable
such thatE‖9‖2 < ∞. (ByC([−τ, 0],R)we mean the Banach space of all continuous paths
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from [−τ, 0] → R equipped with the supremum norm‖η‖ := sups∈[−τ,0] |η(s)|, where
η ∈ C.) The first term on the right-hand side is called thedrift function, characterizing the
local trend, and the second term denotes thediffusion function, which influences the average
size of the fluctuations ofX.

If the functionsf andg do not explicitly depend ont the equation is calledautonomous,
and we consider this case for simplicity. Equation (9) can then be formulated equivalently
as

X(t) = X(0)+
∫ t

0
f
(
X(s),X(s − τ)

)
ds +

∫ t

0
g
(
X(s),X(s − τ)

)
dW(s), (10)

for t ∈ [0, T ] and withX(t) = 9(t), for t ∈ [−τ, 0]. The second integral in equation (10)
is a stochastic integral which is to be interpreted in the Itô sense.

3.1. Assumptions on the functionsf, g, and9

We havef : R × R → R, g : R × R → R and9 : [−τ, 0] → R, and we shall, at
various points, assume subsets of the following set of conditions.

A1. The functionsf andg are continuous.

A2. (a) The functionsf andg satisfy a uniform Lipschitz condition; that is, there exist
positive constantsL1, L2, L3 andL4 such that for allφ1, φ2, ψ1, ψ2 ∈ R and
t ∈ [0, T ]

|f (φ1, ψ1)− f (φ2, ψ2)| 6 L1 |φ1 − φ2| + L2 |ψ1 − ψ2| , (11)

and

|g(φ1, ψ1)− g(φ2, ψ2)| 6 L3|φ1 − φ2| + L4|ψ1 − ψ2|. (12)

(b) The function9 is Hölder-continuous with exponentγ ; that is, there exists a
positive constantL5 such that fort, s ∈ [−τ, 0]

E
(|9(t)−9(s)|p) 6 L5|t − s|pγ , p = 1,2. (13)

A3. The functionsf andg satisfy a linear growth condition; that is, there exist positive
constantsK1 andK2 such that for allφ, φ1, ψ,ψ1 ∈ R andt ∈ [0, T ],

|f (φ, φ1)|2 6 K1

(
1 + |φ|2 + |φ1|2

)
(14)

and |g(ψ,ψ1)|2 6 K2

(
1 + |ψ |2 + |ψ1|2

)
. (15)

A4. The partial derivatives off (φ,ψ),

∂f

∂φ
,

∂f

∂ψ
,

∂2f

∂φ2
,

∂2f

∂ψ2
, and

∂2f

∂φ ∂ψ
,

exist and are uniformly bounded.

A5. (a) The functiong does not depend onX.
(b) The functionf (φ,ψ) is decomposable asf1(φ)+ f2(ψ).

Concerning Assumption A2(b), if γ > 1/2, its value does not impinge upon the theory
given in Section5 unless Assumption A5 holds, in which case its value is irrelevant when
γ > 1. Assumption A4 is the natural extension of an assumption made by Milstein [21,
p. 20] in his discussion of Euler’s method for SODEs. If assumption A5(a) is valid, the
SDDE hasadditive noise; otherwise, the equation hasmultiplicative noise.
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Definition 2. An R-valued stochastic processX(t) : [−τ, T ] ×� → R is called astrong
solutionof equation (9), if it is a measurable, sample-continuous process such thatX|[0, T ]
is (At )06t6T -adapted,f andg are continuous functions andX satisfies equation (9) or,
equivalently equation (10), almost surely, and satisfies the initial conditionX(t) = 9(t),
wheret ∈ [−τ, 0]. A solutionX(t) is said to bepath-wise uniqueif any other solution̂X(t)
is indistinguishable from it; that is,

P
(
X(t) = X̂(t) for all − τ 6 t 6 T

)
= 1.

Theorem 1. Assume that the functionsf andg satisfy the assumptionsA1 to A3 above.
Then there exists a unique strong solution to equation(9).

Proof. Proofs of Theorem1 can be found in [19], [22] and [23].

We cite a theorem from Mao ([19, Lemma 5.5.2]), which we shall use in our analysis. It
was originally stated and proved for more general equations.

Theorem 2. Let inequalities(14) and(15) hold. Then the solution of equation(9) has the
property

E

(
sup

−τ6t6T
|X(t)|2

)
6 C1, (16)

with

C1 :=
(

1

2
+ 4E‖9‖2

)
e6KT (T+4), K := max(K1,K2). (17)

Moreover, for any0 6 s < t 6 T with t − s < 1,

E |X(t)−X(s)|2 6 C2(t − s), (18)

whereC2 = 4K(1 + 2C1).

It is well known in the theory of deterministic DDEs that a scalar DDE with a single
fixed lag may be interpreted on each interval of lengthτ as a system of ODEs. Denote
γ0(t) = t , γ1(t) = t − τ , andγi(t) = γ1(γi−1(t)), wherei > 2; also,X(t) = Ym(t),
wheret ∈ [mτ, (m + 1)τ], Y−1(t) = 9(t) anddWm(t) = dW(γm−r (t)). Then equation
(9) becomes

dYr(t) = γ ′
m−r (t)f

(
γm−r (t), Yr(t), Yr−1(t)

)
dt

+γ ′
m−r (t)g

(
γm−r (t), Yr(t), Yr−1(t)

)
dWm(t),

for t ∈ [mτ, (m+ 1)τ] andr = 0, . . . , m. (19)

With this approach, the problem of solving an SDDE is reduced to one of solving a se-
quence of systems of SODEs of increasing dimension on successive intervals[mτ, (m+ 1)τ].
If one wishes to solve the SDDE on an unbounded interval, the dimensionality of the system
of SODEs, obtained by the above procedure, is also unbounded. This approach has been
followed in [17].
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4. Numerical analysis for an autonomous SDDE

For simplicity we shall in the sequel consider equation (9) in the autonomous form; that
is, we shall work with

dX(t) = f
(
X(t),X(t − τ)

)
dt + g

(
X(t),X(t − τ)

)
dW(t), t ∈ [0, T ],

X(t) = 9(t), t ∈ [−τ, 0].
}

(20)
We define a mesh with a uniform step on the interval[0, T ], h = T/N , tn = n ·h, where

n = 0, . . . N , and where we assume that for the givenh there is a corresponding integerNτ
such that the lag can be expressed in terms of the stepsize asτ = Nτ · h.

