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GENERALIZED SIEGEL MODULAR FORMS AND
COHOMOLOGY OF LOCALLY SYMMETRIC VARIETIES

MIN HO LEE

ABSTRACT.  We generalize Siegel modular forms and construct an exact sequence
for the cohomology of locally symmetric varieties which plays the role of the Eichler-
Shimuraisomorphism for such generalized Siegel modular forms.

1. Introduction. Let G be a semisimple Lie group over R, and let K be a maxi-
mal compact subgroup of G. We assume that the associated symmetric space has a G-
invariant complex structure. Let p: G — Sp(m, R) be a homomorphism, and let 7: D —
H:, be a holomorphic embedding of D into the Siegel upper half space of degree m sat-
isfying 7(g2) = p(g)7(2) for all g € Gandz € D. If T is atorsion-free cocompact
arithmetic subgroup of G, such apair (p,7) determines a Kuga fiber variety over the lo-
cally symmetric variety X = I \ D whosefibers are polarized abelian varieties (see e.g.
(4], 6], [9], [12]).

Foreachy €T, let the map z+— J(7, ) be the Jacobian determinant of the holomor-
phic map of D into itself. We denote by j: Sp(m,R) x H, — C the automorphy factor
given by

(9,2)=CZz+D

é g € Sp(m,R) and Z € Hy,. Then the space S(I", 7, p) of generalized

Siegel modular forms consists of holomorphic functionsf: D — C satisfying

102 = §(p0).72) 901,27 ()

forg =

foralze Dandy €T.

In this paper we construct a certain line bundle L and a vector bundle V. over X for
anonnegative integer k such that there is an embedding V, — L~ of the sheaf V of
locally constant sections of V. into the sheaf L =¥ of locally constant sections of the k-th
tensor power of the dual bundle L~ of L. Wethen show that there exists a natural exact
sequence of the form

0— anl(x’ E;k/vk) — H”(X,\7k) — S((F:Tv p) - O’

wherenisthe complex dimensionof X = I"'\ D. Such an exact sequencewas constructed
by Nenashev [11] for G = Sp(m, R) and a congruence subgroup ' C Sp(m,Z) as a
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generalization of the Eichler-Shimuraisomorphism for elliptic modular forms (see e.g.

(1], [8]).

2. Vector bundleson locally symmetric varieties. In this section we construct a
vector bundle V and aline bundle L over alocally symmetric variety by extending the
construction of Nenashev [11] of such bundles over Siegel modular varieties. We fix a
positive integer mand set

\Y,
where My(C) denotes the set of m x m matrices with entries in C. Given an element

UO) to be the map
Vo

v {(u) ‘U,Ve Mm(C), 'UV = VU, rank (3) = m},

( 30) € W, and anonnegative integer k we define ny (
0
U
Mk (Vg) Y,—C
on W, given by

Uo u) kfUo U U
nk(vo)(v)_det (Vo v) for all (v) € Wy

Let W be the vector space over C generated by the functions ¢: W, — C of theform
Mk ( UO) for ( UO) € Wy, Then the real symplectic group Sp(m, R) acts on W by

Vo Vo
Uo) Uo
v (%) (())
for o € Sp(m, R). The group Sp(m, R) also acts on the Siegel upper half space
of degreemby

0-Z=(AZ+B)(CZ+D) *foro = (é g) € Sp(m, R)

and Z € Hy,. We set
j(c,Z) = det(CZ + D).
Then j: Sp(m, R) x H,, — € isan automorphy factor, i.e., it satisfies
(o, 2) = (o, n2)i(n, 2)
for o, u € Sp(m,R) and Z € Hp,. If Z € Hy, and if 1, denotesthe m x midentity matrix,

then the matrix ( IZ ) is an element of Wr,. Now we define the map nx: Hy — W by
m

k(2) = mx ( 5“) € Wk

for al Z € Hy,,. From the action of Sp(m, R) on W described above we have

n=n(-(2))

for o € Sp(m,R) and Z € H,.
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LEMMA 2.1. The map ny satisfies
(02) = j(0,2) *on(2)
for all o € Sp(m,R) and Z € H,.

