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MONOCHROMATIC ARITHMETIC PROGRESSIONS
WITH LARGE DIFFERENCES

T O M C. BROWN AND BRUCE M. LANDMAN

A generalisation of the van der Waerden numbers w(k, r) is considered. For a function
/ : Z+ -> R+ define w(f,k,r) to be the least positive integer (if it exists) such that
for every r-coloring of ll,iu(/,k,r)\ there is a monochromatic arithmetic progression
{a + id : 0 < i ^ k - 1} such that d ^ /(a). Upper and lower bounds are given for
w(f, 3,2). For k > 3 or r > 2, particular functions / are given such that w(f,k,r)
does not exist. More results are obtained for the case in which / is a constant function.

1. INTRODUCTION

It was proved by van der Waerden [10, 11] that for arbitrary positive integers

k and r, there exists a least positive integer w(k,r) such that whenever the interval

[l,iu(A;, r)J = | l , 2 , . . . , w(k,r)j is r-colored, there must be a monochromatic fc-term

arithmetic progression {a, a + d, a + 2d,..., a + (k — l)d\ (in other words, if [l, w(k, r)l

is partitioned into r parts, then one part contains a A;-term arithmetic progression).

In this paper, we shall consider a generalisation of w(k,r). Namely, let / be an

arbitrary function from the set of positive integers to the set of positive reals. We ask

whether or not there exists a smallest positive integer w(f,k,r) such that whenever

[l,iu(/, k,r)\ is r-colored, there must exist a monochromatic k-teim arithmetic progres-

sion {a,a+d,.. .,a+(k - l)rfj, with d ^ f(a). For example, if f(x) = x2 and k = 3, then

we are interested in arithmetic progressions such as {2,6,10}, {2,7,12}, and {3,12,21},

but would ignore {2,3,4}, {2,4,6}, {2,5,8}, and {3,11,19}.

In Section 2, we consider w(f,k,r) when / is a constant function. Section 3 deals

with the more general case of/ : Z+ —> R+. Section 4 includes a brief discussion of some

related work that has been done, as well as a few remarks and open questions.

We shall use the following terminology. For an arithmetic progression A = la,

a + d,... a + (k - l)d\, we call d the common difference of A. If / : Z+ -» R+, and d ^

/(a), we say that A is an f-arithmetic progression. Thus, w(f,k,r) is the least positive

integer such that for every r-coloring of [l,iu(/, k,r)] there is a fc-term monochromatic
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22 T.C. Brown and B.M. Landman [2]

/-arithmetic progression. If x is a coloring (of some set of positive integers) that yields

no monochromatic fc-term /-arithmetic progression, we say that \ is (/> k)-valid.

To represent a particular r-coloring of an interval of size n, we shall often use a string

of digits. For example, the string 11000 could be used to denote the 2-coloring of [1, 5],

where the color of the first two elements is 1 and the color of the last three elements is 0.

2. T H E C A S E IN W H I C H / is CONSTANT

When / is the constant function c, we denote w(f, k, r) by w(c, k, r). It is clear that

w(l, k,r) = w(k,r) and w(c\, k,r) ^ w(c2,k,r) whenever C\ ^ c2.

The existence of w(c, k, r) is well-known. By the following proposition, we see that

it is always bounded above by \c]\w(k,r) — l j + 1.

PROPOSITION 1 . Letcu > 0, andletM = w(c0, k, r) < oo. Then for a i i c ^ c0,

w(c,k,r) ^ [—
'Co

PROOF: Let j - \c/c0]. Every r-coloring of {l, j + l,2j + 1 , . . . , (M - l ) j + l}

yields a monochromatic /c-term arithmetic progression with common difference at least

jc0 ^ c. D

In [9] it was noted that w(c, 3,2) — 8c + 1. The fact that 8c + 1 is an upper bound
follows from Proposition 1, since w(3,2) = 9. That 8c+l is also a lower bound may be seen
by considering the coloring S1S2S1S2 where Si is a string of l's having length 2c and S2 is a
string of O's having length 2c. We may generalise this coloring to obtain a lower bound for
w(c, k, r). Namely, let A(c, k, r) denote the r-coloring A : fl, cr(k - I)2] -» { 0 , 1 , . . . , r—1}
defined by the string

{BtBi... BT)(BXB2... B T ) . . . ( B x f l a . . . B r ) ,

where for each i £ { 1 , . . . , r - 1}, B{ is a string of i's having length c{k - 1), BT is

a string of O's having length c(k - 1), and where there are (k - 1) copies of the block

(BiBz... Br). For example, A(3,3,2) = 111111000000111111000000.

By using A(c, k,r), we have the following result.

