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Resolving actions of

compact Lie groups

M.J. Field

A general process for the desingularization of smooth actions of

compact Lie groups is described. If G is a compact Lie group,

it is shown that there is naturally associated to any compact G

manifold M a compact G x (Z/2)^ manifold on which G acts

principally. Here Z/2 denotes the cyclic group of order two

and p + 1 is the number of orbit types of the G action on M .

1 . Introduction

Let G be a compact Lie group. In this note we show that there is

naturally associated to any compact G manifold M a compact G x (Z/2)"

manifold M on which G acts principally. Here Z/2 denotes the cyclic

group of order two and p + 1 is the number of orbit types of the action

of G on M (see §2). We call M a resolution of (the G action on)

M . Our method of construction of M is a modification of the familiar

"blowing up" transformation of algebraic geometry and is closely related to

the polar coordinate transformation as used, for example, by Rue lie and

Takens in [4].

Our process of resolution is basic to a study of ours on the

linearizations, modulo G , of equivariant diffeomorphisms close to the

identity map and the construction of a maximal family of slices for a G

action. However, we feel that our results on resolutions may be of wider

interest, with possible applications to the classification theory of smooth

actions, and so we are presenting them separately.
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2. Blowing up G manifolds

We start by recalling some facts about smooth (that is C ) actions

of a compact Lie group on a compact differential manifold. We refer to

Bredon's text [2], especially Chapter 6, for full details and proofs.

Given a compact connected differential manifold M and the action of

a compact Lie group G on M , we let G{x) denote the G orbit through

x and G the isotropy subgroup of G at x , x € M . G(x) is
*c

equivariantly diffeomorphic to the homogeneous space G/G . The isotropy

subgroup at gx , g € G , is conjugate to that at x and indeed is

obviously equal to Q^^S • W e s a y that x, y d M are of the same orbit

type if G and G are conjugate subgroups of G or, equivalently, ifx y

G(x) and G(y) are equivariantly diffeomorphic. The equality of orbit

type partitions M into points of the same orbit type. If M is compact,

this partition is finite. We write

M = U M. ,
UI *

where M. are the equivalence classes of points of the same orbit type.

We define orb : M •+ I by orb(x) = i , x € M. .

There is defined a natural partial order on I by i < j if there

exist x (. M. , y € M. , such that G 3 G (strict inclusion). We say
•L Q x y

that x is of minimal orbit type if there does not exist y € M such that

orb(j/) < orb(x) . The finiteness of I implies there exists at least one

minimal orbit type. We may similarly define a maximal orbit type. In this

case it may be shown that there exists precisely one maximal orbit type,

say N , and that A/_ is an open dense subset of M (connected if G is

connected).

For convenience we shall label orbit types by integers and write

M = U M. ,

where orb(x) < orb(y) implies that if x € M. and y € M. then i < j

(the converse need not be true: if i < j (as integers) then G and G
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need not be related. For example, M and M may both be minimal orbit

types) . We shall say that the action is principal if there exists only one

orbit type and that it is free if G = {e} for all x (. M .

Let £ be a riemannian metric on M . Averaging over G using Haar

measure we may assume that £ is G invariant. We call M , together

with a G action and equivariant riemannian metric, a riemannian G

manifold. In the sequel, we assume M is a riemannian G manifold.

Apart from the notation introduced above, we let diff_(A/) denote the

space of C equivariant diff eomorphi sms of M , 1 5 k 5 °° . In case

k k
k < co , we give diffjM) the C topology ([7], [3]).

DEFINITION. A resolution of M consists of a G x (Z/2)N~1 manifold

M and a C° map ir : M -*• M and homomorphism <b : Aiffl(M) •*• diff (M)
Lr

such that:

(1) if we give M the trivial {Z/2)N~1 action, IT is

G x (Z/2)^"1 equivariant;

(2) the generators / , . . . , / of the (Z/2) " action on

M may be indexed so that

ir"1^.) = fix(/,) \ U fixCf..) , 1 « j < ff-1 ,
3 3 i<3

= free part of the (Z/2)N~1 action, j = N ;

(3) G acts principally on M ;

)N~1(l») for all / € diff^(W) , <j>(/) is a C° G x (Z/2)

invariant map covering / .

REMARK. It follows from (2) of the definition that TT|TT"1 («„) is a

N-l
2 fold covering map of M^ .

THEOREM A. Every compact G manifold has a resolution. Moreover,

for -the resolution we construct we may require that the extension map
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(j) : diffJ.M) •*• diff (M) extends to a continuous map

^ (M) , r > 0 .

Before s t a r t ing the proof of Theorem A, we prove a simple and

presumably well known re su l t which is special to actions by f in i t e groups

of odd order.

THEOREM B. Let G be a finite group of odd order acting on M .