We consider strong approximations̃Xn of the solution to equation (20), using a stochastic
explicit one-step method of the form

X̃n+1 = X̃n + φ
(
h, X̃n, X̃n−Nτ , Iφ

)
, n = 0, . . . , N − 1, (21)

where the initial values are given bỹXn−Nτ := 9(tn − τ) for n−Nτ 6 0. The increment
functionφ(h, ·, ·, Iφ) : R × R→R incorporates a finite number of multiple Itô-integrals
(see [15] or [21]) of the form

I(j1,...,jl ),h =
∫ t+h

t

∫ sl

t

. . .

∫ s2

t

dWj1(s1) . . . dW
jl−1(sl−1)dW

jl (sl),

whereji ∈ {0, 1} anddW0(t) = dt , and witht = tn in the case (21). We denote byIφ
the collection of Itô-integrals required to compute the increment functionφ. The increment
functionφ is assumed to generate approximationsX̃n which areAtn -measurable.

4.1. Assumptions on the increment functionφ

We suppose that there exist positive constantsC1, C2, C3 such that for allξ, ξ ′, η, η′ ∈ R∣∣E (φ(h, ξ, η, Iφ)− φ(h, ξ ′, η′, Iφ)
)∣∣ 6 C1h

(|ξ − ξ ′| + |η − η′|) , (22)

E
(
|φ(h, ξ, η, Iφ)− φ(h, ξ ′, η′, Iφ)|2

)
6 C2h

(
|ξ − ξ ′|2 + |η − η′|2

)
, (23)

and

E
(
|φ(h, ξ, η, Iφ)|2

)
6 C3h

(
1 + |ξ |2 + |η|2

)
. (24)

Lemma 1. If the increment functionφ in equation (21) satisfies condition(24), then
E |X̃n|2 < ∞ for all n 6 N .

Proof. We have

E
(∣∣X̃n∣∣2 |At0

)
= E

(∣∣X̃n−1 + φ(h, X̃n−1, X̃n−1−Nτ , Iφ)
∣∣2 |At0

)
6 2E

(∣∣X̃n−1
∣∣2 |At0

)
+ 2E

(∣∣φ(h, X̃n−1, X̃n−1−Nτ , Iφ)
∣∣2 |At0

)
6 2E

(∣∣X̃n−1
∣∣2 |At0

)
+ 2C3hE

(
1 + ∣∣X̃n−1

∣∣2 + ∣∣X̃n−1−Nτ
∣∣2 |At0

)
= 2 (1 + C3h) E

(∣∣X̃n−1
∣∣2 |At0

)
+ 2C3hE

(∣∣X̃n−1−Nτ
∣∣2 |At0

)
+ 2C3h.
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The lemma follows from this result. To display the argument in detail, we define

ρ0 = max
−Nτ6r60

E
(∣∣X̃r ∣∣2 |At0

)
, ρn = max

0<r6n
E
(∣∣X̃r ∣∣2 |At0

)
,

ρ̂0 = ρ0, ρ̂n = max
−Nτ6r6n

E
(∣∣X̃r ∣∣2 |At0

)
= max(ρ0, ρn).

Note that the sequences{ρn}n>1 and therefore{ρ̂n}n>0 are monotonically non-decreasing.
Thus, we obtain

ρ̂n 6
{

2(1 + C3h) ρ̂n−1 + 2C3hρ̂0 + 2C3h, for 0< n 6 Nτ ,

2(1 + 2C3h) ρ̂n−1 + 2C3h, for n > Nτ ;
whence

ρ̂n 6 2(1 + C3h) ρ̂n−1 + 2C3hρ̂0 + 2C3h, for n > 0.

By induction, when̂ρn 6 αρ̂n−1 + ζ for n > 0, we find that

ρ̂n 6 αnζ + (1 + α + · · · + αn)ρ̂0;
settingα = 2(1+C3h) andζ = 2C3hρ̂0 + 2C3h, and using the assumptions on the initial
function9 to boundρ̂0, we deduce the desired result.

Notation 1. We denote byX(tn+1) the value of the exact solution of equation (20) at the
meshpointtn+1, by X̃n+1 the value of the approximate solution using equation (21), and by
X̃(tn+1) the value obtained after just one step of equation (21); that is,

X̃(tn+1) = X(tn)+ φ
(
h,X(tn),X(tn − τ), Iφ

)
.

Using the above notation we can give the following definitions, employing terminology
used for SODEs by Artemiev and Averina [2, pp. 89–91].

Definition 3. Theerror of the above approximation{X̃n}on the mesh-points is the sequence
of random variables

εn := X(tn)− X̃n, n = 1, . . . , N. (25)

Note thatεn is Atn -measurable since bothX(tn) andX̃n areAtn -measurable random

variables, and that
(
E |εn|2

)1/2
is theL2-norm of (25).

