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Resolving actions of

compact Lie groups

M.J. Field

A general process for the desingularization of smooth actions of
compact Lie groups is described. If G 1is a compact Lie group,

it is shown that there is naturally associated to any compact &

manifold M a compact G X (2/2)P manifold on which G acts
principally. Here Z/2 denotes the cyclic group of order two
and p + 1 1is the number of orbit types of the G actionon M .

1. Introduction
Let G be a compact Lie group. In this note we show that there is

naturally associated to any compact (G manifold M a compact G X (Z/2)p
manifold M on which G acts principally. Here Z/2 denotes the cyclic
group of order two and p + 1 is the number of orbit types of the action
of G on M (see §2). We call ¥ a resolution of (the G action on)

M . Our method of construction of M is a modification of the familiar
"blowing up" transformation of algebraic geometry and is closely related to
the polar coordinate transformation as used, for example, by Ruelle and
Takens in [4].

Our process of resolution is basic to a study of ours on the
linearizations, modulo G , of equivariant diffeomorphisms close to the
identity map and the construction of a maximal family of slices for a &
action. However, we feel that our results on resolutions may be of wider
interest, with possible applications to the classification theory of smooth

actions, and so we are presenting them separately.
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2. Blowing up ¢ manifolds

We start by recalling some facts about smooth (that is ¢ ) actions
of a compact Lie group on a compact differential manifold. We refer to

Bredon's text [2], especially Chapter 6, for full details and proofs.

Given a compact connected differential manifold M and the action of
a compact Lie group G on M , we let G(x) denote the G orbit through
xz eand G the isotropy subgroup of G at x , x €M . Glz) is

equivariantly diffeomorphic to the homogeneous space G/G:x: . The isotropy
subgroup at gxr , g € G , is conjugate to that at x and indeed is

obviously equal to ngg-l . We say that %,y € M are of the same orbit
type if Gx and Gy are conjugate subgroups of G or, equivalently, if

G(x) and G(y) are equivariantly diffeomorphic. The equality of orbit
type partitions M into points of the same orbit type. If M is compact,
this partition is finite. We write
M= U M ,
1€I
where Mi are the equivalence classes of points of the same orbit type.

We define orb : M>I by orble) =4 , x € Mi

There is defined a natural partial order on I by % < j if there

exist x € Mi s Yy € Mj , such that G:z: =] Gy (strict inclusion). We say

that x 1is of minimal orbit type if there does not exist y € ¥ such that
orb(y) < orb(z) . The finiteness of I implies there exists at least one
minimal orbit type. We may similarly define a maximal orbit type. In this
case it may be shown that there exists precisely one maximal orbit type,

say N , and that MIV is an open dense subset of M (connected if G is

connected).

For convenience we shall label orbit types by integers and write

M= U M.,
1=y *

where orb(z) < orb(y) implies that if x € M, eand y € Mj then < < J

(the converse need not be true: if i < j (as integers) then G, and Gy
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need not be related. For example, Ml and M_, may both be minimal orbit

2
ty‘pes] . We shall say that the action is principal if there exists only one
orbit type and that it is free if Ga: ={e} forall x €NM.

Let § be a riemannian metric on M . Averaging over (G using Haar
measure we may assume that & is (¢ invariant. We call M , together
with a G action and equivariant riemannian metric, a riemannian G

manifold. In the sequel, we assume M 1is a riemannian G manifold.

k
Apart from the notation introduced above, we let diffG(M) denote the

space of C’k equivariant diffeomorphisms of ¥ , 1< k<o ., In case

k <o , we give diffg(M) the (,'k topology ([1], [31).

