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1. Introduction

The Glimm ideal space of a C∗-algebra A, Glimm(A), arises from the complete regular-
ization [8] of the primitive ideal space Prim(A) of A. Define an equivalence relation ∼ on
Prim(A) by P ∼ Q if f(P ) = f(Q) for all (bounded) continuous functions f on Prim(A).
Denoting by [P ] the equivalence class of P , we obtain a bijection between the quotient
space Prim(A)/ ∼ and the set of Glimm ideals, given by the assignment

[P ]→ k([P ]) =
⋂
{Q : Q ∈ [P ]}.

Glimm(A) carries the quotient topology obtained from Prim(A). Clearly, Glimm(A) =
Prim(A) precisely when Prim(A) is Hausdorff.

Apart from being vital to understanding the fine structure of the topology of Prim(A),
the Glimm ideal space of A plays an important role in the problem of representing A as a
maximal full algebra of cross-sections with varying fibre algebras over a locally compact
Hausdorff space. Indeed, if a C∗-algebra A is representable as a maximal full algebra of
cross-sections over a locally compact Hausdorff space X such that the fibres are so-called
primal ideals throughout a dense subset of X, then X is canonically homeomorphic to
Glimm(A) [3]. Such C∗-algebras are called quasi-standard, and it turned out that A is
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quasi-standard if and only if the quotient map from Prim(A) onto Glimm(A) is open and
every Glimm ideal I of A is primal [3] (that is, there is a net in Prim(A) converging to
every point of the hull h(I) of I).

In this paper we investigate the Glimm ideal space of the C∗-algebra C∗(G) of a
two-step nilpotent locally compact group G. Firstly, we establish a parametrization of
Glimm(C∗(G)) through triples (λ, Fλ, τ), where λ is a character of the centre Z(G), Fλ is
a closed subgroup of G associated to λ, and τ is a G-invariant character of Fλ extending
λ, and we describe the topology on Glimm(C∗(G)) in terms of this parametrization
(Theorem 3.7). We proceed to characterize openness of the mapping from Prim(C∗(G))
onto Glimm(C∗(G)) by means of the mapping λ→ Fλ (Theorem 4.2), and thereby also
deduce necessary and sufficient conditions for C∗(G) to be quasi-standard (Corollary 4.4).

In general, it seems to be a difficult problem to determine the Glimm class [P ] of a
primitive ideal P , even for P the kernel of the trivial representation 1G. In § 5 we add some
partial results, including a description of [ker 1G] under the assumption that the closure of
the commutator subgroup of G has a maximal compact subgroup (Theorem 5.5). Finally,
in § 6 we present some examples for which the Glimm ideal space can be computed
explicitly.

2. Preliminaries

We first recall some notation and basic facts from representation theory. As is customary,
we shall use the same letter, for example π, to denote a unitary representation of a locally
compact group G and the associated ∗-representation of the group C∗-algebra C∗(G).
Then kerπ will denote the C∗-kernel of π, and π → ker π defines a mapping from the
dual space Ĝ of G onto Prim(C∗(G)). If S and T are sets of unitary representations of
G, then S is weakly contained in T (S ≺ T ) if ∩{ker σ : σ ∈ S} ⊇ ∩{ker τ : τ ∈ T}, and
S and T are weakly equivalent (S ∼ T ) if S ≺ T and T ≺ S (see [10] and [12]).

Throughout the paper Z(G) (or simply Z) will denote the centre of G. Then, for an
irreducible representation π of G, π | Z ∼ λπ for a unique character λπ ∈ Ẑ, and π ∼ ρ

implies that λπ = λρ. This defines a mapping

r : Prim(C∗(G))→ Ẑ, ker π → λπ,

which is well known to be continuous and surjective. For a closed subgroup H of G and
a representation τ of H, indGH τ denotes the representation of G induced by τ . Then, for
any representation π of G, π ⊗ indGH τ = indGH(π | H ⊗ τ), with ⊗ denoting the tensor
product of representations. The following two simple lemmas will be frequently used in
the sequel in the special case where G is two-step nilpotent and N contains the centre.