PROPOSITION 2 . For all positive integers c, k, r with k, r ^ 2,

PROOF: Let M — cr(k - I)2. It is clear that if we color [1, M] with the coloring

A(c, k.r), there will be no monochromatic &-term arithmetic progression with common

difference at least c. D

We have run a computer program to calculate various values of w(c, k, r). In addition
to giving the value of w(c, k, r), the program also lists all the r-colorings of maximal length
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[3] Monochromatic arithmetic progressions 23

that avoid monochromatic fc-term arithmetic progressions with common difference at least

c (that is, the (c, A;)-valid r-colorings). It is well-known that the (1,3)-valid 2-colorings of

[1,8] are 11001100, 10100101, and 10011001, and, of course, the three colorings obtained

from these by reversing the roles of 0 and 1. Note that the first of these colorings is

the coloring A(l, 3,2) described above. The following theorem shows that for all c ^ 2,

A(c, 3,2) is the only maximal length (c, 3)-valid 2-coloring (assuming that 1 is assigned

the color 1).

Before proceeding we adopt the following notation. We shall denote the following

colorings of [1,8] by the given symbols:

A = 11001100 A' = 00110011 B = 10011001 B' = 01100110

C = 10100101 C" = 01011010.

We need the following two lemmas.

LEMMA 3 . Let c, k, and m be positive integers, and let g be a (c, k)-valid

2-coloring of [I, me]. Let i € {1,2, . . . , c } . Let <?* be the coloring of [ l ,m] defined by

9*U) = g{{3 ~ l ) c + i) f°r eacn J = 1. • • • . m - Then g* is (1, k)-valid on [1, m].

P R O O F : Assume g* is not (1, fc)-valid. Then there is a ^'-monochromatic arithmetic

progression la,a + d,..., a + (k — l)d\ C [l,rn]. Then {(a — l)c + i, (a — 1 + d)c + i ,

... ,(a — l + (k - l)djc + i j is a ^-monochromatic arithmetic progression, contained in

[1, me], having common difference cd ^ c, contradicting the fact tha t g is (c, fc)-valid. D

LEMMA 4 . Ifc^3 and g is a (c, 3)-vaiid 2-coloring of [1,8c] with g(c) = 1, then

5 = {c, 2 c , . . . , 8c} has color pattern A = 11001100.

P R O O F : Define g* on [1,8] by g*(j) = g{jc). By Lemma 3, g* is (l,3)-valid. Hence,

since g(c) = 1, as noted earlier, g* has one of the color patterns A, B, or C, so that 5 has

one of these three color patterns. To complete the proof, we show that S cannot have

color pattern B or C.

We consider two cases.

C A S E I. c is odd. Let T = {1, c + 1,2c + 1 , . . . , 7c + 1}. By Lemma 3, the function g'

denned on [1,8] by g'(j) = g((j - l)c+ l) has one of the six color patterns A, A', B, B',

C, or C"; that is, under g, T has one of these six color patterns.

First assume, by way of contradiction, that 5 has color pattern B.

If T has coloring A or C", then we have g(c + 1) — g(8c) — 1. Hence, <?(4.5c + 1/2) =

0 (for otherwise g is not (c, 3)-valid). This implies that {2c+ l , 4 .5c+ l /2 ,7c} is monochro-

matic under g, a contradiction.

If T has coloring A' or B, then 5(4c) = g{7c+l) = 1, so that g(c - 1) = 0. This

implies that {c - 1,3c, 5c + 1} has color 0, a contradiction.

The remaining possibilities for coloring T are B' and C. For each of these cases,

g(2c + 1) = g(5c) — 1, so that #(8c - 1) = 0. Then {4c + 1 , 6 c , 8c - 1} is monochromatic

with common difference at least c, a contradiction.
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Now assume that S has color pattern C.

If T has any of the color patterns A, B', or C, then <?(3c) = <?(5c+ 1) = 1. so that

g(c — 1) = 0. This implies that {c— 1,2c, 3c+l} is monochromatic, which is not possible.

If T has either of the color patterns A' or C", then g(c) — g(6c+ 1) = 1, implying that

g(3.5c+ 1/2) = 0; but then {2c, 3.5c + 1/2,5c + 1} is monochromatic, a contradiction.

Finally, if T has color pattern B, the fact that <?(4c+ 1) = 1 and g(6c+ 1) = 0 yields

a contradiction in a similar fashion, by first looking at {2c - 1,3c, 4c + 1} and then

{2c - 1,4c, 6c+1} .

CASE II. c is even. This is done in the same way as case I, but instead of using the set

T, we use U = {2, c + 2,2c + 2 , . . . , 7c + 2}. Since this is quite similar to case I, we do

two subcases, and omit the rest.

If S has color pattern B and U has color pattern A, then g{c + 2) = g(Sc) = 1, so

5(4.5c + 1) = 0; but then {2c + 2,4.5c + 1,7c} is monochromatic, giving a contradiction.

If S has color pattern B, and U has one of the colorings A' or B, then <?(4c) =
g(7c + 2) = 1, and hence g(c - 2) = 0 (note that c - 2 > 0). Then {c - 2,3c, 5c + 2} is
monochromatic, which is not possible. D

THEOREM 5 . Assume c ^ 2 and g is a 2-coloring of [1,8c] with <?(1) = 1. If g is

(c, 3)-vaJid on [1,8c], then g = A(c, 3,2).