DEFINITION. A resolution of M consists of a G X (Z/2)IV-l

~ 0 A e o0, A
M anda € map m : M+ M and homomorphism ¢ : diffG(M) + diff (M)

menifold

such that:

(1) if we give M the trivial (2/2 action, m is

G x (Z/2)N-l equivariant;

(2) the generators fis - of the (Z/2)N-l action on

s 1 N-1
Fl may be indexed so that

3
I

rix{(f.) \ U rix{(f.) , 1=j=m-1,
Jd i<g T

= free part of the (Z/2)N-l action, j =W 3

(3) G acts principally on Y

() for all feaire (M) , ¢(f) isa € Gx (z/2)"-1
invariant mep covering f .
REMARK. It follows from (2) of the definition that n[Tr-l(MN] is a

2N-l fold covering map of MN .

THEOREM A. Every compact G manifold has a resolution. Moreover,
for the resolution we construct we may require that the extension map
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¢ : diffoGo(M) > aiff (M) extends to a continuous map

b : diff];+m'l(M) >aied) , rzo0.

Before starting the proof of Theorem A, we prove a simple and
presumably well known result which is special to actions by finite groups

of odd order.

THEOREM B. Let G be a finite group of odd order acting on M .
Then there exists a prineipal G manifold M anda C equivartant map

T :M~>M such that Tl'_l(MN] is open and dense in M and w maps
at (MN) diffeomorphically onto M, .
Proof. We shall successively blow up the submanifolds M., ..., MN 1
The techniques we use are well known and standard in equivariant
differential topology and so we only outline the main details. Let

El - Ml denote the normal bundle of Ml and choose »r > 0 so that the

disc bundle E’l(r) ={v ¢ E lv]l < r} is embedded as a tubular
neighbourhood @(r) of Ml by the exponential map. Choosing r smaller

if necessary, we may also require that 9Q(r) is a codimension one sub-
manifold of M equivariantly diffeomorphic to the unit sphere bundle
s(E'l] of E, . Define Y :S(El) xR+R by v(0, t) = exp(t8) . 2/2
acts freely on S(E'l) X R as multiplication by -1 (on both factors) and
this action commutes with y . If X is any 2/2 invariant subset of
R, we let P(El, X) denote the orbit space of the induced Z/2 action on

S(E'l) x X . Yy restricts to a (  diffeomorphism of P(E’l, {-r, +r})
with 9Q(r) and, in the usual way, we may form the ( manifold

i, = (n\a(r) gP(E'l, [-r, +r])

Mmoo IT!l + M is defined to be the identity on M\@(r) and Y on

1

P(E'l, [-r, +r]} . Clearly w. is a diffeomorphism of Tl';_l(Ml) . Since G

1
is of odd order, it does not contain any Z/2 subgroups. Hence the orbit

types of G on P(El, [-», +r]) are the same as those of G on
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S{E’l) x [-r, +r] , which in turn are a subset of the orbit types
2, ... N . Hence no orbit of type 1 appears in Xll . Iterating this
process we may remove orbits of types 2 up to N -1 . //

Proof of Theorem A. As in the proof of Theorem B, we form the unit

sphere bundle S(E'l) of the normal bundle E_. of Ml and choose r > 0

1
so that exp embeds the disc bundle of radius r2 as a tubular neighbour-
hood @(r) of M, vith smooth boundary 3@(r) . Let vy : S(E) xR~ ¥

be the map (6, t)+— exp(tze) . Yy is G x (Z2/2) invariant if we take
the 2z/2 action on S(E,) x R defined by (8, t) > (6, -t) and the

trivial Z/2 action on M . We define fll to be

(Mma») u (s(&)) x [, +]) U (Me(r)) ,
Y_ Y,

where vy, = Y]S(El) x {tr} identifies 3Q(r) = B(M\Q(r’)) to

S(E'l) x {#r} . The Z/2 action on S(El) x [-r, #r] extends in the

obvious way to 1’\\!1 and, since y is G x (Z/2) invariant, we see that

&1 is a G x (Z/2) manifold. ™o IT!I + M 1is defined to be the identity

on either of the components M\Q(r) and Yy on S(El) x {-r, +4r] . Set

+
M, = 5(E)) x (0, tr] U (me(r))
Yi
+ +
Tfl restricts to an equivariant diffeomorphism ni of MZ_L onto M\Ml .
The only orbit types that can occur for the G action on i;jl are