Lemma 2.1. Let G be an arbitrary locally compact group and N a closed normal
subgroup of G with abelian quotient group G/N . Then the assignment (χ, ker π) →
ker(π ⊗ χ) for π ∈ Ĝ and χ ∈ Ĝ/N defines a continuous mapping (χ, P ) → χ · P from
Ĝ/N × Prim(C∗(G)) onto Prim(C∗(G)).
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Proof. Clearly, π ⊗ χ ∈ Ĝ for π ∈ Ĝ and χ ∈ Ĝ/N and π⊗χ ∼ ρ⊗χ, ρ ∈ Ĝ, implies
π ∼ ρ. Thus Φ : (χ, P )→ χ · P is well defined. Similarly, we have a mapping

Ψ : Ĝ/N × Ĝ→ Ĝ, (χ, π)→ π ⊗ χ.

Since coordinate functions ϕ of π ⊗ χ are of the form

ϕ(x) = 〈(π ⊗ χ)(x)ξ, η〉 = χ(x)〈π(x)ξ, η〉,

where ξ, η ∈ Hπ⊗χ = Hπ, it follows from [10,18] that the map Ψ is continuous. Now,
consider the commutative diagram

Ĝ/N × Ĝ
Ψ−−−−→ Ĝ

id×ker

y yker

Ĝ/N × Prim(C∗(G)) Φ−−−−→ Prim(C∗(G)),

where ker is the kernel map sending π to ker π. Since Ψ is continuous and the topology
on Ĝ is the inverse image of the hull-kernel topology on Prim(C∗(G)) under ker, we
conclude that Φ is continuous. �

Lemma 2.2. Let H and N be closed subgroups of G such that N is normal and G/N

is abelian, and suppose that α is a G-invariant character of N . Then

(indGN α) | H ∼ indHH∩N (α | H ∩N).

Proof. The set of all characters σ | H, where σ ∈ Ĝ/N , forms a subgroup of the dual
group ̂H/H ∩N which separates the points of H/H∩N and hence is dense in ̂H/H ∩N .
Since α is G-invariant, there exists a representation π of G such that π | N ∼ α (for
instance, π = indGN α). Weak containment is preserved under tensor products, so that

(indGN α) | H ∼ (indGN (π | N)) | H = (π ⊗ indGN 1N ) | H = π | H ⊗ (indGN 1H) | H
∼ {π | H ⊗ σ | H : σ ∈ Ĝ/N} ∼ {π | H ⊗ τ : τ ∈ ̂H/H ∩N}
∼ indHH∩N (π | H ∩N) ∼ indHH∩N (α | H ∩N).

�

For a locally compact group G, let K(G) be the set of all closed subgroups of G and
S(G) the set of all pairs (H, τ), where H ∈ K(G) and τ is a unitary representation of
G. Endow K(G) with the compact-open topology [11] and S(G) with Fell’s so-called
subgroup representation topology [12]. For details concerning the latter compare § 3
of [12], in particular Theorem 3.1′ and the remark following it. Both K(G) and S(G) are
compact. The projection (H, τ)→ H from S(G) onto K(G) is continuous. The properties
that will be most useful to us are continuity of restriction and continuity of induction.
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Theorem 2.3 (see [12]). Let W1 = {(F, H, τ) : F ∈ K(G), (H, τ) ∈ S(G), F ⊆ H}
and W2 = {(F, H, τ) : F ∈ K(G), (H, τ) ∈ S(G), F ⊇ H}.

(i) The mapping (F, H, τ)→ (F, τ | F ) from W1 into S(G) is continuous.

(ii) The mapping (F, H, τ)→ (F, indFH τ) from W2 into S(G) is continuous.

For instance, (ii) implies that if ((Hα, τα))α is a net in S(G) converging to (H, τ)
and ρ is an irreducible representation of G that is weakly contained in indGH τ , then,
after passing to a subnet if necessary, we can assume that there are ρα ∈ Ĝ such that
ρα ≺ indGHα τα and ρα → ρ in Ĝ.