PROOF: For c = 2, one can check directly that 1111000011110000 is the only valid

2-coloring of [1,16] such that 1 is given color 1.

Now let c ^ 3 and let g be a 2-coloring of [1,8c] such that g(c) = 1. It suffices to

show that for each i — 1,2,..., c,

(1) Tj = {(j - l)c + i: 1 ̂  j ^ 8} has color scheme 11001100.

By Lemma 4, (1) holds for i = c. Now consider i € { 1 , . . . , c - 1}.

Let <7; be the coloring of [1,8] defined by ft(j) = g({j — l)c + i j . Then by Lemma 3,

ft is (l,3)-valid on [1,8]. Thus, g{ has one of the color patterns A, A', B, B\ C, C. Thus,

it suffices to show that Ti does not have any of the color patterns A', B, B', C, C.

If Ti has one of the patterns A', B, or C, then g(c + i) — g{2>c), which implies that

{5c — i, 6c, 7c + i} is monochromatic, a contradiction.

If Ti has the pattern B', then g(2c + i) = <?(5c), so that g(8c - i) = g{4.c) = g(i),

again a contradiction.

Finally, if Tj has pattern C", then g{i) = g(4c) = 0. This implies that {3c+i, 5c, 7c-i}

is monochromatic, also impossible. D

Although we do not have a result analogous to Theorem 5 for arithmetic progressions
of length greater than three, we do have some evidence that suggests a similar result may
be true. Namely, we have computed the values of w(c, 4,2) for all c, 1 ^ c ^ 12. In Table
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1 below, we list these values. In the third column of Table 1, we give the lower bound
for w(c, 4,2) as provided by Proposition 2.

c
1
2
3
4
5
6
7
8
9
10
11
12

u>(c,4,2)
35
45
63
75
92
109
127
145
163
181
199
217

lower bound
19
37
55
73
91
109
127
145
163
181
199
217

TABLE 1. Values of w(c, 4,2)

We notice from Table 1, that as c increases from 1 to 6, the ratio of io(4,3,2) to
the lower bound of Proposition 2 decreases, and for each c, 6 ^ c < 12, these two values
are equal. We have also found, for each c in the table, all maximal length (c, 4)-valid
2-colorings, (that is, (c,4)-valid 2-colorings of [l.u;(c, 4,2) - lj). For each c, 6 < c ^ 11,
all maximal length (c, 4)-valid 2-colorings have a rather simple form that is quite similar
to A(c, 4,2) (of course, by Proposition 2, one of these colorings is A(c, 4,2)).

Based on Theorem 5 and the computer data for k = 4, we offer the following con-
jectures.

Let us first adopt the following notation: for c G Z+, denote by I\ and IQ a string of
l's with length 3c and a string of 0's with length 3c, respectively. If c is even, denote by
Ji and Jo, monochromatic strings of length (3/2)c— 1 of l's and 0's, respectively. Finally,
if c is odd, denote by K\ and Ko strings of length (3c - l) /2 of l's and 0's, respectively.

CONJECTURE 1 . Let c ^ 6 and let g be a (c,4)-vaiid 2-coloring of [1,18c],
with g(l) = 1. If c is even, then g is one of the colorings JiabJiI0IiI0IiJ0cdJo,
where a, b, c, d may be assigned any colors. If c is odd, then g is one of the colorings
KIUKIIQIIIQIIKQVKQ, where u, v may be assigned any colors.

Note that ifo = 6 = u = l and c = d = v = 0 in Conjecture 1, then the only
colorings we get are A(c, 4,2). Also, if Conjecture 1 is true, then there are exactly sixteen
valid colorings of [1,18c] if c is even, and four if c is odd (assuming g(l) = 1). Finally,
note that Conjecture 1 would imply w(c, 4,2) = 18c 4-1 for all c ^ 6, because none of
the colorings described in the conjecture can be extended to a (c, 4)-valid 2-coloring of
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[1,18c + 1] (it is true that w(c, 4,2) = 18c + 1 for all c that are multiples of 6, by virtue
of the fact that to(6,4,2) ^ 109 and Propositions 1 and 2).

CONJECTURE 2 For all k ^ 2, there is a least positive integer ck such that

By Table 1, the fact that w(3,2) — 9, and the trivial case of k = 2, we have that

c2 = 1, c3 = 1, and c4 = 6. Our hope is that for each k ^ 5 and c'k large enough, one

could describe in a simple manner all of the (4 , fc)-valid 2-colorings of [1,2dk{k - I)2] (as

is the case, for example, with [dk,k) — (2,3) and (dk,k) = (6,4)). Finding a reasonable

upper bound for such a ck or c'k is most certainly a difficult problem, since such an upper

bound would yield an upper bound on the classical van der Waerden numbers.

We note that the above discussion, and the conjectures, can be extended from two

colors to r colors in an obvious way. When r = 3, we have found that w(l,3,3) = 27,

iu(2,3,3) - 38, to(3,3,3) = 51, tu(4,3,3) = 67, but do not know any other values (a

conjecture for k = r = 3 would be that that for large enough c, w(c, 3,3) = 12c + 1).