Definition 4. Let

δn+1 = X(tn+1)− X̃(tn+1), n = 0, . . . , N − 1. (26)

The method (21) is said to beconsistentwith orderp1 in the mean and with orderp2 in the
mean-square sense if, with

p2 > 1

2
and p1 > p2 + 1

2
, (27)

the estimates
max

06n6N−1
|E(δn+1)| 6 Chp1 ash→0, (28)

and

max
06n6N−1

(
E |δn+1|2

) 1
2 6 Chp2 ash→0, (29)

hold, where the (generic) constantC does not depend onh, but may depend onT , and on
the initial data.
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We now state the main theorem of this paper, which is the analogue in the case of delay
equations of a theorem by Milstein for SODEs (see [21], in particular for a discussion of
the necessity to employ consistency in the meanand in the mean-square, as well as the
application of conditional versions of the inequalities (28) and (29)).

Theorem 3. We assume that the conditions of Theorem1 are fulfilled. Suppose that the
method defined by equation(21) is consistent with orderp1 in the mean and orderp2 in the
mean-square sense, withp1,p2 satisfying inequality(27), and that the increment function
φ in equation(21) satisfies the estimates(22) and (23). Then the approximation(21) for
equation(20) is convergent inL2 (ash → 0 with τ/h ∈ N) with orderp = p2 − 1/2.
That is, convergence is in the mean-square sense, and

max
16n6N

(
E |εn|2

) 1
2 6 Chp ash→0. (30)

Proof. Using Notation1, adding and subtractingX(tn) andφ(h,X(tn),X(tn−τ), Iφ), and
rearranging, we obtain

εn+1 = X(tn+1)− X̃n+1

= X(tn)− X̃n︸ ︷︷ ︸
εn

+X(tn+1)−X(tn)− φ
(
h,X(tn),X(tn − τ), Iφ

)︸ ︷︷ ︸
δn+1

+φ (h,X(tn),X(tn − τ), Iφ
)− φ

(
h, X̃n, X̃n−Nτ , Iφ

)︸ ︷︷ ︸
un

= εn + δn+1 + un,

whereun is defined as

un := φ
(
h,X(tn),X(tn − τ), Iφ

)− φ
(
h, X̃n, X̃n−Nτ , Iφ

)
. (31)

Thus, squaring, employing the conditional mean with respect to theσ -algebraAt0, and
taking the modulus, we obtain

E
( |εn+1|2 |At0

)
6 E

( |εn|2 |At0

)+ E
( |δn+1|2 |At0

)︸ ︷︷ ︸
(1)

+ E
( |un|2 |At0

)︸ ︷︷ ︸
(2)

+ 2
∣∣E (δn+1 · εn | At0

)∣∣︸ ︷︷ ︸
(3)

+ 2
∣∣E (δn+1 · un |At0

)∣∣︸ ︷︷ ︸
(4)

+ 2
∣∣E (εn · un |At0

)∣∣︸ ︷︷ ︸
(5)

, (32)

which holds almost surely.
We shall now estimate the separate terms in inequality (32) individually and in sequence;

all the estimates hold almost surely. We shall frequently use the Hölder inequality, the
inequality 2ab 6 a2 + b2 and properties of conditional expectation, which can be found in
[29]. In the sequel we shall usec to denote an unspecified constant, which depends only on
the constantsL1, L2, L3, L4, K1, K2, C1 andC2, and onT and the initial data.

• For the term labelled (1) in inequality (32), we have, due to the assumed consistency
in the mean-square sense of the method,

E
(
|δn+1|2 |At0

)
= E

(
E
( |δn+1|2 |Atn

) |At0

)
6 ch2p2.
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• For the term labelled (2) in inequality (32), we have, due to property (23) of the
increment function,

E
(
|un|2 |At0

)
6 chE

(
|εn|2 |At0

)
+ chE

(
|εn−Nτ |2 |At0

)
.

• For the term labelled (3) we have, due to the consistency condition,

2
∣∣E (δn+1 · εn |At0

)∣∣ 6 2
∣∣E (E(δn+1|Atn )εn |At0

)∣∣
6 2

(
E
∣∣E(δn+1 |Atn )

∣∣2) 1
2 ·
(
E
(|εn|2 |At0

)) 1
2

6 2
(
E(chp1)2

) 1
2 ·
(
E
(|εn|2 |At0

)) 1
2

= 2
(
E
(
ch2p1−1)) 1

2 ·
(
hE
(|εn|2 |At0

)) 1
2

6 ch2p1−1 + hE
(|εn|2 |At0

)
.

• For the term labelled (4) in inequality (32), we obtain, by employing the consistency
condition and property (23) of the increment functionφ,

2
∣∣E(δn+1 · un |At0)

∣∣ 6 2
(
E
(|δn+1|2 |At0

)) 1
2
(
E
(|un|2 |At0

)) 1
2

6 E
(
E
(|δn+1|2 |Atn

)|At0

)
+ E

(|un|2 |At0

)
6 ch2p2 + chE

(
ε2
n |At0

)+ chE
(
ε2
n−Nτ |At0

)
.

• For the term labelled (5) in inequality (32) we have, using definition (31) and property
(22) of the increment functionφ,

2
∣∣E(un · εn |At0

)∣∣ 6 2E
(∣∣E(un |Atn )

∣∣ · |εn| |At0

)
6 chE

(|εn|2 |At0

)+ 2chE
(|εn| |εn−Nτ | |At0

)
6 chE

(|εn|2 |At0

)+ ch

{
2
(
E(|εn|2 |At0)

) 1
2 · (E(|εn−Nτ |2 |At0)

) 1
2

}
6 chE

(|εn|2 |At0

)+ chE
(|εn|2 |At0

)+ chE
(|εn−Nτ |2 |At0

)
,

6 chE
(|εn|2 |At0

)+ chE
(|εn−Nτ |2 |At0

)
.