Now, let G be a two-step nilpotent locally compact group with centre Z. For λ ∈ Ẑ,
let Kλ = {z ∈ Z : λ(z) = 1} and Gλ the preimage in G of the centre of G/Kλ. Let ϕ be
a character of Gλ with ϕ | Z = λ. Then ker(indGGλ ϕ) is a primitive ideal of C∗(G), and
every P ∈ Prim(C∗(G)) is obtained in this way. More precisely, denote by P the set of
all triples (λ, Gλ, ϕ), where λ ∈ Ẑ and ϕ ∈ Ĝλ such that ϕ | Z = λ. Then we have the
following lemma (see [15, Proposition 5] and [17, Lemma 2]).

Lemma 2.4. The map (λ, Gλ, ϕ) → ker(indGGλ ϕ) is a one-to-one correspondence
between P and Prim(C∗(G)).

In [6], for G a second-countable two-step nilpotent locally compact group, Baggett
and Packer described the hull-kernel topology on Prim(C∗(G)) in terms of the parame-
ter space P and Fell’s [12] subgroup representation topology on the set S(G) of all pairs
(H, τ), where H ∈ K(G) (the set of all closed subgroups of G) and τ is a representation
of H. In so doing they used the existence of a Borel cross-section for G/Z and cocycles
on G/Z. However, this can be avoided, as can the assumption that G be second count-
able. In what follows we restate their result in the general case and give the necessary
modifications. It is easy to check that the following definition of convergence defines a
topology on P.

Definition 2.5. A net N in P converges to (λ, Gλ, ϕ) ∈ P if every subnet N ′ of N
contains in turn a subnet (λα, Gλα , ϕα)α such that

(i) λα → λ in Ẑ, and

(ii) (Gλα , ϕα) converges to some (H, ψ) in S(G) with H ⊆ Gλ and ϕ | H = ψ.

Theorem 2.6 (see Theorem 1.6 in [6]). Let G be a two-step nilpotent locally
compact group. With the topology defined as in Definition 2.5, the mapping

(λ, Gλ, ϕ)→ ker(indGGλ ϕ)

is a homeomorphism between P and Prim(C∗(G)).
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In a similar way, the topology of Prim(C∗(G)) was previously described for certain
semi-direct product groups in [5]. This study, in turn, was extended to a wider class of
semi-direct product groups by Williams [23].

Carefully checking the proof of Theorem 2.6 as given in [6] for second-countable G, one
observes that all arguments except one carry over to the non-second-countable case when
nets are substituted for sequences. The exception is when cross-sections and cocycles are
employed to show that if (λα)α is a net in Ẑ such that λα → λ in Ẑ and Gλα → F in
K(G), then F ⊆ Gλ. However, this can be seen as follows. Given x ∈ F , after moving to
a subnet if necessary, we can assume that there are xα ∈ Gλα so that xα → x [11]. Then,
denoting by [a, b] the commutator of a and b, we have [xα, y] → [x, y] for every y ∈ G

and λα([xα, y]) = 1 for all α. Since (µ, z)→ µ(z) is a continuous function on Ẑ × Z, we
conclude that λ([x, y]) = 1 for every y ∈ G, whence x ∈ Gλ.

3. The Glimm ideal space of C∗(G)

Let G be a two-step nilpotent locally compact group. The aim of this section is to
find an appropriate parametrization of Glimm(C∗(G)) and to describe the topology on
Glimm(C∗(G)) in terms of this parametrization and convergence of nets. We continue to
denote by Z the centre of G.

Lemma 3.1. Given λ ∈ Ẑ, there exists a smallest closed subgroup Fλ of G (containing
Z) such that [P ] = Ĝ/Fλ · P for every P ∈ r−1(λ).

Proof. Since every continuous function on Ẑ composed with r defines a continuous
function on Prim(C∗(G)), we have that [P ] ⊆ r−1(λ) for each P ∈ r−1(λ). Also, recall
that r−1(λ) = Ĝ/Z · P .