3. T H E GENERAL CASE

In this section we consider the function w(f, k, r) where / is a function from the
positive integers to the positive real numbers.

We begin with the simplest case, namely k = 2. To simplify the notation in this
case, we assume that / is a function from the positive integers to the positive integers.
If g is a function, the symbol <7(r' will denote the rth iterate of g.

THEOREM 6 . Let / : Z+ ->• Z+ be nondecreasing. Then w(f,2,r) = 5(r )(l),

where g(x) = f(x) + x.

PROOF: TO show that <7'r'(l) serves as an upper bound, consider any r-coloring of
[l, </(r)(l)]- Then there must be two members of the set { l ,#( l ) ,5 ( 2 ) ( l ) , . . . , s ( r ) ( l )} with
the same color, say <?(t)(l) and g^(l), where 0 ^ i < j < r. Since

there is a monochromatic 2-term /-arithmetic progression.

To complete the proof we give an r-coloring x of [l, <?(r)(l) - l] under which there

is no monochromatic 2-term /-arithmetic progression. Namely, for i = l , . . . , r , let

At — W'~lHl), g^Hl) — l ] , and let x(-^i) = i- Now, for each i, no two members of

Ai differ by more than f(g^~^(l)j - 1. Since / is non-decreasing, there do not exist

a , 6e At with 6 - a > /(a) - 1. D

We now consider w(f, 3,2). We give two proofs of the fact that w(f, 3,2) exists. The
first is a simple argument that merely shows the existence of this number. The second
proof, under the assumption that / is non-decreasing, gives an upper bound on w(f, 3,2).
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THEOREM 7 . Let / be an arbitrary function from Z+ to R+. Then io( / ,3 ,2)

exists.

PROOF: Let us assume without loss of generality that / is non-decreasing. We

show that every 2-coloring of Z+ produces a progression of the desired type. By the

compactness principle, the result follows.

Let g be a 2-coloring of Z+. We identify g with the binary sequence 5(1)5(2)5(3). . . .

If this sequence does not contain infinitely many 001's (that is g(y) = 0, g(y + 1) = 0,

g(y + 2) = 1 for infinitely many y's) or infinitely many 110's, then the sequence has a

tail consisting of 000... or 111... or 101010..., and the result follows immediately.

Assume that 001 occurs infinitely often. Choose two occurrences, say 5(2;) = 0,

g(x + 1) = 0, g{x + 2) = 1, and 5(2; + d) = 0, g(x + d + 1) = 0, g(x + d + 2) = 1, where

O/(i + 2).
If g(x + 2d + 2) = 1, then {x + 2, x + d + 2, x + 2d + 2} is the desired progression.

If g(x + Id + 2) = 0, then {x,x + d+l,x + 2d + 2} is the desired progression. D

The second proof we give of Theorem 7 uses the following two lemmas.

LEMMA 8 . Let f be a non-decreasing function from Z+ to R+. Let a ^ 1, e ^ 1,
d ^ 3e + /(a + 4e), and n ^ a + 2d. Assume that 5 is a 2-coloring of'[1, n] such that there
does not exist a monochromatic 3-term /-arithmetic progression. Assume that g(a) = 0,
g(a + 2e) - 1, and g(a + 4e) = 0. Then g(a + d) = g(a +d + e).

PROOF: There are two cases, depending on the color of a + d.

Suppose first that g(a + d) = 0. Then g(a + 2d) = 1, since otherwise the / -

arithmetic progression {a,a + d,a + 2d} would be monochromatic. Since g(a + 2e) =

g(a + 2e + 2(d - e)) = 1, we must have g(a + d + e) = 0, for otherwise the /-arithmetic

progression {a + 2e, a + 2e + (d - e), a + 2e + 2(d - e ) | would be monochromatic.

Suppose next that g(a + d) = 1. Then g(a + 2d — 2e) = 0, since otherwise

{a + 2e, a + 2e + (d - 2e), a + 2e + 2(d - 2e)\ would be a monochromatic /-arithmetic

progression. Since now g(a + 4e) = 0 and g(a + 4e + 2(d - 3e)J = 0, we must have

g(a + d + e) = 1, for otherwise the /-arithmetic progression | a + 4e, a + 4e + ( d - 3e),a +

4e + 2(d - 3e)\ would be monochromatic. D

LEMMA 9 . Let f be a non-decreasing function from Z+ to R+. Let a, e, and q be

positive integers and let d ^ 3e + f(a + 4e) and n^ a + 2(d + qe). Assume that 5 is an
(/,3)-vaiid 2-coloring of [l,n]. If g(a) = 0, g(a + 2e) - 1, and g{a + 4e) = 0, then the
set {a + d + ie : 0 ^ i < q + 1} is monochromatic.