2, «eos N . If we let ai be the involution generating the Z/2 action

on M » @, is ¢, equivariant and has fixed point set “;l(Ml) .

et f € diffS(M) . Then f(MJ.) =M, , g=1, ..., N . We define

J
PR Yl Vol
fo M > M by

~ -1, *
fy= ()7

Clearly fl is ¢ on Mi . Choose s > 0 so that f(Q(s)) < Q(r)
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Suppose &8 < r . Then for O < Itl < 8 , we see that, relative to the

coordinates on 1?11 given by S(E’l) X [-r, +r]

f (t, 08) = (exp” ffexp(t 6)) . sign(t)llexp-l(f exp(tge]]ll%)
llexp™ (fexp(t 8)) Il

;“1 is certainly G x (Z/2) invariant. We claim that 3“1 extends as a
C,k-l . . -1 s e s
G x (Z/2) invariant map across ™ (Ml) . For this it is clearly

enough to show that there exists a ck-1 map g : S(E'l] x (-g, +8) + E,

such that g # 0 and
exp l(f exp(t90)) = t%(6, £) , t#0, 0¢ s(E) .

Fixa C. embedding of M into some Rn . Such an embedding induces

an embedding of M in R2n and, by restriction, of -El into R2n . For

6 € S(E’l) » consider the map pg : (-5, 48) -+ R defined by

pe(t) = exp—l(f exp(9))

Then
pe(tz) = J:)- -3% [pe(utz))du

1
2
t Io pe(utz)du .

fl

1
Therefore, if we define g(e, t) =j pe(utZ]du » g will satisfy our

0
requirements. Moreover, it is easily verified that if (fn] is a
convergent sequence in the 6]( topology, the corresponding sequence (gn]

will be convergent in the Ck-l topology. In other words the map
diffg(M) - diffk_l(f!l) s f 3"1 is continuous. The map is obviously a

homomorphism.
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Suppose inductively that we have performed j successive polar blow

ups to obtain a G x (2/2)Y manifold &J. with G orbit types

j*l, ..y N, j+l1 < N . Denote the generators of the (Z/2)J action by

1 j . . . s
.y ovey a:;. . . As above we choose an equivalent riemannian metric on ﬁ!j

J

and polar blow up the set of points of orbit type j + 1 to obtain a new
. Yy i = ~T . . J+1

G manifold Mj+l . We set aj+l aj » 1=1=< g4 , and let aj+l

the generator of the 2/2 action originating from the polar blow up of

M. . Now since af is G invariant o~ commutes with a‘7.+l ,
J 7 J+1 g+l

denote

. . i k . . .
l=i1=<g . Also aj+l and aj+1 commute for 1< ¢, k< j since the

lifting map is a homomorphism. Hence we have a & x (Z/2)'7+l action of

~ R 1 J+1 J+l .
Mj+l with aj+1’ ey aj+l generators of the (Z/2) action.

Similarly, if we have shown inductively that a Ck G diffeomorphism f
of M 1lifts toa <7 ¢x (2/2)7 aiffeomorphism ?J. of ﬁfj , then }‘J.

k-g-1 diffeomorphism 3‘“ of XI . Hence the inductive

lifts toa C F41 . 141

~

step is completed and we may take M= MIV—l s o(f) = %N-l . The

generators of the (Z/Z)Iv-l action on M are O'tljv-l , 1= 4=pN-1. //

REMARKS . In the sequel we shall refer to the resolution of M
constructed in Theorem A as the polar resolution of M . We call the

manifold &J' obtained in the proof of Theorem A after j successive polar

blow ups the J-fold polar blow up of M . We denote the <th orbit type

of ?JJ. by (?4.7)1, . Thus we will have (IAUJ]t =9, 1si=<4, and

By y = Oty )y =¥

EXAMPLE. Take the circle action on S3 induced from scalar
multiplication on 6’2 by (ep1'¢, equb) » DPsq € zt . 1r p =q , the

action on S3 is principal. If plq or qlp » p# q , then there are
two orbit types with corresponding isotropy subgroups Z/p , Z/q .
Suppose that q > p . Then the minimal orbit type consists of a single

https://doi.org/10.1017/50004972700008054 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700008054

