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Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
email: schwarz@astro.univie.ac.at

Abstract. In this article we examine the motion of fictitious Trojan planets close to the equilat-
eral Lagrangean equilibrium points in extrasolar planetary systems. Whether there exist stable
motion in this area or not depends on the massratio of the primariy bodies in the restricted three
body problem, namely the host star and the gasgiant. Taking into account also the eccentricity
of the primaries we show via results of extensive numerical integrations that Trojan planets may
survive only for e < 0.25. We also show first results of a mapping in the 1:1 resonance with a
gas giant on an eccentric orbit which is applied to the extrasolar planetary systems HD 17051.
We furthermore study the influence of an additional outer planet which perturbs the motion of
the gasgiant as well as the Trojan cloud around its L4 Lagrangean point.
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1. Introduction
The search for terrestrial planets (=TP) in extrasolar planetary systems (=EPS) is one

primary subject of scientists involved in this rapidly growing field of astronomy. Although
up to now we have only knowledge of TPs with several Earth masses we hope to find
quite soon a second Earth via space-based observations. It is the task of astrodynamical
investigations to look for possibly stable orbits of additional planets in EPS where already
one, or even more gas giants (=GG) have been detected. Out of the different possible
configurations for TPs, namely orbiting inside a GG (like in our Solar System), outside
a GG (we know of many hot Jupiters) we also must take into account that a TP may
have a GG with a TP as a satellite (e.g. Saturn’s Titan). We concentrate in this study
on coorbital TPs, which could be realized as Trojan TPs (=TTP).

There are several important studies on the Trojan problem: e.g. Marzari & Scholl
1998, Nauenberg 2002, Laughlin & Chambers 2002, Menou & Tabachnik 2003, Morbidelli
et al. 2005.

In chapter 2 we show the results of numerous integrations which have been undertaken
to establish the largeness of the stable regions around the equilateral points of a large
planet depending on the mass and the eccentricity of the primaries. We also show a
mapping in the 1:1 resonance in the elliptic restricted three body problem, which gives
a good indication of the dynamical structure of the Trojan region. In chapter 3 we
concentrate on the perturbation of the stable region caused by a large planet outside the
GG hosting the TP which mimics quite well the Solar system situation (e.g. Jupiter and
Saturn). Finally, in the last chapter, we summarize the results which are interesting with
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Figure 1. Typical motion of a Trojan asteroid in a rotating frame close to the equilateral
equilibrium point L4 (left graph). The stability of the equilateral equilibrium points depending
on the mass ratio P and the eccentricity of the primary bodies after Marchal, 1990 (right graph).

respect to formation mechanism (Beaugé et al. 2007) and the chances to observe such
TTPs (e.g. Ford & Gaudi, 2006 and Goździewski & Konacki 2007).

2. The Trojan Regions in Extrasolar Planetary Systems
It is known since the first discovery of an asteroid staying always in the vicinity of

the Lagrangean equilibrium point (Fig. 1) that the work of Lagrange and Euler in the
restricted three body problem † was not only of theoretical interest. This first asteroid
was discovered by Max Wolf in Heidelberg in 1906 who named it after Achilles, the
hero of the Trojan War. In the following years many more asteroids were discovered in
Jupiter’s Lagrangian points and were given names associated with the Iliad‡.

2.1. Numerical determination of the stable region for Trojans
Part of the work was to find out how large is the extension of the stable regions around the
equilateral Lagrangian points (Efthymiopoulos & Sándor, 2005). From theory we know
that the equilateral points are linearly stable even for large eccentricities of the primaries
since the first work of Danby (1964). Fig. 1 shows zones of stability for motions of Trojan
bodies in terms of the mass parameter P and the eccentricity. In addition we plotted the
positions of all habitable¶ extrasolar systems. The mass parameter P is defined through
the equation (see Marchal, 1990):

P =
(m2 + m3)

M
+

m2 · m3

m1
2 + O

(
m3

2 ·
m3

m1
4

)
, (2.1)

† A massless regarded planet is moving under the gravitational influence of Sun and a gasgiant
like Jupiter in the same plane, where the two massive bodies, called the primies have circular
orbit.

‡ This group of asteroids is called ’Trojans’. The ones close to the L4 point are named after
Greek heroes, the ones close to the L5 point are given names of the heroes of Troy. 617 Patroclus,
a Greek warrior, is wrong placed as it is in the ’defending’ Trojan camp, whereas 624 Hektor, a
Trojan warrior, is in the Greek camp.