PROOF: Lemma 8 gives g(a + d) = g(a + d + e). Replacing d by d + e, and applying
Lemma 8 again, gives g(a + d+e) = g(a + d+2e). We repeat this until the desired
monochromatic set is obtained. D

THEOREM 7 . (Stronger version.) Let f be a non-decreasing function from Z+ to
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R+. Let 6 = 1 + 4 f / ( l ) / 2 l . Then

(2) w{f,3,2)£ \*f(b + 4 f ^ l ) + 1 4 f ^ l + ™/2- 13/2J.

PROOF: Let p = [7(l)/2] and let s - \f(b)/2\. Now let g be any 2-coloring of [1, n]
where n represents the right-hand side of (2). Assume that g is (/, 3)-valid. We shall
obtain a contradiction by means of Lemma 9.

Without loss of generality, assume that g{\) = 0. The proof is divided into three
cases.

CASE 1. g{l + 4p) = 0. Since {1,1 + 2p,1 + 4p} is an /-arithmetic progression, we must
have g(l + 2p) — 1. Now choose t e Z+ so that

4p + /(I + 4p) - 1 ^ tp > 3p + /(I + 4p).

Then

n > 4/(1 +4p + 4s) + 14(p + s) - 3

> 4/(1 + 4p) + 14p - 3

= l + 4(4p + / ( l + 4 p ) - l ) - 2 p

^ 1 + 4tp - 2p

= H - 2 ( t p + ( t - l ) p ) .

We now apply Lemma 9 with a = 1, e = p, d = tp, and <? = £ - 1, and conclude that
the set {1 + tp + ip : 0 ^ i ^ t} is monochromatic. In particular, 1 + tp, 1 + (2t - 2)p,
and 1 + 2tp all have the same color.

If 5(1 + tp) — 0, then {1,1+tp, l+2£p} is a monochromatic /-arithmetic progression.
lig{l + tp) = l, then {1 + 2p, 1 + 2p + (t - 2)p, 1 + 2p + 2(t - 2)p} is a monochromatic
/-arithmetic progression. These contradictions finish Case 1.

CASE 2. g(l + 4p) = 1 and 5(1 + 4p+4s) = 0. Since {l,l + 2(p + s),l + 4(p + s)} is

an /-arithmetic progression, we must have g(l + 2(p + s)j = 1. We shall apply Lemma

9 using 3(1) = 0, g(l + 2(p + s)) = 1, and g(l +4(p + s)) =0. •

Define t to be the positive integer such that

4(p + s) + / (I + 4p + 4s) - 1 ^ t{p + s) > 3(p + s) + /(I + 4p + 4s).

Then

n ^ 4/(1 + 4p + 4s) + 14(p + s) - 3

= 1 + 4(4(p + s) + /(I + 4p + 4s) - l) - 2(p + s)
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Hence Lemma 9 applies with a = 1, e — p + s, d — t(p + s), and q = t - 1, and we

conclude that | l + t(p + s) + i(p + s) : 0 ^ i ^ t\ is monochromatic. In particular

1 + t(p + s), 1 + (2t - 2)(p + s), and 1 + 2t(p + s) all have the same color.

If 5(1 + t(p + s)) = 0, then { l , 1 + t(p + s), 1 + 2t(p + s)} is a monochromatic

/-arithmetic progression. If g(l + t(p + s)) = 1, then | l + 2(p + s), 1 + 2(p + s) +

(t - 2)(p + s), l + 2 ( p + s)+2(t - 2)(p + s)\ is a monochromatic / -ar i thmetic progression.

In either case, we again have a contradiction.

C A S E 3 5(1 + 4p) = 1, 3(1 + 4p + 4s) = 1. Since {1 + 4p,l + 4p + 2s, 1 + 4p + 4s} is

an /-ari thmetic progression, we must have g(l + 4p + 2s) = 0. Define t to be the integer

such that

4s + / ( l + 4p + 4 s ) - 1 ̂  ts^=3s + / ( l + 4 p + 4s).

Then

n > 1 + 4(4s + /(I +4p + 4s) - l) - 2s

^ 1 + 4is - 2s

= l + 2(ts + ( t - l ) s ) .

Hence Lemma 9 applies (with the colors reversed) with a — l + 4p, e = s, d = ts and
q — t — 1, and we conclude that the set {1 + 4p + ts + is : 0 ^ i ^ i) is monochromatic.
In particular, 1 + 4p + ts, 1+ Ap+ (2t - 2)s, and 1 + 4p + 2ts have the same color.

If g(a + \p + ts) = 1, then {1 + 4p, 1 + 4p + is, 1 + 4p + 2ts} is a monochromatic
/-arithmetic progression. If g(a + 4p + ts) = 0, then |l+4p+2s, l+4p+2s+(£ - 2)s, 1 +

4p + 2s + 2(t - 2)s\ is a monochromatic /-arithmetic progression. These contradictions
finish Case 3 and the proof of the theorem. D

The next result gives a lower bound for w(f, 3,2). To simplify the notation, we again
assume that / is a function from the positive integers to the positive integers.