Combining these results, we obtain, with 2p2 6 2p1 − 1,

E
(
ε2
n+1 |At0

)
6 (1 + ch)E

(
ε2
n |At0

)+ ch2p2 + chE
(|εn−Nτ |2 |At0

)
.

Now we shall prove the assertion by an induction argument over consecutive intervals
of lengthτ up to the end of the interval[0, T ]. Since we have exact initial values, we set
εn = 0 for n = −Nτ , . . . ,0.

Step 1.Suppose thattn ∈ [0, τ ]; that is,n = 1, . . . , Nτ andεn−Nτ = 0.

E
(
ε2
n+1 |At0

)
6 (1 + ch)E

(
ε2
n |At0

)+ ch2p2

6 ch2p2

n∑
k=0

(1 + ch)k

= ch2p2
(1 + ch)n+1 − 1

(1 + ch)− 1
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6 ch2p2−1
((
ech
)n+1 − 1

)
6 ch2p2−1

(
ecT − 1

)
.

Step 2.Suppose thattn ∈ [kτ, (k + 1)τ], and make the assumption that

E
(|εn−Nτ |2 |At0

)
6 ch2p2−1.

Then

E
(
ε2
n+1 |At0

)
6 (1 + ch)E

(
ε2
n |At0

)+ ch2p2 + chE
(|εn−Nτ |2 |At0

)
6 (1 + ch)E

(
ε2
n |At0

)+ ch2p2 + hch2p2−1

= (1 + ch)E
(
ε2
n |At0

)+ ch2p2

6 ch2p2−1(ecT − 1
)
,

by the same arguments as above. This implies, almost surely, that(
E
(
ε2
n+1 |At0

)) 1
2 6 chp2− 1

2 ,

which proves the theorem.

The above theorem is an analogue of [21, Theorem 1.1], but our proof follows different
lines. In the remainder of this section we shall discuss stochastic zero-stability. We adapt
the definition given in [12].

Definition 5. The stochastic one-step method (21) is zero-stable in the quadratic mean-
square senseif, given ε > 0, there is aδ = δ(ε, h0) > 0 such that for all 0< h < h0 and
positive integersn 6 T/h,

ρ0 ≡ max
−Nt6r60

E
∣∣X̃r − X̃∗

r

∣∣2 6 δ H⇒ ρn ≡ E
∣∣X̃n − X̃∗

n

∣∣2 6 ε

holds, wherẽX∗
n denotes the sequence defined by the method (21) with the initial values

X̃r for r = −Nt, . . . ,0 replaced bỹX∗
r for r = −Nt, . . . ,0. If the method is stable and,

further, ifρn→0 wheneverρ0 is sufficiently small, the method isasymptotically zero-stable
in the quadratic mean-square sense.

Theorem 4. If the increment functionφ of the approximation method(21) satisfies the
estimates(22)and(23), then the one-step method(21) is zero-stable in the quadratic mean-
square sense.

Proof. We have, for 0< n 6 N = T/h,(
X̃n − X̃∗

n

)2 6
(
X̃n−1 − X̃∗

n−1

)2
+2

(
X̃n−1 − X̃∗

n−1

) ·(
φ
(
h, X̃n−1, X̃n−1−Nτ , Iφ

)− φ
(
h, X̃∗

n−1, X̃
∗
n−1−Nτ , Iφ

) )
+
(
φ
(
h, X̃n−1, X̃n−1−Nτ , Iφ

)− φ
(
h, X̃∗

n−1, X̃
∗
n−1−Nτ , Iφ

) )2
.

Now we take expected values conditioned on theσ -algebra(At0), take the modulus and
use properties of conditional expectation and the estimates (22) and (23), and proceed with
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the manipulations in the same way as we did for the terms labelled (2) and (5) in inequality
(32). We obtain
E
( ∣∣X̃n − X̃∗

n

∣∣2 |At0

)
6 E

( ∣∣X̃n−1 − X̃∗
n−1

∣∣2 |At0

)
+2
∣∣∣E( (X̃n−1 − X̃∗

n−1

) ·(
φ
(
h, X̃n−1, X̃n−1−Nτ , Iφ

)− φ
(
h, X̃∗

n−1, X̃
∗
n−1−Nτ , Iφ

)) |At0

)∣∣∣
+E

(∣∣φ(h, X̃n−1, X̃n−1−Nτ , Iφ)− φ(h, X̃∗
n−1, X̃

∗
n−1−Nτ , Iφ)

∣∣2|At0

)
6 E

(∣∣X̃n−1 − X̃∗
n−1

∣∣2|At0

)
+chE

(∣∣X̃n−1 − X̃∗
n−1

∣∣2|At0

)
+ chE

(∣∣X̃n−1−Nτ − X̃∗
n−1−Nτ

∣∣2|At0

)
+hE

(∣∣X̃n−1 − X̃∗
n−1

∣∣2|At0

)
+ chE

(∣∣X̃n−1−Nτ − X̃∗
n−1−Nτ

∣∣2 |At0

)
= (1 + ch)E

(∣∣X̃n−1 − X̃∗
n−1

∣∣2|At0

)
+ chE

(∣∣X̃n−1−Nτ − X̃∗
n−1−Nτ

∣∣2 |At0

)
,

wherec denotes a generic positive constant.
The proof now follows similar lines to the proof of Lemma1. We define the quantities

R0 = max
−Nτ6r60

E
(∣∣X̃r − X̃∗

r

∣∣2 |At0

)
and Rn = max

0<r6n
E
(∣∣X̃r − X̃∗

r

∣∣2 |At0

)
;

R̂0 = R0, R̂n = max
−Nτ6r6n

E
(∣∣X̃r − X̃∗

r

∣∣2 |At0

)
= max

(
R0, Rn

)
,

and we note that{Rn}n>0 and{R̂n}n>0 are monotonically non-decreasing. We now obtain,
for 0 < n 6 Nτ , the resultR̂n 6 (1 + ch)R̂n−1 + chR̂0, whilst for n > Nτ we have
R̂n 6 (1 + ch)R̂n−1 + chR̂j (n) for somej (n) < n. Thus

R̂n 6 (1 + 2ch)R̂n−1 for n > 0.