Fix P ∈ r−1(λ), and let XP = {χ ∈ Ĝ/Z : χ ·P ∈ [P ]}. Then XP is a closed subgroup
of Ĝ/Z. To see this, notice first that since the mapping

Ĝ/Z × Prim(C∗(G))→ Prim(C∗(G)), (χ, Q)→ χ ·Q

is continuous, XP is closed in Ĝ/Z, and we can associate to every continuous function f

on Prim(C∗(G)) and χ ∈ Ĝ/Z a new continuous function g by setting g(Q) = f(χ ·Q).
It follows that, if χ, ρ ∈ XP , then

f((χρ) · P ) = g(ρ · P ) = g(P ) = f(χ · P ) = f(P ),

and, similarly, f(χ−1 · P ) = f(P ). Thus XP is a closed subgroup of Ĝ/Z and hence
XP = Ĝ/FP for a unique closed subgroup FP of G, and FP ⊇ Z. If H is an arbitrary
closed subgroup of G, containing Z, such that [P ] = Ĝ/H · P , then Ĝ/H ⊆ XP , whence
H ⊇ FP .
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Finally, if Q ∈ r−1(λ) and hence Q = ρ · P for some ρ ∈ Ĝ/Z, then

XQ = {χ ∈ Ĝ/Z : f(ρ · (χ · P )) = f(ρ · P ) for all f ∈ C(Prim(C∗(G)))}
= {χ ∈ Ĝ/Z : g(χ · P ) = g(P ) for all g ∈ C(Prim(C∗(G)))} = XP .

Thus FQ = FP for all Q ∈ r−1(λ) and we can unambiguously set Fλ = FP . �

Obviously, Fλ ⊆ Gλ for every λ ∈ Ẑ. Let G denote the set of all (Glimm) triples
(λ, Fλ, τ), where λ ∈ Ẑ and τ is a character of Fλ such that τ | Z = λ.

Corollary 3.2. The map (λ, Fλ, τ) → ker(indGFλ τ) is a bijection between G and
Glimm(C∗(G)).

Proof. Let λ ∈ Ẑ and ϕ ∈ Ĝλ be such that ϕ | Z = λ, and let P = ker(indGGλ ϕ).

Then

k([P ]) = ker(indGFλ(ϕ | Fλ)).

Indeed, since Ĝλ/Fλ · ϕ is weakly equivalent to indGλFλ (ϕ | Fλ), we obtain from Lemma 3.1

that

k([P ]) =
⋂
{χ · P : χ ∈ Ĝ/Fλ} =

⋂
{ker(χ⊗ indGGλ ϕ) : χ ∈ Ĝ/Fλ}

=
⋂
{ker(indGGλ(χ | Gλ · ϕ)) : χ ∈ Ĝ/Fλ} =

⋂
{ker(indGGλ(ρϕ)) : ρ ∈ Ĝλ/Fλ}

= ker(indGGλ(indGλFλ (ϕ | Fλ))) = ker(indGFλ(ϕ | Fλ)).

This shows that (λ, Fλ, τ)→ ker(indGFλ τ) maps G onto Glimm(C∗(G)). To verify that this

mapping is also injective, let λi ∈ Ẑ and τi ∈ F̂λi , i = 1, 2, be such that τi | Z = λi and

the representations π1 = indGFλ1
τ1 and π2 = indGFλ2

τ2 have the same kernel in C∗(G).

Then λ1 = λ2 and, since τ1 and τ2 are G-invariant characters, it follows that, with

F = Fλ1 = Fλ2 ,

τ1 ∼ π1 | F ∼ π2 | F ∼ τ2.

Thus τ1 = τ2, as required. �

We now define a topology on G which will turn out to make the bijection of Corollary 3.2
a homeomorphism.

Definition 3.3. A net
(λα, Fλα , τα)α∈A ⊆ G

converges to (λ, Fλ, τ) in G if every subnet (λαβ , Fλαβ , ταβ )β∈B of (λα, Fλα , τα)α∈A con-
tains in turn a subnet (λαβγ , Fλαβγ

, ταβγ )γ∈C such that
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(i) λαβγ → λ in Ẑ, and

(ii) (Fλαβγ , ταβγ )γ∈C converges to some (F, σ) in S(G) such that F ⊇ Fλ and σ | Fλ =
τ .