THEOREM 10. Let f be a non-decreasing function from Z+ to Z+ with f(n) ^ n
for all ne Z+. Let h = 2/(1) + 1. Then w(f, 3,2) ^ 8/(/i) + 2h + 2-c, where c is the
largest integer such that f(c) + c ^ 4/(/i) + h + 1.

PROOF: Let M - 8f(h) + 2h + 1 - c. We shall give a 2-coloring of [1, M] for which
there is no monochromatic 3-term /-arithmetic progression; the existence of the coloring
proves the theorem.

Let Ax = [l,h- 1], A2 = [h,2f(h) + h-l],A3= [2/(/i) + h,4/(/i) + h], and A, =

[4/(/») + h + 1, M]. Define X • [1, M] -> {0,1} by X{M U A3) = 1 and X{A2 U AA) = 0.
Assume that X — {x-i,X2,xz\ is an /-arithmetic progression in [1,M] that is

monochromatic under \- Say x2 — x\ = x$ — x2 — d Js f(xi). Using the fact that
x{xi) = x(^2)i we split the proof up into six cases, each of which gives a contradiction.
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CASE 1. xux2 G Ax. Then since /(I) ^ d ^ ft - 2, we have 1 + 2/(1) < £3 ^ 2ft - 3.
Thus, x3 G A2, contradicting the fact that X is monochromatic.

CASE 2. n G Ai, £2 G A3. Then d ^ 2/(ft) + 1, and hence x3 ^ 4/(ft) + ft + 1. This

again implies xfe) = 0, a contradiction.

CASE 3. 2:1,2:2 G ^3. Then

z3 ^ £1 + 2/(xO ^ 2/(ft) + ft + 2/(2/(ft) + ft) > 4/(ft) + A + 1,

so that (̂2:3) = 0.

CASE 4. £1,2:2 € A2. In this case, d ^ 2/(/i) - 1, and therefore £3^X2 + 2/(/i) — 1 ^
4/(/i) + ft - 2. Also, £3 ^ £1 + 2/(ii) ^ ft + 2/(ft). Thus, x3 € ^3, a contradiction.

CASE 5. xx G A2, x2 G A4. Then d ^ 4/(ft) + ft + 1 - xx, and therefore x3 ^ 8/(ft) +
2ft + 2 - Xi. Therefore, Xi ^ c + 1. Hence,

x3 ^ Xi+2/(xi) ^ c+l+2/(c+ 1) > 4/(ft)+ft+l+/(c+ 1) > 8/(ft)+2ft+2-(c+ 1) = M,

a contradiction.

CASE 6. xi,x2 G A4. Then

£3 ^ £! + 2/(xi) ^ 2xi > M,

which is impossible.

D
As one example of the upper and lower bounds given by Theorems 7 and 10, for

m ^ 4 a n even integer, we have 16m2 + 4m + 6 ^ w(mx, 3,2) < 16m3 + 30m2 + 18m - 3
(the case for odd m is slightly different).

We have also computed the exact values of w(f, 3,2) for some functions / . We found
the following: w{x, 3,2) = 24, w(x + 1,3,2) = 46, w(x + 2,3,2) = 67, w[x + 3,3,2) =
89, w(£ + 4,3,2) = 110, iu(x + 5,3,2) = 132, w(2x,3,2) = 77, and w{2x +1,3,2) =

114. In all of these examples, the lower bound of Theorem 10 agrees precisely with the
computed value. We wonder if the bound of Theorem 10 is the actual value of w(f, 3,2)
for all linear / . It is not true for general / , as we have found that w(x2,3,2) > 115, while
the bound provided by Theorem 10 is 77.

For the case in which /(x) = x + c, we have the following fairly close bounds on
M/,3 ,2) .

THEOREM 1 1 . Let c be a non-negative integer. Then

21.5c + 24 + 6 ^ w(x + c, 3,2) ^ 23c + 24,

where 6 = 0ifc is even, and 6 — 1/2 ifc is odd.
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PROOF: The lower bound is an immediate consequence of Theorem 10.

For the upper bound, let g be any 2-coloring of [1,23c + 24]. Let g' be the coloring
of [1,24] defined by g'(i) - g((c + l)(i - 1) + 1 ) . Since (as noted earlier) w(x, 3,2) = 24,
under g' there must be a monochromatic arithmetic progression {a,a + d,a + 2d) with
d > a. Therefore A = {(c + I){a - 1) + 1 , (c + l)(a + d - 1) + 1 , (c + l)(a + 2d - 1) + l}
is an arithmetic progression that is monochromatic under g and has common difference
that is no less than (c+ l)a — (c+ l)(a — 1) + 1 + c. Thus, A is a monochromatic
/-arithmetic progression where f(x) = x + c. D

REMARK By the same method used in the proof of Theorem 11, one can show that
w{bx + be, 3,2) ^ (w{bx, 3,2)-l)c-t-w(&z, 3,2). Thus, for example, since w(2x, 3,2) = 77
we have w(2x + 2c, 3,2) ^ 76c + 77.