It follows (by induction, and using the property that 1+ 2ch < exp(2ch)) that

R̂n 6 exp(2cT )R̂0.

We deduce that, givenε > 0, we have

R̂n 6 ε if R0 6 δ ≡ ε exp(−2cT ), whenn 6 N,

which proves the theorem.

Conjecture. We conjecture that if the method (21) is consistent in both the mean and the
mean-square senses, and is asymptotically zero-stable in the mean-square, then the method
is convergent in the mean-square sense. We have not located the corresponding discussion
for SODEs in the literature.

5. The Euler–Maruyama scheme

The most widely used approximation method for stochastic differential equations is the
Euler–Maruyama scheme, which we shall use to provide some numerical illustrations. In
this section we shall prove that it satisfies the consistency conditions (28) and (29), as well
as conditions (22) and (23).

325https://doi.org/10.1112/S1461157000000322 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000322


Numerical analysis of SDDEs

Recall that we consider strong approximations with a fixed step-size on the interval
[0, T ]; that is,h = T/N , tn = n · h, n = 0, . . . , N , and that we assume the existence of
an integerNτ = N/(m · r), such that the lag can be expressed in terms of the step-size as
τ = Nτ · h.

The Euler–Maruyama method has the following form for equation (20):

X̃n−Nτ = 9(tn − τ), n−Nτ 6 0

X̃n+1 = X̃n + hf
(
X̃n, X̃n−Nτ

)+ g
(
X̃n, X̃n−Nτ

)
1Wn+1, 1 6 n 6 N − 1 (33)

with 1Wn+1 := W(n+1)h −Wnh, denoting independentN(0, h)-distributed Gaussian ran-
dom variables. We denote the increment function of the Euler–Maruyama scheme (33)
by φEM . It contains only the most basic multiple Itô-integrals, namelyI(0),h = h and
I(1),h = 1Wn+1.

Theorem 5. (1) If the functionsf , g and9 in equation(20) satisfy the conditions of
Theorem1 (that is, assumptionsA1 to A3 and, in addition, assumptionA4), then the
Euler–Maruyama approximation is consistent(a) with orderp1 = min(1 + γ, 3/2)
in the mean, and(b) with orderp2 = min(1/2+ γ, 1) in the mean-square, whereγ
is the exponent of Hölder-continuity of9 in assumptionA2.

(2) For equations(20) with additive noise and a decomposable drift functionf (that is,
assumptionA5 holds), the Euler–Maruyama approximation is consistent with order
p1 = min(1 + γ, 2) in the mean, and with orderp2 = min(1/2 + γ, 3/2) in the
mean-square.

Proof. We concentrate first on part (1). We shall frequently make use of the fact (see
[1, Remark 6.1.7]) that for all 06 u 6 t 6 T the equation

X(t)−X(0) =
∫ t

0
f
(
X(s),X(s − τ)

)
ds +

∫ t

0
g
(
X(s),X(s − τ)

)
dW(s)

is equivalent to

X(t)−X(u) =
∫ t

u

f
(
X(s),X(s − τ)

)
ds +

∫ t

u

g
(
X(s),X(s − τ)

)
dW(s). (34)

First we prove consistency in the mean with orderp1 = min(1+ γ, 3/2). We thank Dr.
Tretyakov for pointing out, in a private communication, a gap in an earlier version of the
proof. We have

δn+1 = X(tn+1)−X(tn)− φEM
(
h,X(tn),X(tn − τ), IφEM

)
=
∫ tn+1

tn

f
(
X(s),X(s − τ)

)
ds +

∫ tn+1

tn

g
(
X(s),X(s − τ)

)
dW(s)

−hf (X(tn),X(tn − τ)
)− g

(
X(tn),X(tn − τ)

)
1Wn+1

=
∫ tn+1

tn

f
(
X(s),X(s − τ)

)− f
(
X(tn),X(tn − τ)

)
ds

+
∫ tn+1

tn

g
(
X(s),X(s − τ)

)− g
(
X(tn),X(tn − τ)

)
dW(s);
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hence|E(δn+1)| =
∣∣∣∣E ∫ tn+1

tn

f
(
X(s),X(s − τ)

)− f
(
X(tn),X(tn − τ)

)
ds

∣∣∣∣
6
∣∣∣∣E ∫ tn+1

tn

{
∂f

∂x1

(
X(tn),X(tn − τ)

) (
X(s)−X(tn)

)}
ds

∣∣∣∣︸ ︷︷ ︸
(1)

+
∣∣∣∣E ∫ tn+1

tn

{
∂f

∂x2

(
X(tn),X(tn − τ)

) (
X(s − τ)−X(tn − τ)

)}
ds

∣∣∣∣︸ ︷︷ ︸
(2)

+
∣∣∣∣E ∫ tn+1

tn

ρ(s) ds

∣∣∣∣︸ ︷︷ ︸
(3)

, (35)

using Taylor’s theorem forf and denoting by∂f /∂xi the derivative off with respect to
theith argument.

We have two cases to consider for the integrands in equation (35): (i) s − τ 6 0 for
s ∈ [tn, tn+1] (so we haveX(s − τ) = 9(s − τ)), and (ii) tn − τ > 0.