It is easy to check that this definition of convergence defines a topology on G. The
following lemma is the first step in proving that, with this topology, G is homeomorphic
to Glimm(C∗(G)).

Lemma 3.4. The map G → Glimm(C∗(G)) is continuous.

Proof. Let N = (λα, Fλα , τα)α be a net in G converging to (λ, Fλ, τ) in G. Then
every subnet of N contains a subnet (λαβ , Fλαβ , ταβ )β such that λαβ → λ in Ẑ and
(Fλαβ , ταβ )β → (F, σ) in S(G) with F ⊇ Fλ and σ | Fλ = τ . By continuity of inducing,

indGFλαβ
ταβ → indGF σ.

Choose P ∈ h(ker(indGF σ)). Then there exist Pβ ∈ h(indGFλαβ
ταβ ) such that Pαβ → P in

Prim(C∗(G)). Since the quotient map q : Prim(C∗(G))→ Glimm(C∗(G)) is continuous,

ker(indGFλαβ
ταβ ) = q(Pβ)→ q(P ) = k([P ]).

However, since σ | Fλ = τ , we have that σ ≺ indFFλ τ and hence

P ∈ h(ker(indGF σ)) ⊆ h(ker(indGFλ τ)).

As ker(indGFλ τ) is a Glimm ideal, it follows that ker(indGFλ τ) = k([P ]). Thus we have
seen that every subnet of the net (ker(indGFλα τα))α contains a subnet converging to
ker(indGFλ τ). This proves the lemma. �

Lemma 3.5. If λα → λ in Ẑ and Fλα → F in K(G), then F ⊇ Fλ.

Proof. Choose any P ∈ r−1(λ). Then [P ] = Ĝ/Fλ · P by Lemma 3.1. To prove that

Fλ ⊆ F , it suffices to show that χ · P ∈ [P ] for every χ ∈ Ĝ/F (compare the proof of

Lemma 3.1). With this in mind, fix χ ∈ Ĝ/F .

Now, for any locally compact abelian group A, by [22] the map H → Â/H is a home-

omorphism between K(A) and K(Â). Since Fλα/Z → F/Z in K(G/Z), it follows that

Ĝ/Fλα → Ĝ/F in K(Ĝ/F ). Therefore, for each α, there exists χα ∈ Ĝ/Fλα such that

χα → χ in Ĝ/Z. On the other hand, since ker(indGZ λα) → P , for each α, we find some

Pα ∈ r−1(λα) such that Pα → P in Prim(C∗(G)). Since the mapping

Ĝ/Z × Prim(C∗(G))→ Prim(C∗(G)), (σ, Q)→ σ ·Q

https://doi.org/10.1017/S0013091599001315 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599001315


512 E. Kaniuth and W. Moran

is continuous, we conclude that χα·Pα → χ·P in Prim(C∗(G)). Now, as χα·Pα ∈ [Pα] and

hence f(χα · Pα) = f(Pα) for every α and every continuous function f on Prim(C∗(G)),

it follows that f(χ · P ) = f(P ) for each such f , as required. �

The preceding lemma will be used to prove the next lemma as well as later in the
paper (§ 4).

Lemma 3.6. The map P → G, (λ, Gλ, ϕ)→ (λ, Fλ, ϕ | Fλ) is continuous.

Proof. Let N be a net in P converging to some (λ, Gλ, ϕ) in P, and let N ′ be a
subnet of N . Then N ′ possesses a subnet (λα, Gλα , ϕα)α such that λα → λ in Ẑ and
(Gλα , ϕα)→ (H, ψ) in S(G) with H ⊆ Gλ and ψ = ϕ | H.

Since K(G) is compact, by passing to a further subnet if necessary, we can assume
that Fλα → F in K(G). As Fµ ⊆ Gµ for all µ ∈ Ẑ, it follows that F ⊆ H and hence
(Fλα , ϕα | Fλα)→ (F, ϕ | F ) in S(G). On the other hand, F ⊇ Fλ by Lemma 3.5.