Given the above results which pertain to arithmetic progressions of length three, it
may seem surprising that w{f, 4,2) does not exist for all / . In fact we have the following
stronger and more general result, which shows that if k > 3 or r > 2, then there is a
linear function / such that w(f,k.r) does not exist.

THEOREM 1 2 . Let k ^ 3 and r ^ 2. If k > 3 or r > 2, then w(cx, k, r) does not

exist, where
/21/(r-i) _ n

C=(-^T-)-
P R O O F : Assume k > 3 or r > 2. Let v — 21 / ( r~1 ) and define the coloring g, which

uses the colors 0 , 1 , . . . , r — 1 by: g(x) =i (mod r) if vl ^ x < vl+1, for all i ^ 0.

Assume that | a , a + d, a + 2d,..., a + (k - l)d\ is monochromatic, and that v' ^

a + d < vi+l. Then d < vi+\ and a + 2d < 2vi+1 = vi+r. Since g(a + 2d) = g{a + d),

this implies vl ^ a + d < a + 2d < vi+1. Next, a + 3d = (a + 2d) + d < 2vi+l =

vl+r. Since g(a + 3d) = g(a + d), this implies v'^a + d<a + 3d< v1+1. Similarly,

a + id,..., a + (k — l)d are all less than vt+l.

We now have v( s$ a + d < a + (k - l)d < vi+1, so that d < (vi+1 - v*)/(k - 2) and

Since g(a) = g(a + d), it follows that a > v'.

Finally, we have v' ^ a < a + (k - l)d < v1+1, so

<
k-1

Hence w(cx, k, r) does not exist. D

For k,r ^ 2, let A = | c > 0 : w(cx,k,r) exists}. Then by Theorems 6 and 7,
A(2,r) = A(3,2) — (0,oo). According to Theorem 12, for all other choices of k and r,
A(k,r) is bounded. The following result shows that A(k, r) is never empty.
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THEOREM 1 3 . For all k and r, w(x/(w(k,r) - k + l),A:,r) = w{k,r), where

w(k,r) is the ordinary van der Waerden function.

PROOF: If {a, a + d,..., a + (k - l)dj is a monochromatic arithmetic progression

contained in [l,«;(fc,r)|, then a ^ w(k,r) - k + l, so d~£- 1 ^ a/(w(k,r) - k + l ) . D

By Theorems 12 and 13, for all k ^ 3, r ^ 2, such that either k > 3 or r > 2,

the set A(k,r) is bounded and non-empty, and we define P(k,r) — sup A(k,r). Clearly,

A(k,r) = (0,P(k,r)) or A(k,r) = (o,/J(*,r)].
Theorem 12 shows that /?(fc, 2) ^ l/(Jfc - 1) for all ifc ^ 4. For r = 2, Theorem 12 is

strengthened by the following result.

THEOREM 1 4 . lfk^A, then w(x/(k2 -Ak + 3), A, 2) does not exist.

PROOF: Let q = k2 - 4k + 3. Let Ao = [o0l6o] = [l>fc - 1], and for i ^ 1, let
Ai — \a,i,bi], where

(3) <n = 6j_! + 1 and b{ = b^ + (k -

Now 2-color Z+ with the coloring g defined by g(Ai) — 1 if i is even and g(Ai) — 0

if i is odd. We shall show, by contradiction, that g is {x/q, &)-valid.

Assume p is not (x/q, /c)-valid. Then there is a monochromatic arithmetic progression

X = {xi,... ,xk} with rf = Xj—Xj-i > 11/9 for j = 2 , . . . ,k. Let m be the largest integer

such that X D / l m is not empty. Note that X % Am, since if x\ £ Am, then

xk = xi + (k- l)d > bm-i + 1 + (k - 1) [—

To complete the proof we shall obtain a contradiction by showing:

(i) at most two members of X belong to Am

(ii) at most k - 3 members of A' do not belong to Am.

Since not all of X belongs to Am, by the way g and m are defined we know there is some
j > 1 such that Xj € Am and Xj-\ € Ah, with /i ^ m - 2. Hence

(4) d > \Am_,\ + i^(k-l)y+l where y =

To obtain (i), we prove that am + 2d > bm. To prove this, by (3) and (4) it suffices

to show that

» 6m_i + (A; - :
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that is, that

q

We see that this last inequality is true, since the right-hand side is less than (k - l)(y +

)
To establish (ii), we shall show that Xj-i - (k - 3)d < 0. By (4),

D
We have computed w(z/4,4,2) = 134, so that (3(4,2) ^ 1/4. Using this fact, and

the facts that w(3,3) = 27 and u;(3,4) = 76, along with Theorems 12-14, we summarise

what we know about /3(k, r) in the following statement.

COROLLARY 15. Let k^ 3. Then

(i) 1/4^/3(4,2)^1/3

(ii)

(iii)

(iv) For k^5, l/(w(k, 2) - k + l ) sC P{k, 2) ^ l/(k2 - 4k + 3)

(v) F o r r > 2 , l/(w(A,r) - k + l ) < 0(k,r) ^ (21/('-D _ l)/(fc - 1).

