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In this paper we shall deal with a probability space (S, E, P), a separable
Banach space X having its strong dual X* and a strictly stationary random
sequence {1^}^=" defined as in [7], where Yk's are X-valued, Gelfand-Pettis
(weakly) integrable [6], [9], and strongly measurable random variables. In the
case when Yk's are Bochner (strongly) integrable random variables one can find
the ergodic theorem for such a sequence and, with respect to strong convergence
in X, in the papers [7], [8].

Here we are going to present the ergodic theorem for the sequence { J ^ } ^
described above, using the representation for a Gelfand-Pettis integrable function
obtained by J. K. Brooks in [3].

The setting. Let Y: S -» X be a (strongly) measurable and weakly integrable
random variable. Then by [3], Fhas the representation:

(1) Y=+fyjIEj

where yt e X, Ej e I, j = 1, 2, • • •, where the series in (1) is absolutely convergent
a.e. [P] and, moreover, the series

(2) ZyjPiEjnE)

is unconditionally convergent [5], for every Ee I. In [3] was given the following
formal definition for the conditional expectation E®(Y)(£% is a c-subalgebra of
I), for a weakly integrable random variable Y having the representation (1) and
satisfying (2):

(3) E*(Y)=+iyjP*{Ej),

where Pa{Ej) = £*(/£>), and whenever the series in (3) is unconditionally con-
vergent a.e. [P] (£*(/£j) is a real valued conditional expectation).

1 Supported in part by ARO-D Contract DAH CO4 68C 0002.
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Let (X, 88 x) be a Borel space defined as in [8] and let (Z°°, 8SX) = []*="
(X, 88x), i.e., (Xx, 8§x) is a measurable space obtained as the product of countable
number of copies of (X, 3'x). Then, according to [8], (X™, 88™) is a standard
Borel space, and one can always define the regular conditional probability Pa of
P (88 is a a-subalgebra of ^°°) such that Pm(A; x) is a ^-measurable function
for a fixed A e ^ , and a probability measure on ^"° for a fixed * e X°°. Let 71

be a shift operator which maps Xx into itself such that Y,(TJx) = Yi+j, for
i,j = 1, 2, • • •, and x € Af00, x = (xt, x2, • • •), with Xj e A',; = 1, 2, • • -. Let n be
a probability measure on (A"", 88™) which is induced by P, and which is invariant
with respect to T, i.e., /i = fiT'1, as a consequence of the fact that {Ĵ }̂ "=n is a
strictly random sequence. Finally, put

JF = {A; A e £r° , T " 1 ^ = ^ a.e. !>]}.

Then, Ĵ " is a o--subalgebra of ^>0°. Now we state

PROPOSITION. Let Y: X°° -* X be a measurable and weakly integrable random
variable having the representation (according to (1) as the result from [3]):

where Xj e X, Ej e 8§x, j = 1, 2, • • •, and series in (4) is absolutely convergent
a.e. \jx], with the corresponding series in (2) unconditionally convergent a.e. [fi].
Furthermore, let ^ be the a-subalgebra of 88™ defined as before, and assume that
J*~ is generated by a countable partition ofXx. Then:

(5) £*(y)(x)=+£V*(£,;x),
. 7 = 1

where yf is a regular conditional probability for \i and the series in (5) is uncon-
ditionally convergent a.e. [pi].

PROOF. From the result in [8], it follows that there exists a regular conditional
probability ]f of \i, as a consequence of the fact that (J00, J"°) is a standard
Borel space. Using the relation (3) one can immediately write the formal representa-
tion (5) for the conditional expectation E*(Y). Let us show that the series in (5),
with J*" defined as before, is unconditionally convergent a.e. [/*]. From the as-
sumption that (X™, 8§x) is a Borel space generated by a countable partition of
A"", it follows that there exists a countable family, say {Fk}^ of 8§x, Fk's being
pairwise disjoint, which generates J2". Then, one can write:

(6)

or, using (5) and (6),

(7) J
*=i fi(Fk)
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wherefrom, for every x e X°°, there exists a positive integer ko{x) such that
x 6 FkoM, and (7) becomes:

(8) E*(YXx) = —J— +fxjn(Ej n FMi)),

where the series in (8) is unconditionally convergent a.e. \ji], due to the
relation (2).

REMARK 1. The assumption that the <r-algebra J5" is generated by a countable
partition is a rather strong restriction. It will be of interest to replace this condition
with some weaker one implying that the series in (5) is unconditionally convergent.

REMARK 2. In the case when the series in (5) is absolutely convergent a.e.
[fi], one gets the strong conditional expectation which was the subject of the studies
by the various authors (see [4], [10], for example).

THEOREM. Let (A"30, 38^, \i) be a probability space and let ^be a a-subalgebra
of yS™ satisfying the assumptons of the previous Proposition. Let {7^}^=" be a
strictly stationary random sequence ofX-valued weakly integrable random variables,
i.e., Yk : X™ -> X, k = 1, 2, • • •, having the representations:

+ 00

Yk = YJxflEjW,k = 1,2, •••,

satisfying the properties described in (1) and (2). Put Sn = (Yt + Y2 + • • • + Yn)/n,
« = 1, 2, • • • . / /

(9) lim E^- 'S 'T-WO)
II->-+OO jeAf n i = 0

exists for every subset M of the set of positive integers, then:

• 0, a.e.|>], as n -» +oo.