• For the term (1) in equation (35) we obtain in both cases, by invoking equation (34)
and assumption A4onf ,∣∣∣∣E ∫ tn+1

tn

{
∂f

∂x1

(
X(tn),X(tn − τ)

) (
X(s)−X(tn)

)}
ds

∣∣∣∣
6 c

∣∣∣∣E ∫ tn+1

tn

∫ s

tn

f
(
X(u),X(u− τ)

)
du ds

∣∣∣∣
6 cE

(√
K(1 + 2 sup

−τ6r6T
|X(r)|2)

)
·
(∫ tn+1

tn

∫ s

tn

du ds

)

6 c

(√
K(1 + 2E sup

−τ6r6T
|X(r)|2)

)
h2

6 c
(√
K(1 + 2C1(‖9‖, T )

)
h2

with C1(‖9‖, T ) = (1/2+ 4E‖9‖2) e6K(T+4)T , due to inequality (16).

• For the term (2) in equation (35) assumption A4 onf and assumption A2 on9 yield
in case (i):∣∣∣∣E ∫ tn+1

tn

{
∂f

∂x2

(
X(tn),9(tn − τ)

) (
9(s − τ)−9(tn − τ)

)}
ds

∣∣∣∣
6 E

∫ tn+1

tn

∣∣∣∣ ∂f∂x2

(
X(tn),9(tn − τ)

)∣∣∣∣ |9(s − τ)−9(tn − τ)| ds

6 c

∫ tn+1

tn

L5 |s − tn|γ ds

6 ch1+γ .
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In case (ii) we obtain:∣∣∣∣E ∫ tn+1

tn

{
∂f

∂x2

(
X(tn),X(tn − τ)

) (
X(s − τ)−X(tn − τ)

)}
ds

∣∣∣∣
6

√
E

(∫ tn+1

tn

∂f

∂x2

(
X(tn),X(tn − τ)

) (
X(s − τ)−X(tn − τ)

)
ds

)2

6

√
hE

∫ tn+1

tn

(
∂f

∂x2

(
X(tn),X(tn − τ)

))2 (
X(s − τ)−X(tn − τ)

)2
ds

6
√
hc

∫ tn+1

tn

s − tn ds

6 ch
3
2 .

• For the term (3) in equation (35), the remainderρ(s) has the form

ρ(s) = 1

2

∂2f

∂x2
1

(φ, ϕ)
(
X(s)−X(tn)

)2
+ ∂2f

∂x1∂x2
(φ, ϕ)

(
X(s)−X(tn)

)(
X(s − τ)−X(tn − τ)

)
+1

2

∂2f

∂x2
2

(φ, ϕ)
(
X(s − τ)−X(tn − τ)

)2
,

where the derivatives off are evaluated at appropriate intermediate valuesX(tn) 6
φ 6 X(s) andX(tn−τ) 6 ϕ 6 X(s−τ). We can then calculate, using 2ab 6 a2+b2

and assumption A4onf ,

|ρ(s)| 6 c
(
|X(s)−X(tn)|2 + |X(s − τ)−X(tn − τ)|2

)
. (36)

We have, by inequality (36), assumption A2on9 and inequality (18), in case (i):∣∣∣∣E ∫ tn+1

tn

ρ(s) ds

∣∣∣∣
6 cE

∫ tn+1

tn

|X(s)−X(tn)|2 + |9(s − τ)−9(tn − τ)|2 ds

6 c

∫ tn+1

tn

(s − tn) ds + c

∫ tn+1

tn

(s − tn)
2γ ds 6 ch2 + ch1+2γ .

In case (ii), we obtain∣∣∣∣E ∫ tn+1

tn

ρ(s) ds

∣∣∣∣
6 cE

∫ tn+1

tn

|X(s)−X(tn)|2 + |X(s − τ)−X(tn − τ)|2 ds

6 c

∫ tn+1

tn

(s − tn) ds 6 ch2.
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In summary, we obtain

|E(δn+1)| 6 chmin(1+γ,32 ),
so part 1(a) of the theorem follows. We have used properties of multiple Itô-integrals, which
may be found in [19] and [21]. We have also employed the following estimate of the drift
term: ∣∣f (X(u),X(u− τ)

)∣∣ 6

√√√√K (1 + 2 sup
−τ6r6T

|X(r)|2
)
,

which is an immediate consequence of the linear growth bound (14).
Now we prove part 1(b)—in other words, consistency in the mean-square, with order

p2 = min(1/2+ γ, 1). We use the Hölder inequality, the Schwarz inequality for integrals,
2ab 6 a2 + b2, (a + b)2 6 2(a2 + b2) and property (17). We have:

E |δn+1|2 6 E

(∫ tn+1

tn

∣∣f (X(s),X(s − τ)
)− f

(
X(tn),X(tn − τ)

)∣∣ ds)2

+2E


(∫ tn+1
tn

∣∣f (X(s),X(s − τ)
)− f

(
X(tn),X(tn − τ)

)∣∣ ds)
×
(∫ tn+1
tn

∣∣g(X(s),X(s − τ)
)− g

(
X(tn),X(tn − τ)

)∣∣ dW(s))


+E

(∫ tn+1

tn

∣∣g(X(s),X(s − τ)
)− g

(
X(tn),X(tn − τ)

)∣∣ dW(s))2

6 E

(∫ tn+1

tn

∣∣f (X(s),X(s − τ)
)− f

(
X(tn),X(tn − τ)

)∣∣ ds)2

+2


(

E
(∫ tn+1
tn

∣∣f (X(s),X(s − τ)
)− f

(
X(tn),X(tn − τ)

)∣∣ ds)2
)1/2

×
(∫ tn+1
tn

E
( ∣∣g(X(s),X(s − τ)

)− g
(
X(tn),X(tn − τ)

)∣∣ )2 ds)1/2


+
∫ tn+1

tn

E
(∣∣g(X(s),X(s − τ)

)− g
(
X(tn),X(tn − τ)