PROOF. See[11, (2.1.4)]. ]

Let G be asemisimple Lie group over R, K a maximal compact subgroup of G, and
D = G/K the associated Riemannian symmetric space. We assume that D has a G-
invariant complex structure. Let p: G — Sp(m, R) be ahomomorphismand 7:D — Hy,
a holomorphic embedding such that

7(92) = p(9)(9)

foral g € Gand z € D (see[12] for detailed descriptions and applications of maps p
and 7 of thistype). Then G actson W by

o (y) = nfoo (V)

We definethe map &x: D — W by k(2 = nk(T(Z)) for al ze D. Thenfor eachg € G
and z € D weobtain

£x(92) = (7)) = m(p(@)r()
= i(p(@),7@) " p(@(@)
= i(p(@),7@) Q)@
by using Lemma2.1.

LEMMA 2.2. Let A bea subset of D whoseimage 7(A) under T contains a nonempty
subset of Hpy,. Then the set

{¢k(@ |z A}
isalinear span of the complex vector space W.

PrOOF. Let A’ be a nonempty open subset of Hy, that is contained in 7(4). Then it
follows from [11, Lemma 2.1.1] that the set

@) | Z € &'}
is alinear span of W,. However, since {«(2) = ni(7(2)) for z € D, we have

{@ | ze b} > @) | Z € &'}

hence the lemma follows. n
Let " beatorsion-free cocompact arithmetic subgroup of G. Then T acts on the space
D x W by

Y- (@zx) = (72 p()X)
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foraly el and(z x) € D x Wy. Thegroup " also actson D x C by
- @N) = (12i(p0),7@)A)
foryel and(z, \) € D x C. We set
Vi=F\DxW, L=r\bpxec,

where the quotients are taken with respect to the actions of I' described above. Then the
natural projection map D — I\ D inducesthe structures of avector bundle on V and a
linebundle on L over thelocally symmetric space X = I\ D. Sincethe map &: D — W
satisfies

£ = i(p(@). 7(2) “P(@)D

foral g e I' C G, the map & can be regarded as a holomorphic section of the vector

bundle

Vk ® L_k
over X = I \ D, where L =% denotes the k-fold tensor power (L =) of the dual bundle
L-tof L.

Now we define a bilinear pairing (, ): Wk x Wy — € on W obtained by extending
linearly to the whole vector space W the map

U v’ u v
(V) ()] e (v v)
! !/
forthegeneratorsnk(\L;) and nk(\U/,) of W with (\L;) . (\L;,) € Wn.

LEMMA 2.3. Thebilinear pairing (, ) on W is nondegenerateand isinvariant under
the action of G on W,.

ProOOF. The nondegeneracy follows from [11, Lemma2.3.1]. For the G-invariance,

a9 ()l ))>
:detk(p(g Vv V’) v v',)
(

=(m(v) (V)

for each g € G, since det(p(g)) = 1 dueto the fact that p(g) € Sp(m, R). Therefore (, )
is G-invariant. m
Sincethe pairing (, ) is G-invariant, it induces a fiber-wise pairing

(,):VikxVg—Xx¢C
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on the vector bundle V. over X. We shall now introduce a fiber-wise conjugation opera-
tion on V. which will be used in the next section. If x € W, we define the conjugate X

’ ()3 (2)e-

Thus we have a conjugation on W, which induces a fiber-wise conjugation operation on
the vector bundle V, over X.

3. Thecohomology. LetJ:I xD — C bethe Jacobiandeterminant on the hermitian
symmetric space D, i.e., for eachy € I the function z — J(7, 2) is the determinant of
the Jacobian matrix of the holomorphic map z+— vz of the complex manifold D. We set

J=r\bxc,
where the quotient is taken with respect to the action of ' on D x C given by
Y@\ = (72,30,2))

fory € Fand (z \) € D x C. If Kx = A"T*(X) is the canonical bundle on X (see e.g.
[13, p. 218]), then K can be identified with the dual bundle J—* of J. If B is a vector
bundle over X, then we shall denote by B the sheaf of locally constant sections of B.