PROOF. First, it follows from the properties of the shift operator T described
earlier, that

n j=o j = i n i=o

where

(10) _ _ +00, n = 1,2,
n i=o

Indeed, fory = 1, 2, • • •, and a fixed positive integer n one gets that

n i=o J n ' '
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From (*) and the fact that each of the series Z/=°i x<f
absolutely convergent a.e. \ji], it follows that the series

), k = 1,2, • • •, n is

n i=o
r-<(£,<»)

is absolutely convergent a.e. \ji], which represents the assertion in (10).
Using the Birkhoff's Ergodic theorem [2], it follows that:

(11) lim
n->+co It i = 0

= x}1 W / ' ; *) a.e. |>],

for; = 1,2, •••.
Further, we need the following lemma which is equivalent to the result due

to S. Banach in [1 ] pp. 138-139, and which can be restated as follows:

Let {xin} be a double sequence in a Banach space such that:

0) Y\\xin\\ <

foralli = 1,2, •• •;

00 Z xin = 0
neM

for every subset M of the set of positive integers N; then

lim f||xJ|=0.
i-» + oo n = l

Indeed, if as assume that in the contrary there exists a subsequence it < i2 < • • •,
such that for some E > 0, £*=" | | x j | > e > 0, then it is possible to construct
two subsequences, say, j x <j2 • • •, and/>x < p2 • • •, such that:

Z \\xjj\ < e/8, Y U*jJ\ > (3e)/4,and, +f ||x,kJ| < e/8.

If we take M = {pk} we have that:

l l - +Z HxjJI > (3e)/4-e/8-e/8 = e,HZ *J| £ Z l
neAf n = pfc + 1

Z
n ~ 1

which contradicts the assumption (ii).
Therefore, according to this lemma, it follows from (9), (10) and (11) that

lim Z

which implies that

* < / > -
n-l

n i =
) ~ X J Z1

 I^J ' x ) = 0, a.e.
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I i s , -

a.e. [/*], as n -> +oo.

n— 1

n i=o 1=1

+ 00

' 1=1
n i = o

•o,

COROLLARY 1. Let {Yk}kJ\ be a strictly stationary weakly integrable random
sequence, and assume that X is a Hilbert space. If, moreover,

(12) lim
1

jeM i = 0 jeM

for every subset M of the set of positive integers N, then: \\Sn — Ey{Yl)\\ -> 0, a.e.
[pi], as n -* +oo.

PROOF. Using (10) and the Proposition, one gets that

1 Tl

and

jeM

*(x(jl))\ — E ^r-'(£/')) < + oo, for n = 1, 2, • • •,
n >=o

*(x(j1))\fJ^(Ey); x) < +oo, for every x* e X*, i.e.,

li for n = 1, 2, • • •,, 1 "v
x-(xV')— X

n i =
and {x*(x^1))/iJir(£<.1);x)}e/1, where from it follows, by Birkhoff's Ergodic
theorem that:

(13) x* ( £ xj" 1 I' /r- , x*( X x«V'(£</>; x)), a.e. |>],
jeM

as « -» +oo, for every x* e X*. Taking into account (12) and (13) and the fact that
Zis a Hilbert space, it follows that:

lim
n - l

i = 0

exists for every M £ 7V, which is the condition (9) in the previous theorem.
Therefore, this together with (10) and (11) implies that | | S n - £ j r ( F 1 ) | | -> 0, a.e.
[pi], as« -» +co.

Now we have the following result from [8] as a consequence of the previous
theorem:

COROLLARY 2. / / {Yk}^ are Bochner integrable, then | |S n -£ J i r (F 1 ) | | -> 0,
a.e. [pi], as n -> +oo.
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PROOF. In the case when Yk's are Bochner integrable the series

[6]

is absolutely convergent a.e. [p.], that is,

+oo,a.e.M.

Consider:

(14)
jeM n i = o

= sup
J E M n i=o

where M <z N, and JC* G X*. Let yf be a new random variable which is obtained
from Yt by the formula: Y{ = Y.jett^h^i)- Then, yf is a Bochner integrable
provided that Yt is a Bochner integrable, and (14) can be written as:

(15)
jeM H i = 0

= sup f - \ x*(Y?(y))n*(dy,x)

where nn is a measure which has its masses concentrated in the points: x, Tx, • ••,
T"~lx, of X°°, and equal 1/n at each of these points, and / * ' ( . , JC) is a probability
measure for a fixed xeX™, as was assumed earlier. From the fact that |x*(J'f)|
^ ||yf||, for ||.x;*|| ^ 1, and Bochner integrability of Y\, it follows that

+oo,

which implies, as was shown in [8], that the right-hand side X™ of (15) tends to
zero a.e. \ji], a s n - > - o o , and therefore from (14) one gets the condition (9) in
the theorem, which together with (10) and (11) implies that \\Sn-E

f(Y1)\\-*0,
a.e. [fi], as n -* +oo.
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