250 M.J. Field

Sl orbit with isotropy subgroup Z/q . Resolving, we find

§3=02xst U Pxgt=62xgt.

id

The circle action on 02 x g% is (z, y) — (zetq¢, yetp¢) , 2 € 02 .

y € S1 < C , and the involution is reflection in 3D2 c 52 with fixed set
302 c Sl = T2 .

Finally suppose plg , ¢lp . There are now three orbit types with
isotropy subgroups Z/p, Z/q, Z/m , where m is the highest common factor

of p and q . In this case §3 = T3 and the circle action on

P st xstxstced is given by (a, B, Y) +— (epi¢a, eqi¢3, Y) , and

the involutions are

filas B, 7) = (o, B, 7) ,

(a’ B; -7)

fz(a, B, )

LEMMA C. Up to G x (2/2)Y diffeomorphism, the manifolds ﬁ3

constructed in the proof of Theorem A are independent of choices of

riemannian metrics on M, ..., AG ;-

Proof. It is enough to prove this for j = 1 , since the general case
follows by iteration. Let M have equivariant riemannian metrics & and
£' . Following the notation and assumptions of the proof of Theorem A, we

define

Y, : S(E)) x [-r, +r] >+ S(E))' xR

by

v,(8, ) = (a(t%0) /1B (%) I, sien(t) (Ia(%0) 1)),
where H(tze] = (exp')_l(exp(tge)) and exp', || ||' , and S(El]' are the
exponential norm and unit sphere bundle corresponding to £' . As in

Theorem A, Y, is C°° . Taking r smaller if necessary, we may assume

that the image of Y, lies in S(El)' x [-p', +'] . Ve extend Y, toa
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7 . . Y . _ * t .
G x (Z/2) diffeomorphism of M, by setting Y, = (‘nl] ('Nl) outside

s@E) x [z, w0l . //

COROLLARY. The polar resolution of M is independent of the choice

of metrics up to G x (Z/2)N—l di ffeomorphism.

3. Blowing down ¢ manifolds

It is not hard to prove a converse to Theorem A and in this final

section we shall indicate how this may be done.

DEFINITION. A G sphere bundle is a quadruple (X, E, I, p)
consisting of a riemannian G vector bundle W : £+ I , where I is a
principal G manifold, and an equivariant diffeomorphism p : S(E) ~ X ,
where S(E) is the unit sphere bundle of £ . We usually refer to the "G
sphere bundle X ".

let m : E+ X be a riemannian G vector bundle and N(S(E’)) denote
the normal bundle of S(E) in E . Clearly WN(S(E)) is a trivial line
bundle over S(E) . N(S(E)) has a natural Z/2 action induced by scalar
multiplication by -1 in the fibres and the action has fixed set S(E) -
the zero section of IV(S(E‘)) . Since the 2Z/2 action commutes with the &
action on IV(S(E')) , we see that IV(S(E)) has the structure of a
G x (Z/2) bundle over S(E) . If we take the product of the standard 2/2
action on R with the G action on S(E) , then S(E) x R and N(S(E))

are isomorphic as G x (2/2) bundles.

PROPOSITION. Let N be a compact connected G x (Z/2) manifold and
f be the generator of the Z/2 action on N . Suppose that

(1) rfix(f) <s a G sphere bundle; that is ftix(f) is
associated to a quadruple (fix(f), E, L, p] 3

(2) p*(0{(rix(f))) and N(S(E)) are isomorphic as G x (Z/2)
bundles,

(3) M\rfix(f) has two connected components N, N, , and

2
f(lvl) = N2 *

Then there exists a unique, up to G diffeomorphism, G manifold M
such that N is G x (2/2) diffeomorphic to the polar blow up of M
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along a minitmal orbit type.