¶ Which means Extrasolar systems where one gas giant stays partly or fully in the habitable
zone.
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Figure 2. Stable area around the Lagrange point L4 in the restricted three body problem for
a dynamical model Sun–Jupiter depending on the eccentricity of the primaries.

m1 ,m2 ,m3 are the masses of the star, the perturbing planet and the TTP respec-
tively and M is the total mass of the system. Several studies have already been dedicated
to this problem for extrasolar planetary systems (e.g. Dvorak and Schwarz 2005, Érdi
and Sándor 2005, Érdi et al. 2007, Schwarz et al. 2005, 2007a and 2007b). The objec-
tives of these investigations were to examine the dynamics of a terrestrial planet in 1:1
mean motion resonance with a Jovian-like planet. We show in Fig. 2 how the size of
the Trojan stability regions for a Jupiter sized planet depends on the eccentricity of its
orbit. This stable area was determined making use of the results of the integration of
the equations of motion of a fine grid of initial conditions around the L4 point for 1
million periods of the primaries. Finally a catalogue of hypothetical habitable Trojan
planets (http://www.univie.ac.at/adg/) was computed, where the largeness of the stable
region depending on the mass ratio of the star to the planet and of the eccentricity of
the primaries’ orbits is shown.

2.2. Analytical mapping model for terrestrial trojan planets

To obtain a mapping model for the 1:1 resonance of the elliptic restricted three body
problem, we expanded the corresponding disturbing function R of the Hamiltonian (where
µ = m2/(m1 + m2) is the mass ratio of the primaries (we assume m1 >> m2 and set
x =

√
a
a′ − 1), see also Hajidemetriou 1993:
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H = H0 + µH1 = − 1
2(1 + x)2 − (1 + x) − µR, (2.2)

with respect to the eccentricities (e, e′) and the variation in the semi-major axis of the
ratio between the axis of the asteroid (a) and the disturbing planet (a′) to suitable high
orders (′ indicates the disturbing body).

The set of variable used to describe the systems are the Delaunay variables (Érdi &
Sándor, 2005) defined by the quantities:

τ = λ − λ́, y =
√

a

a´

(√
1 − e2 − 1

)
, ω, (2.3)

where λ is the orbital longitude and ω means the argument of pericenter of the TTP. In
the case of HD 17051 we carried out the expansion up to 7th order in the eccentricites
to cover the full domain of possible motions in the extra-solar Trojan configuration, such
that the disturbing function turns out to be:

R(τ, ω, x, y; a′, e′) =
∑

ν

Bν (x, y; a′, e′) cos Φν (τ, ω, λ́), (2.4)

where Bν are polynomial functions and Φν are the corresponding phase functions hold-
ing together terms of equal order ν. A detailed description on the developement of the
disturbing function can be found e.g. in (Hajidemetriou, 1993 and Lhotka et al., 2008).
Using the method of Hadjidemetriou (1991) we setup the generating function:

W = xn+1 · τn + yn+1 · ωn + T · H̄ (τn , ωn , xn , yn , xn+1 , yn+1) , (2.5)

where H̄ = H0 +µR̄ and R̄ is the averaged disturbing function with respect to the orbital
longitude of Jupiter λ´ and T is the period of the mapping. The mapping model is derived
via the equations

Ji,n =
∂W

∂θi,n
, θi,n+1 =

∂W

∂Ji,n+1
, i = 1, 2, (2.6)

where J = (x, y) and θ = (τ, ω) and the mass parameter in (2.2) is set equal to µ =
0.01795.

The resulting mapping is defined on the 4 dimensional Poincaré surface of section, but
given in its implicit form. Former studies (Lhotka et al. 2008) showed that the radius of
convergence of the proposed mapping method becomes limited to the librational regime of
the asteroid’s motion, if we expand the generating function to make the mapping explicit
by series reversion. Therefore we introduced a simple root-finding algorithm to iterate
the mapping at each iteration step without expanding it into explicit form, so that we can
preserve all possible dynamical behaviour of the mapping. For this reason we used the
inital values (τn , ωn , xn , yn ) not only as a starting point for the mapping iteration itself,
but also as starting values for the root finding procedure to find (τn+1 , ωn+1 , xn+1 , yn+1).
In the respective figures we show two projections of the phase portrait, which is originally
a 4 dimensional manifold in 4D phase space. Nevertheless the Poincaré surface of section
((τ, ω, x, y) : ω = ω0 , ωn+1 − ωn > 0, (τ, ω, x, y) : τ = τ0 , τn+1 − τn > 0, xn > 0) reveals
the resonant structure of the system (chain of islands and the librational and rotational
behaviour of the asteroid (Fig. 3)).