Then there exists a principal G manifold M and a C equivariant map

•n : M -*• M such that IT [MA is open and dense in M and IT maps

ir~ (A/..) diffeomorphiaally onto M» .

Proof. We shal l successively blow up the submanifolds M , ... , M .

The techniques we use are well known and standard in equivariant

d i f fe ren t ia l topology and so we only outline the main de ta i l s . Let

E.. •*• M, denote the normal bundle of M. and choose r > 0 so that the

disc bundle E.(r) = [v € E : ||u|| < r} i s embedded as a tubular

neighbourhood Q(r) of M. by the exponential map. Choosing r smaller

i f necessary, we may also require that dQ(r) is a codimension one sub-

manifold of M equivariantly diffeamorphic to the unit sphere bundle

S{E^\ of E± . Define y : S ^ ) x R ->• R by y(Q, t) = exp(*6) . Z/2

acts freely on S[E ) x R as multiplication by -1 (on both factors) and

th i s action commutes with y . If X Is any Z/2 invariant subset of

R , we l e t P{E , X] denote the orbit space of the induced Z/2 action on

S{E ) xX. y r e s t r i c t s to a C° diffeomorphism of P{E , {-r, +r})

with dQ(r) and, in the usual way, we may form the G manifold

M± = [M\Q(r)) U P[EV [-r, +r]) .

•n : M' -*• M i s defined to be the identi ty on M\Q(r) and y on

P[E., [-r, +r]) . Clearly TT is a diff eomorphism of IT" [MA . Since G

i s of odd order, i t does not contain any Z/2 subgroups. Hence the orbit

types of G on P{E' , [-r, +r]) are the same as those of G on
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S[E ) x [-r, +r] , which in turn are a subset of the orbit types

2, ..., N . Hence no orbit of type 1 appears in M. . Iterating this

process we may remove orbits of types 2 up to N - 1 . //

Proof of Theorem A. As in the proof of Theorem B, we form the unit

sphere bundle £(B-,) of the normal bundle E of A/, and choose r > 0

2
so that exp embeds the disc bundle of radius r as a tubular neighbour-

hood Q(r) of M with smooth boundary 8§(r) . Let y : s{E ) x R •+ u

be the map (9, t) *-*• exp(t 9) . y i s G x (Z/2) invariant i f we take

the Z/2 action on S[E ) x R defined by (6, t) -*• (9, -t) and the

t r i v i a l Z/2 action on M . We define ?1 to be

(AAS(r)) U [S[EA x [_r, +r]) U [H\Q(r)) ,
Y_ Y+

where y+ = Y I ^ B J X {±r} ident i f ies 8Q(r) =9(A/\Q(r)) to

S(B ) x {±r} . The Z/2 action on S{E ) x [_r, +r] extends in the

obvious way to M and, since y i s G x (Z/2) invariant , we see that

Af is a <? x (Z/2) manifold, ir. : M -* M i s defined to be the ident i ty

on ei ther of the components M\Q(r) and Y on S[E ) x [_r, +r] . Set

AT = S{E ) x (o, +r] U (AAS(r)) .
Y±

it r e s t r i c t s to an equivariant diffeomorphism TT~ of AT onto AAA/ .

The only orbit types that can occur for the G action on A? are

2, . . . , N . I f we l e t a. be the involution generating the Z/2 action

on M , ct. i s C , equivariant and has fixed point set IT" [M ) .

Let / € diff*(A/) . Then f{M.) = M. , j = 1, . . . , N . We define

by

_1 +

Clearly f Is C on AT . Choose s > 0 so that f[Q(e)) c Q(r) .

https://doi.org/10.1017/S0004972700008054 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008054


248 M . J . F i e l d

Suppose 8 < r . Then for 0 < | t | < e , we see that, relative to the

coordinates on M. given by S{E ) x [-r, +r] ,

1

f is certainly G x (Z/2) invariant. We claim that / extends as a

u G x (Z/2) invariant map across ir~ [M ) . For this it is clearly

enough to show that there exists a Cr~ map g : S{ES] X (-8, +s) -»• E.

such that g ± 0 and

" 1 ^ exP(t2e)) = t2sr(e, t) , t * o , e e s ^ ) .

Fix a C embedding of M in to some R . Such an embedding induces

an embedding of TM in R and, by r e s t r i c t i on , of # into i? . For

9 € S[EA , consider the map pQ : ( - s , +e) -»• i? defined by

pe(t) = exp"1^ exp(te)) .

Then

= t2 f PgfM*2)^ .