Proof. Essentially a reversal of the argument of Theorem A. Fix
a >0 and give N an equivariant riemannian metric. Since S(E) x R and
p*N(fix(f)) are isomorphic as ¢ x (Z/2) bundles, there exists a
G x (2/2) diffeomorphism vy of S(E) x (-a, +a) onto a tubular
neighbourhood @ of fix(f) . Here we suppose that Q has smooth
boundary vhich is the image of a sphere bundle of N(fix(f)} by the
exponential map. Regarding I as the zero section of E , the normal
bundle of I is isomorphic to E as a (G bundle and consequently.
polar blown up along I 1is G X (Z/2) diffeomorphic to @ . We now
construct the required manifold M by identifying the boundaries of Nl\Q

and the disc bundle of E of radius a using the map Yy . //

Suppose (X, E, L, p) is a G sphere bundle. We may resolve the G
space X to )? as in Theorem A. If X has r orbit types, this will
require r - 1 steps and X will be a G x (2/2)"" 1 menifold om which €
acts principally. We call X the "resolved G sphere bundle

——
(X, E, 5, p) ". We let N{S(E)}] and S(E) denote the polar resolutions of

N(S(E)) and S(E) respectively. Since N(S(E)} = S(E) x R,
IV(S(E') ~ S(E) x R and S/(E) is of codimension one in IVS(E‘)) . In

case we have a (2/2)? action on (X, E, L, p) which commutes with G ,
we shall refer to X as a resolved (G X (Z/2)q sphere bundle, it being

understood that we do not resolve the (2/2)7 action.

Given a G x (2/2)P action on N , suppose that {fl, cevs fp} is

the set of generators for the (Z/2)p action. Observe that fix(fj] is
left invarient by G x (2/2)P . It follows that #{rix(f)) hes the

structure of a G x (2/2)P bundle over fix[fj) , 1<j=p.

THEOREM D. Let N be a compact connected G X (2/2)P manifold on
which G acts prineipally. Suppose that we can find an ordering

{f, ..., fp} of the set of gemerators of the (2/2)P action such that

(1) each submanifold fix(fj) is a resolved G x (2/2)7
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sphere bundle (XJ., Ej’ ):J., pj) » and the generators of the

(Z/2)'j-:L action are [fl, cees fj-l) ,

(2) N(S(EJ.]) and N(fix(fj)) are isomorphic as G x (z/2)P
bundles,

P . .
(3) N\ u fix(fi] has 2P commected eomponents IVZ s
=7

1sus 2P9* ) qng {fj’ cees fp} acts transitively on the
set of components and, given 8 , 1< g8 = p , each IVZ >

J < 8, is contained wholly within some If;i .

Then there exists a unique, up to G diffeomorphism, G manifold M
such that N is G x (2/2)P diffeomorphic to the polar resolution of M .

Proof. The proof follows straightforwardly by repeated application of

the proposition and we omit details.

REMARKS. . If (Xj’ Ej’ Zj’ pj) has less than p - j +1 orbit

types we nevertheless resolve p - j times, doubling up when the orbit

type is empty.

2. Since S(E) 1is of codimension one in IV(S(E')) , condition (2) of

Theorem D implies that fix(fj) is of codimension one, 1 =4 =<p .

3. We require N to be connected to avoid exceptional cases where M
is a ¢ manifold with a minimal orbit type of codimension one and trivial
normal bundle. In such cases the polar resolution of M ceases to be
connected. We leave the formulation of the appropriate version of Theorem

D to the reader.

4. Theorem D implies that if M and M' have G X (Z/2)p
diffeomorphic polar resolutions then M is (G diffeomorphic to M' .
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