DEFINITION3.1. Let7:D — Hp, p: G — Sp(m,R), I € Gandj: Sp(m,R) x Hpn —
C beasin Section 2, andlet J: " x D — C be the Jacobian determinant described above.
Given a nonnegative integer k, a generalized Segel modular form on D of type (k, 7, p)
for " is aholomorphic function f: D — C such that

102) = i(pM).7@) 30,27

foraly e ' andz € D. We shal denote by S(I", 7, p) the spaceof al generalized Siegel
modular forms on D of type (k, 7, p) for I'.

REMARK 3.2. Generalized Siegel modular forms in Definition 3.1 generalize mixed
automorphic forms of type (2, k) described in [5], [7] and certain types of mixed Siegel
modular forms studied in[9] in the case of cocompact I". Certain aspects of more general
automorphic forms were studied in [10].

LEMMA 3.3. The space of generalized Segel modular forms S(I", 7, p) is canoni-
cally isomorphic to the space HO(X, Lk @ J 1) of sections of the sheaf L* @ J 2.

PrROOF. The lemma follows easily from the construction of the bundles L* and J
and the fact that the section of the bundle L* can be identified with afunction f: D — C
satisfying f(gz) = j(,o(“y),T(z))k forally el andze D. n

Let n = dim¢ X be the complex dimension of the locally symmetric space X, then we
obtain the Serre duality

H'(X, L) x HOX, LK@ J ) —¢C

https://doi.org/10.4153/CMB-1997-009-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-009-6

GENERALIZED SIEGEL MODULAR FORMS 77

that is given by

([l ) = [ own dz
where [w] € H"(X, L) is the cohomology class represented by adifferential form w of
type (0, n) with coefficientsin L= and ¢ is a section of the sheaf L¥ @ J=1 over X. On

the other hand, if &y is the section of V, @ L= constructed in Section 2, we can define
aninner product ({, }) on the space HO(X, L¥ @ J 1) of sectionsof L* © J~1 by

(f,g)= [ 130w &) dZA dz

for all f,g € HO(X, Lk @ J-1), where g, & are the conjugates of g, ¢, respectively,
and (, ): Vi x Vi — X x C isthe fiber-wise pairing in described in Section 2. Then to
each cohomology class [w] € H"(X, L) represented by differential n-form w we can
associate a unique section 1, of Lk @ J—1 satisfying

(puu)= [ pwn dz
for al ¢ € HO(X, [X ® J~1). Thus we obtain an antilinear isomorphism
H'(X, L% ~ HOX, Lk @ 1)

given by [w] — 1.
Since the fiber-wise pairing ( , ): Vi x Vx — X x € induces amap

() Viex (k@ L9 — LK,
we obtain amap v: V,, — L% given by v(s) = (5, &,).
LEMMA 3.4. Themapr: Vi — L ¥isinjective.
PROOF. Suppose (5, &) = Owiths € T'(U, V,) for an open set U C X. Recall that

the bundle V, can be considered as the quotient of thetrivial vector bundle D x W, — D
by I with respect to the action

Y- (2% = (72 p(1)x)

foryeland(z,x) € DxW. Lets € F(n‘l(U), D x Wk) be alocally constant section
of the bundle D x W on 7~1(U), where m: D — X isanatural projection. Given apoint
v € n-1(U) thereisaneighborhood U’ C D of vsuchthat s' = p onU’ for some . € W.
Thenwe have (p, £(2)) = Ofor al z € U’. Sincer isan embedding, 7(U’) isan open set
in Hm; hence by Lemma 2.2 the set {¢4(2) | z € U’} generates Wi. Thusiit follows that
p = 0and p = 0. Therefore v isinjective. "

The embedding v: Vi — L of V} into L% thus induces a map v,: H"(X, V\) —
H"(X, L) and therefore a map

¢ H* (X, Vi) — SdT, 7, p),
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if we use the canonical isomorphisms

HOX, C* @371 2 S(T, 7, )
in Lemma 3.3 and the antilinear isomorphism

H'(X, L) 2 HOX, LTk @ J ™)

described above.