Since, by Theorem 12, for each fixed c ^ 3, w(x/c, k, 2) does not exist when k ~£ c+1,

one wonders if there are any functions f(x) such that f(x) —> oo as x —> oo and u/(/, /fc, 2)

exists for all k. One such function is given by the next theorem.

THEOREM 16 . For each r ^ 2, there is a function J(x) such that f(x) -> oo as
i —> oo and w(/, k, r) exists for all k.

P R O O F : We construct such a function f(x) for the case r = 2. The case of more
colors can be handled in exactly the same way. Let w(k, 2) denote the ordinary van
der Waerden function for two colors. Let B2,B3,...,Bk,..., be consecutive blocks of
integers, where B2 = [1,6], B3 — [7,33], and, in general, |5jt| = kw(k, 2). So B2 has
length 2 • 3, S3 has length 3 • 9, B4 has length 4 • 35, et cetera. Define the function f(x)
by f{x) = fc when x belongs to the block Bk- Then f(x) goes to infinity.

Also, w(f, k, 2) < n = 2w(2,2) + 3u>(3,2) + 4w{4,2) + • • • + kw(k, 2), for if [1, n]
is 2-colored, then Bk has been 2-colored. Since \Bk\ = kw(k,2), B^ contains w(k, 2)
consecutive multiples of k. Hence there is a monochromatic /c-term arithmetic progression
{a + id : 0 ^ i ^ (k - 1)} in Bk consisting of multiples of k; hence d^ k — f(a). D
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4. CONCLUDING REMARKS AND QUESTIONS

Analogs of van der Waerden's theorem, where other restrictions are placed on the

type of arithmetic progression which is allowed, have been considered in earlier papers.

In [1, 4, 7], it is shown that in order to guarantee monochromatic arithmetic pro-

gressions la, a + d,..., a + (k — l)d\, one cannot require d or a to be too small as a

function of k.

In [3] it is shown that every 2-coloring of Z+ produces, for every k, a monochromatic
/c-term arithmetic progression where one can require the common difference to be a
perfect square, or to be a perfect cube, or to have the form g(z), where g is any specified
polynomial satisfying some mild conditions (see also [6]). For extensions of this, see the
excellent survey paper [2].

In [5], general properties of the set A are studied, where A is any set of positive
integers such that every r-coloring of Z+ produces, for every k, a monochromatic k-

term arithmetic progression whose common difference is an element of A. The question
of determining the existence of the associated van der Waerden-type function, and its
value, for a given small finite set A, and given k, is considered in [8].

We conclude with some open questions.

1. By Proposition 1 and the coloring A(c, k,2), we know that if w(co,k, 2) =
2cQ(k - I)2 + 1 and j € Z+, then w(jco,k, 2) = 2jco{k - I)2 + 1. Based on what is
true when k — 3 and on Table 1, we wonder if the following stronger statement holds: if
w{c0, k, 2) = 2co{k - I)2 + 1 and c ^ c0, then w(c, k, 2) = 2c{k - I)2 + 1.

2. Theorem 14 suggests questions such as: does w(x/2k,k,2) exist for all large kl

Is it true that for all large k, the fastest growing function / such that w(j,k,2) exists
grows like x/k2?

3. It would be interesting to know the exact values, or have tighter bounds than
those of Corollary 15, for /?(4,2) and /3(3,3). We have found a 3-coloring of [1,534] that is
(z/5,3)-valid, so that w(x/5,3,3) ^ 535. Since w(3,3) = 27 is so small in comparison, we
suspect that u/(z/5,3,3) does not exist, which, if true, would give 1/25 ^ (3(3,3) ^ 1/5.

4. The function of Theorem 16 is apparently a very slow growing function. We
wonder if there are any faster growing functions / , such that, for fixed r, w(f, k, r) exists
for all k.

5. Another generalisation of a 3-term arithmetic progression is a set of the form
{x, ax + d,bx + 2d} where x,a,b,d £ Z+. For each pair a,b, we can define F(a,b) to
be the least positive integer (if it exists) such that for all 2-colorings of [l, F(a, b)\ there
is a monochromatic set of this type. Notice that for any case in which b = 2a - 1, the
collection of sets of this type is exactly the set of arithmetic progressions {3:1,12, £3} with
common difference at least (a - l ) i i + 1. Thus, F(a,2a - 1) = w((a - 1)1 + 1,3,2), and
hence by Theorems 7 (strong form) and Theorem 10 we have upper and lower bounds for
F(a,2a- 1). In particular, for a even, 16a2-12a+6 ^ F{a,2a- 1) ^ 16a3 - 2a2 + 4a - 3 .
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We have calculated that F(2,3) = 46 and F(3 ,5) = 114, coinciding with the lower bound.

We would like to know about F(a, b) if b ^ 2a — 1 (it is very easy to show that F (a , 2a)

does not exist, but we do not know about other cases).
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