)∣∣)2 ds
6 2E

(∫ tn+1

tn

∣∣f (X(s),X(s − τ)
)− f

(
X(tn),X(tn − τ)

)∣∣ ds)2

+2
∫ tn+1

tn

E
(∣∣g(X(s),X(s − τ)

)− g
(
X(tn),X(tn − τ)

)∣∣)2 ds
6 2E

(∫ tn+1

tn

L1 |X(s)−X(tn)| + L2 |X(s − τ)−X(tn − τ)| ds
)2

+2E

∫ tn+1

tn

(
L3|X(s)−X(tn)| + L4|X(s − τ)−X(tn − τ)|)2 ds

6 2hE

(∫ tn+1

tn

(
L1|X(s)−X(tn)| + L2|X(s − τ)−X(tn − τ)|)2 ds)

+2
∫ tn+1

tn

E
(
L3|X(s)−X(tn)| + L4|X(s − τ)−X(tn − τ)|)2 ds
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6 4h
∫ tn+1

tn

L2
1 E
(|X(s)−X(tn)|2

)+ L2
2 E
(|X(s − τ)−X(tn − τ)|2) ds

+4
∫ tn+1

tn

L2
3 E
(|X(s)−X(tn)|2

)+ L2
4 E
(|X(s − τ)−X(tn − τ)|2) ds.

(37)

Again, there are the two cases to consider for the delayed arguments. In case (i) we obtain,
by using assumption A2on9, that the value of inequality (37) is

6 4h
∫ tn+1

tn

L2
1C2(‖9‖, T )(s − tn)+ L2

2 L5(s − tn)
2γ ds

+4
∫ tn+1

tn

L2
3C2(‖9‖, T )(s − tn)+ L2

4L5(s − tn)
2γ ds

6 cC2(‖9‖, T )h2 + ch1+2γ .

In case (ii) we calculate that inequality (37) is

6 4h
∫ tn+1

tn

L2
1C2(‖9‖, T )(s − tn)+ L2

2C2(‖9‖, T )(s − tn) ds

+4
∫ tn+1

tn

L2
3C2(‖9‖, T )(s − tn)+ L2

4C2(‖9‖, T )(s − tn) ds

6 cC2 (‖9‖, T )h2.

This implies that (
E |δn+1|2

) 1
2 6 ch

min
(

1
2+γ,1

)
.

Now consider part (2), and note that

δn+1 =
∫ tn+1

tn

f
(
X(s),X(s − τ)

)− f
(
X(tn),X(tn − τ)

)
ds

for equations (20) with additive noise. In the case that assumption A5 holds (that is, the
equation (20) has additive noise and a decomposable drift functionf ), we obtain for the
term (2) in inequality (35) and case (ii)∣∣∣∣E ∫ tn+1

tn

{
∂f

∂x2
(X(tn − τ)) (X(s − τ)−X(tn − τ))

}
ds

∣∣∣∣
6 c

∣∣∣∣E ∫ tn+1

tn

∫ s−τ

tn−τ
f (X(u),X(u− τ)) du ds

∣∣∣∣
6 cE

(√
K(1 + 2 sup

−τ6r6T
|X(r)|2)

)
·
(∫ tn+1

tn

∫ s−τ

tn−τ
du ds

)

6 c

(√
K(1 + 2E sup

−τ6r6T
|X(r)|2)

)
h2

6 c
(√
K(1 + 2C1(‖9‖, T )

)
h2

with C1(‖9‖, T ) = (1/2+ 4E‖9‖2) e6K(T+4)T , due to inequality (16). Using this bound
to modify the proof of part (1), the result in part (2) follows.
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Remark 2. A modification of the proof gives, withp1 = 2 andp2 = 1, the corresponding
result for the case of an SODE; see [21].

Lemma 2. If the functionsf andg in equation(9) satisfy the conditions of Theorem1,
then the increment functionφEM of the Euler–Maruyama scheme(given by equation(33))
satisfies the estimates(22)and(23) for all ξ, ξ ′, η, η′ ∈ R.

Proof. We use the Lipschitz-continuity of the drift and diffusion function and properties of
multiple Itô-integrals, which may be found in [19] and [21].∣∣E (φEM(h, ξ, η,1Wn+1)− φEM(h, ξ

′, η′,1Wn+1)
)∣∣

= ∣∣E (hf (ξ, η)+ g(ξ, η)1Wn+1 − h f (ξ ′, η′)− g(ξ ′, η′)1Wn+1
)∣∣

6 h
∣∣f (ξ, η)− f (ξ ′, η′)

∣∣+ ∣∣g(ξ, η)− g(ξ ′, η′)
∣∣ ∣∣E(1Wn+1)

∣∣
6 h

(
L1 |ξ − ξ ′| + L2 |η − η′|)

E
(∣∣φEM(h, ξ, η,1Wn+1)− φEM(h, ξ

′, η′,1Wn+1)
∣∣2)

= E
(∣∣hf (ξ, η)+ g(ξ, η)1Wn+1 − hf (ξ ′, η′)− g(ξ ′, η′)1Wn+1

∣∣2)
6 2h2

∣∣f (ξ, η)− f (ξ ′, η′)
∣∣2 + 2

∣∣g(ξ, η)− g(ξ ′, η′)
∣∣2 E |1Wn+1|2

6 4h2
(
L2

1 |ξ − ξ ′|2 + L2
2 |η − η′|2)+ 4h

(
L2

3 |ξ − ξ ′|2 + L2
4 |η − η′|2),

from which the estimates follow.

Lemma 3. If the functionsf andg in equation(9) satisfy the conditions of Theorem1,
then the increment functionφEM of the Euler–Maruyama scheme(given by equation(33))
satisfies the estimate(24) for all ξ, η ∈ R.

Proof. We use the linear growth bounds of the drift and diffusion function and properties
of multiple Itô-integrals, which may be found in [19] and [21].