Therefore, if we define #(9, t) = Pa[ut )du , ^ will satisfy our

requirements. Moreover, i t is easily verified that if ( / ) is a

convergent sequence in the u topology, the corresponding sequence \cj J

will be convergent in the C ~ topology. In other words the map

difA/tf) ->• difffc~1(i& ) ; / ->• / , is continuous. The map is obviously a

homomorphism.
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Suppose inductively that we have performed j successive polar blow

ups to obtain a ff x (Z/2)J manifold M. with G orbit types
3

3*1, ..., N , j+1 < N . Denote the generators of the (Z/2)J action by

a., ..., a. . . As above we choose an equivalent riemannian metric on M.
3 3 3

and polar blow up the set of points of orbit type j + 1 to obtain a new

G manifold M. . We set a". = ̂ . , 1 2 i 5 j , and let a3'.*] denote
3 •*- 3 -*- 3 3 "*"-̂-

the generator of the Z/2 action originating from the polar blow up of

M. . Now since a. is G invariant a\ , commutes with a3.
3 3 3+1 7

i k
1 < i < 3 . Also a , + . and a . + 1 commute for 1 5 i , k £ j since the

l i f t ing map i s a homomorphism. Hence we have a G x (2/2)" action of

U.+1 with a^+1, . . . . a ^ generators of the (Z/2)t7+1 action.

Similarly, if we have shown inductively that a C G diffeomorphism /

of M lifts to a C ° G * (Z/2)17 diffeomorphism /. of M. , then /.
3 3 3

lifts to a C ~3r diffeomorphism / of M. . Hence the inductive

step is completed and we may take M = MN . , <(>(/)
 = fn -, • The

generators of the (Z/2)^"1 action on M are a^ , 1 5 j 5 ̂ -1 . //

REMARKS . In the sequel we shall refer to the resolution of M

constructed in Theorem A as the polar resolution of M . We call the

manifold M. obtained in the proof of Theorem A after j successive polar
3

blow ups the j-fold polar blow up of M . We denote the ith orbit type

of M. by (M.) . . Thus we will have [M.) . = 0 , 1 < i S j , and
3 3 * 3 i

EXAMPLE. Take the circle action on S induced from scalar

multiplication on C2 by (e^*, eqv^) , p, q € Z + . If p = q , the

action on 5 is principal. If p\q or q\p , p + q , then there are

two orbit types with corresponding isotropy subgroups Z/p , Z/q .

Suppose that q > p . Then the minimal orbit type consists of a single
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S orbit with isotropy subgroup Z/q . Resolving, we find

- ^ 2 1 ? 1 9 1
S2 = D x S U D * S = S * S .

id

The circle action on D x S is (2, y) t-+ [ze1^, ye1^^] , z 6 D ,

1 2 2
2/ € 5 c C , and the involution is reflection in W <= S with fixed set

Finally suppose p\q , q\p . There are now three orbit types with

isotropy subgroups Z/p, Z/q, Z/m , where m is the highest common factor

~3 3of p and q . In this case S = T and the circle action on

T3 = S1 x S1 x s1 o C3 is given by (a, B, Y) ̂  {(P^a, e ^ B , Y) , and

the involutions are

f^a, 6, Y) = (a, 3, 7) ,

/2(a, 6, Y) = (a, 6, -Y) .

LEMMA C. Up to G x (z/2)*7 diffeomorphism, the manifolds M.

constructed in the proof of Theorem A are independent of choices of

riemannian metrics on M, . . . , M. .
«7~1

Proof. It is enough to prove this for j = X , since the general case

follows by iteration. Let M have equivariant riemannian metrics £ and

5' . Following the notation and assumptions of the proof of Theorem A, we

define

y1 : S{EJ] x [_r, +r] -• S ^ ) ' x R

Y l (e , *) = {H{t2e)/\\H{t2e)\\', si

where H{t2Q) = (exp1 )"1(exp(t2e)) and exp', || ||' , and S ^ ) ' are the

exponential norm and unit sphere bundle corresponding to £' . As in

Theorem A, y xs C • Taking r smaller if necessary, we may assume

that the image of y lies in S^sj ' x [-r', +r' ] . We extend y^ to a
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G x (Z/2) diffeomorphism of M by se t t ing y = (TT )~(TT )* outside

COROLLARY. TTze poZor resolution of M is independent of the choice

of metrics up to G x (Z/2) ~ diffeomorphism.

3. Blowing down G manifolds

I t is not hard to prove a converse to Theorem A and in this final

section we shall indicate how this may be done.

DEFINITION. A G sphere bundle is a quadruple (X, E, Z, p)

consisting of a riemannian G vector bundle IT : E •*• Z , where Z is a

principal G manifold, and an equivariant diffeomorphism p : S{E) -*• X ,

where S(E) is the unit sphere bundle of E . We usually refer to the "G

sphere bundle X ".