Now we shall construct a mapping ¢*: S«(, 7, p) — H"(X, V\). Since S(T, 7, p) is
canonically identified with HO(X, X @ J—1) and & is a section of the vector bundle
L% @ V\ over X, for eachf € S(I',,p) the differential form ¢, dz is a differential
n-form on X with values in the vector bundle V. Thus by the de Rham theory f ¢, dz
determines acocyclein H'(X, V). We set

¢*(f) = [fékdz] € H'(X, V).
PROPOSITION 3.5.  Thecomposite ¢, o ¢* isthe identity map on the space H"(X, V).

PROOF.  First, we extend the morphismv: Vi, — CL—*toamapv: Vi@ AP — L ¥
AP for each p by
v(w) = (@po, &) € TU,L* @ A%)

for each w € M(U, Vi ® AP), where AP isthe sheaf of differential p-formson X, U isan
open subset of X, and w,g) isthe (p, 0)-component of w. Let f bean element of S(I", 7, p)
regarded as a section of the sheaf L¥ ® J—2. Then the differential form f ¢, dzbecomesa
section of Vi, @ A" and we have ¢*f = [f£, dZ]. Sincef&, dzis holomorphic, we obtain
(fék d2)(no) = fék dzand

v ¢t = [(FEdz &)] € H'(X, L75).

From the antilinear isomorphism H"(X, E*k)isk(l', T, p) it follows that thereis an ele-
ment f; € S(I, 7, p) suchthat for each g € S(I', 7, p) we have

J ol &) dzn dz= [ offecdz &) A dz
- /X of (€, €) dZA dz,

i.e, (g, f1)=(9,f)). Thuswe obtain ¢.(¢*f) = f, = f, and the proposition follows. =
From the embedding v: V,, — L~ in Lemma 3.4 we obtain the short exact sequence

0—>\7i(—>|:7k—>tfk/\7k—> 0,
which induces the long exact sequence

- — HYX, Vi) — HYHX E79) — HH(X, E7%/ V)
— H'X, Vi) — H' L% — H' (X, L%/ V) — -

on the cohomology of X =T\ D.
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THEOREM 3.6. Let p: G — Sp(m,R), 7:D — Hynand X = '\ H beasin Section 2,
and assumethat p(I") is contained in an arithmetic subgroup of Sp(m, Q). If n = dimg X,
then we have H"1(X, L) = 0.

PrOOF. Let™’ bean arithmetic subgroup of Sp(m, @) that contains p(I"), andlet Y be
the corresponding Siegel modular variety '’ \ Hp,. Thenwe can consider the Baily-Borel
compactification Y* of Y (cf. [2]). The holomorphic embedding 7: D — H,,, induces an
embedding 7x: X — Y C Y*. Let (rx).L be the direct image sheaf on Y obtained from
the invertible sheaf L on X via the map 7«. By [2] there is a positive integer N such
that ((Tx)*]:)N definesamap of Y* into a complex projective space whose restriction to
Y is an embedding. Thus it follows that LN defines an embedding of X into the same
projective space, and consequently L is an ample invertible sheaf on X. Then L is
also an ample invertible sheaf, and therefore by Kodaira's vanishing theorem (see e.g.
[3, Remark 111.7.15]) we have

HI(X, L% = 0forj < n.
Hence the proposition follows. n

THEOREM 3.7. If n = dimg X, then there is an exact sequence

0— anl(x’ Eik/vk) — H”(X,\7k) — S((F:Tv p) —0.

PROCOF. By Proposition 3.5 the map ¢. is surjective; hence we have
H'X, L% /V) =0

in the long exact sequence described above. Therefore the theorem follows from Theo-
rem 3.6 and the antilinear isomorphism

HY(X, L) 2 S(T", 7, p).

REMARK 3.8. Nenashev [11] obtained the exact sequence in Theorem 3.7 when X
is a Siegel modular variety and showed that his exact sequence is a generalization of
the Eichler-Shimura isomorphism (see e.g. [1]) for elliptic modular forms. The exact
sequencein Theorem 3.7 also generalizes aresult of [8] in the case of cocompact I'.
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