3. Perturbations of a large planet on terrestrial trojan planets
We know the extension of the stable regions in the elliptic restricted problem quite

well; even when the third body has a small mass, that means in the general three body
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Figure 3. Mapping of the area around the Lagrange point L4 in the system HD 17051:
semimajor axis – libration angle (left graph) and eccentricity – pericenter (right graph).

problem there are stable areas. We now pose the question what happens when another
large planet is perturbing these bodies, a situation comparable to a configuration in our
Solar System, where Saturn perturbs the Jupiter Trojans. In this case, where the distance
of Saturn is only twice the distance of Jupiter with both planets on low eccentric orbits,
we have still a large population of Jupiter Trojans. Because nowadays we know already
25 EPS hosting more than one large planet, we study – as first approach to this question
– how a second outer planet can disturb the Trojan region of an inner planet.

We put one Jupiter sized planet in a distance of 1 AU and populated the L4 region
with massless Trojan bodies; a second large planet was included in our computations as
an outer perturber in different distances (1.2AU < a < 3.5AU). The orbital eccentricities
of both giants were set to equal values: e = 0., 0.05, 0.10, 0.15 and 0.20. To be able to
catch the most favorable and the most unfavorable initial configurations we investigated
8 different initial position (IP) for the two giants, which we call aligned (4 positions) and
antialigned (4 positions) initial conditions for the inner and outer planet† P(eriastron)P
(1,5), PA(poastron (2,6), AP (3,7),4: AA (4,8); the numbers correspond to the y-axis in
Fig. 4 and Fig. 5. As integration method we used the mercury6 symplectic integrator
(Chambers, 1999) and the integration time was set to 1 million years for 100 fictitious
Trojans around L4 . The stability criterion was a simple check of escape from that region,
the largeness was defined as the number (percentage) of remaining Trojans after the
end of the integration time. We need to emphasize that especially when we put the
perturbing (outer) planet close to the inner planet, which hosts the Trojans, the mean
motion resonances in connection with the different initial conditions are important for
the stability of an orbit.

The discussion of the results leads to the following conclusions:
• e = 0 and e = 0.05 (Fig. 4, upper graph): We just show the results of the slightly

eccentric orbits of the two planets because they are quite similar to the initially circular
case. From a2 = 1.8AU on almost 40 orbits survived; there is only a slight decrease of
the number of survivers for larger distances. The antialigned IP led to a smaller stable
region.
• e = 0.10 (Fig. 4, lower graph): For this moderate eccentricities the stable region

† P=Pericenter, A=Apocenter.
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Figure 4. Initial condition diagram of the number of surviving Trojans (z-axes) around L4
depending on the initial distance of the perturbing Jupiter (x-axis) and the position of the two
planets (y-axes): e = 0.05 (upper graph) and e = 0.10 (lower graph) initial eccentricities of the
two planets.

extends to a perturbing Jupiter as far as a = 1.8AU and the the difference for aligned
and antialigned IP starts to be significant.
• e = 0.15 (Fig. 5, upper graph): for the aligned IP of the two primaries the difference

to the former picture is not very large, but for the antialigned IP the unstable region
extends to 2 AU and globally the percentage of the surviving orbits close to L4 is halved.

• e = 0.20 (Fig. 5, lower graph): In both positions the unstable region is quite large
(extends to 1.8 AU) for the aligned IP and up to 2.2 AU for the antialigned IP, where
almost no Trojans survived.

Already for e = 0.15 and 0.20 one can see that even when the perturbing outer planet
is more than two AU from the Sun, the MMRs start to cut the stable region into different
’slices’ of stable and unstable areas for most of the initial conditions. From e = 0.25 of
the inner Jupiter almost no stable Trojans survived independent of the perturbing outer
Jupiter and thus we needed not to continue our investigations in this sense.
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Figure 5. Caption like in Fig. 4 for e = 0.15 (upper graph) and e = 0.20 (lower graph).

4. Conclusion

We discussed how large the Trojan regions extends for single planet system depending
on the eccentricity of the planet’s orbit. In an analytical mapping model we also showed
the structure of the stable region for the system HD 17051. Because more and more EPS
with several large planets are observed we extended our investigations to an additional
perturber outside the Trojan hosting large planet. The results show that – with a certain
dependence on the eccentricities – the probability for the existence of stable Trojans of
the inner large planet in EPS consisting of at least two large planets smaller than a ratio
of the semimajor axes of 1:2 is quite large.
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N16); the work of C.Lhotka was fully supported by the FWF project P-18930.
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