Let IT :£•-»• Z be a riemannian G vector bundle and N[S(E)) denote

the normal bundle of S(E) in E . Clearly N[s(E)) is a t r iv ia l line

bundle over S(E) . N[S(E)) has a natural Z/2 action induced by scalar

multiplication by -1 in the fibres and the action has fixed set S(E) -

the zero section of N[S(E)) . Since the Z/2 action commutes with the G

action on N{S{E)) , we see that N[S(E)) has the structure of a

G x (Z/2) bundle over S(E) . If we take the product of the standard Z/2

action on i? with the G action on S(E) , then S(E) X R and N[S(E))

are isomorphic as G x (Z/2) bundles.

PROPOSITION. Let N be a compact connected G x (Z/2) manifold and

f be ihe generator of the Z/2 action on N . Suppose that

(1) fix(/) is a G sphere bundle; that is fix(/) is

associated to a quadruple (fix(/), E, Z, p) ;

(2) p*(tf(fix(/))) and N[S(E)) are isomorphic as G x (Z/2)

bundles,

(3) tf\fix(/) has two connected components N , N , and

Then there exists a unique, up to G diffeomorphism, G manifold M

such ihat N is G x (Z/2) diffeomorphic to the polar blew up of M
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along a minimal orbit type.

Proof. Essentially a reversal of the argument of Theorem A. Fix

a > 0 and give N an equivariant riemannian metric. Since S(E) x if and

p*#(fix(/)) are isomorphic as ff x (Z/2) bundles, there exists a

G x (Z/2) diffeomorphism y of S(E) X (_a, -HZ) onto a tubular

neighbourhood <2 of fix(/) . Here we suppose that Q has smooth

boundary which is the image of a sphere bundle of ff(fix(/)) by the

exponential map. Regarding Z as the zero section of E , the normal

bundle of E is isomorphic to E as a G bundle and consequently,

polar blown up along Z is G x (Z/2) diffeomorphic to Q . We now

construct the required manifold M by identifying the boundaries of N~\Q

and the disc bundle of E of radius a using the map y • //

Suppose {X, E, Z, p) is a G sphere bundle. We may resolve the G

space X to X as in Theorem A. If X has r orbit types, this will

require r - 1 steps and X will be a G x (Z/2)r~ manifold on which G

acts principally. We call X the "resolved G sphere bundle

(X, E, Z, p) ". We let N^S{EJ] and S(E) denote the polar resolutions of

N[S(E)) and S(E) respectively. Since N[S{E)) S S{E) X if ,

N{S(E)) ̂  sli) x if and S(E) is of codimension one in N^S{E)) . In

case we have a (Z/2)^ action on (X, E,Z, p) which commutes with G ,

we shall refer to X as a resolved G x i.Z/2)" sphere bundle, it being

understood that we do not resolve the (Z/2)^ action.

Given a G x (Z/2)P action on N , suppose that {/.,, ...,/} is

the set of generators for the (Z/2)^ action. Observe that fix(/.) is

left invariant by G x (Z/2)p . It follows that tf(fix(/.)) has the

structure of a G x (Z/2)p bundle over fix(/.) , 1 £ j < p .

THEOREM D. Let N be a compact connected G x (Z/2)p manifold on

which G acts principally. Suppose that we can find an ordering

{/-.»•••»/} of the set of generators of the (Z/2)p action such that

(l) each 8ubmanifold t±x[f.) is a resolved G * (Z/2)J

3
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sphere bundle [x., E., E . , p.) , and the generators of the
3 3 3 3

(Z/2)-7'"1 action are [f^ . . . , f ) ,

(2) il/(s(ff.)) and N{fix[f.)) are isomorphia as G x (Z/2)p

3 3
bundles,

P
(3) N \ U f lxff . ) has 2p~t7+1 connected components if ,

i=3 % u

1 < M S 2 P " J + 1 , and {/., . . . , / } acts transitively on the

set of components and, given s , I S s S p j each ifi ,

0 < s 3 is contained wholly within some ivf .

Then there exists a unique, up to G diffeomorphism, G manifold M

such that N is G * (Z/2)p diffeomorphic to ihe polar resolution of M .

Proof. The proof follows straightforwardly by repeated application of

the proposition and we omit de ta i l s .

REMARKS . I . I f [X ., E ., Z ., p .) has less than p - j + 1 orbit
3 3 3 3

types we nevertheless resolve p - 3 times, doubling up when the orbit

type is empty.

2. Since S(E) is of codimension one in N[S(E)) , condition (2) of

Theorem D implies that fix(/.) is of codimension one, 1 £ j S p .
3

3. We require N to be connected to avoid exceptional cases where M

is a G manifold with a minimal orbit type of codimension one and trivial

normal bundle. In such cases the polar resolution of M ceases to be

connected. We leave the formulation of the appropriate version of Theorem

D to the reader.

4. Theorem D implies that if M and M' have G x (Z/2)P

diffeomorphic polar resolutions then M is G diffeomorphic to M' .
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