E
(|φEM(h, ξ, η,1Wn+1)|2

)
= E

(|hf (ξ, η)+ g(ξ, η)1Wn+1|2
)

6 2h2 |f (ξ, η)|2 + 2|g(ξ, η)|2E |1Wn+1|2
6 2h2K1

(
1 + |ξ |2 + |η|2)+ 2K2

(
1 + |ξ |2 + |η|2)h,

from which the estimates follow.

The next theorem follows from our previous results in Theorem5 and Lemmas2 and3.

Theorem 6. (1) Theorem3 is valid, for the Euler–Maruyama method applied to equa-
tions(20), under conditionsA1 – A4, with order of convergencep = min(γ, 1/2) in
the mean-square sense.

(2) With the additional assumptionA5 (that is, for equations with additive noise and
decomposablef ) Theorem3 is even valid for the Euler–Maruyama method with
order of convergencep = min(γ, 1) in the mean-square sense.
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6. Numerical experiments

The theoretical discussion of numerical processes is intended to provide an insight into
the performance of numerical methods in practice. We have used the equation

dX(t) = (
aX(t)+ bX(t − 1)

)
dt + (

β1 + β2X(t)+ β3X(t − 1)
)
dW(t)

as a test equation for our Euler–Maruyama method; we shall use this section to report on
some numerical results for this equation, and to relate them (to a limited extent) to the theory
presented above.

Concerning ‘exact solutions’, in the case of additive noise (β2 = β3 = 0) we have
calculated an explicit solution on the first interval[0, τ ] by the method of steps (see, for
example, [9]), using9(t) = 1 + t for t ∈ [−1,0] as an initial function. The solution on
t ∈ [0, 1] is given by

X(t) = eat
(

1 + b

a2

)
− b

a
t − b

a2
+ βeat

∫ t

0
e−asdW(s).

We have then used this solution as an initial function to compute an ‘explicit solution’ on
the second interval[1,2] with a standard SODE-method and a small step-size. In the case
of multiplicative noise we have computed an ‘explicit solution’ on a very fine grid (usually
2048 steps) with the Euler–Maruyama scheme.

Our tests concerned the illustration of the theoretical order of convergence. If we square
both sides of inequality (30) in Theorem6, conditions for which are satisfied in the examples,
we see that the mean-square errorE |X(T ) − X̃N |2 should be bounded byCh2p for some
C:

E
∣∣X(T )− X̃N

∣∣2 6 Ch2p. (38)

In our experiments, the mean-square error at the final timeT = 2 was estimated in the
following way. A set of 20 blocks, each containing 100 outcomes(ωi,j ; 1 6 i 6 20,
1 6 j 6 100), were simulated, and for each block the estimator

εi = 1

100

100∑
j=1

∣∣X(T , ωi,j )− X̃N(ωi,j )
∣∣2

was formed. In Table1, ε ≡ ε(h) denotes the mean of this estimator, which was itself
estimated in the usual way. Thus we have

ε(h) := 1

20

20∑
i=1

εi and ε(h) ≈ E
∣∣X(T )− X̃N

∣∣2 . (39)

We therefore ask whether the numerical results suggest the existence of a constantC such
that

ε(h) 6 Ch2p. (40)

Using the set of coefficients

I: a = −2, b = 0.1, β1 = 1, β2 = β3 = 0,

II: a = −2, b = 0.1, β2 = 1, β1 = β3 = 0,

III: a = −2, b = 0.1, β3 = 1, β1 = β2 = 0,

we obtained the results (corresponding toh0 = 1/4,h1 = h0/2, h2 = h1/2, h3 = h2/2)
shown in Table1.
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Table 1: Estimated errorsε for the Euler–Maruyama method

h I, ε I, ratio II, ε II, ratio III, ε III, ratio
0.25 0.0184 * 0.1089 * 0.02011 *
0.125 0.00404 0.22 0.04913 0.45 0.00987 0.5
0.0625 0.000973 0.24 0.02437 0.5 0.004823 0.5
0.03125 0.000244 0.25 0.012135 0.5 0.0025 0.5
Suggested 1 1/2 1/2
values ofp

It is, of course, impossible to prove a result such as that in inequality (40) by numerical
experimentation. In fact, however, the computed ratio of termsε(h/2)/ε(h) approximates
{1/2}2p for an appropriatep ( as suggested in the table), which is suggestive of the stronger
resultε(h) = µph

2p+O(h2p+1), at least for a restricted class of problems. Observe that for
very smallh, rounding error effects can obscure the behaviour predicted by such a result. To
the best of our knowledge, the existence of an expansion of the error in the case of stochastic
differential equations is established only for weak approximations.

In summary, the ‘ratio’ of errors, given in Table1 for the approximations to the test
equation, are consistent (in the sense indicated above) with the property(

E |X(T )− X̃N |2) 1
2 = µp(T )h

p + O(hp+1)

and hence with the theoretical order of convergence as stated in Theorems3 and6.

7. Further directions

This paper provides an introduction to the numerical analysis of stochastic delay differ-
ential equations. We concentrated here on autonomous SDDEs; for an indication of the way
in which the theory extends to non-autonomous equations refer to the comparable extension
for SODEs [21]. When one seeks to advance the study further, one observes a number of
open questions, involving (for example):

(a) classification of the terms involving time-lag (for example, a bounded or a fading
memory);

(b) the design of numerical methods for more general problems;

(c) weak approximation methods;

(d) the stability and dynamic properties of the numerical methods;

(e) variable time-step algorithms.

For stochasticordinary differential equations, the issues (d) and (e) have only recently
attracted attention (see, for example, [26] and the relevant articles in [8], and [11,13,20],
respectively). We hope to address such issues in sequels to this paper.
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