Thus, with p : P → G denoting the map (λ, Gλ, ρ)→ (λ, Fλ, ρ | Fλ), we have seen that
the subnet p(N ′) of p(N ) contains a subnet converging in G to p(λ, Gλ, ϕ). This proves
that p is continuous. �

We are now ready to establish the main result of this section.

Theorem 3.7. Let G be a two-step nilpotent locally compact group. With the topol-
ogy on G as defined in Definition 3.3, the map from G to Glimm(C∗(G)) given by
(λ, Fλ, τ)→ ker(indGFλ τ) is a homeomorphism.

Proof. Denote this map by Γ . Then Γ is continuous by Lemma 3.4. In order to prove
the openness of Γ , consider the following commutative diagram, where q is the quotient
map, p is the map of Lemma 3.6 and Π : P → Prim(C∗(G)) the parametrization map
of Theorem 2.6:

Prim(C∗(G)) −−−−→
q

Glimm(C∗(G))

Π

x xΓ
P −−−−→

p
G

For an open subset V of G, q−1(Γ (V )) = Π(p−1(V )) is open since p is continuous (Lemma
3.6) and Π is open (Theorem 2.6). Since Glimm(C∗(G)) carries the quotient topology,
it follows that Γ (V ) is open. �

In § 6 we will present examples illustrating Theorem 3.7, Heisenberg groups over the
p-adic numbers on the one hand and universal two-step nilpotent simply connected Lie
groups on the other. We conclude this section with a remark concerning the Glimm ideal
space of discrete groups [18].
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Remark 3.8. Let G be an amenable discrete group, and let FC(G) denote the normal
subgroup consisting of all elements of G with finite conjugacy classes. Let E(FC(G), G)
be the set of all indecomposable normalized G-invariant (with respect to conjugation)
positive definite functions on FC(G), endowed with the topology of pointwise conver-
gence. For ϕ ∈ E(FC(G), G), denote by πϕ the Gelfand–Naimark–Segal representation
of FC(G) associated with ϕ. Then the mapping ϕ→ ker(indGFC(G) πϕ) is a homeomor-
phism between E(FC(G), G) and Glimm(C∗(G)) [18, Theorem 3.6]. In particular, if G

is a torsion-free nilpotent discrete group, then FC(G) equals the centre Z of G and
hence Glimm(C∗(G)) is naturally isomorphic to the dual group Ẑ. However, the family
of amenable discrete groups (more generally, amenable groups with small invariant neigh-
bourhoods of the identity) is the only larger class of groups, for which such a complete
description of the Glimm ideal space is known.

4. Quasi-standardness

A C∗-algebra A is said to be quasi-standard if the failure of separation by open sets
defines an open equivalence relation on Prim(A). This condition is a natural substitute
for the stronger condition that Prim(A) should be Hausdorff. In the separable case, quasi-
standardness of A is equivalent to A being representable as a maximal full algebra of
cross-sections over a locally compact Hausdorff space, namely Glimm(A), such that the
fibres are primitive throughout a dense subset [3]. By [3, Theorem 3.3], a C∗-algebra A

is quasi-standard if and only if the quotient map from Prim(A) onto Glimm(A) is open
and every Glimm ideal I in A is primal, that is, there exists a net (Pα)α in Prim(A) such
that Pα → P for each P ∈ h(I).

The C∗-algebras of the continuous and the discrete Heisenberg groups have been known
to be quasi-standard for some time (see [1] and [19]). A more systematic study of quasi-
standardness of group C∗-algebras was only recently undertaken in [18], [2] and [4].
C∗(G) turned out to be quasi-standard for every amenable discrete group G [18], while
for a two-step nilpotent simply connected Lie group G, C∗(G) is quasi-standard if and
only if the maximal coadjoint orbit dimension in the dual vector space of the Lie algebra
of G equals the dimension of G/Z (see [2]).

In this section we are going to characterize, for an arbitrary two-step nilpotent locally
compact group G, openness of the quotient map and the property that every Glimm is
primal in terms of the maps λ→ Fλ and λ→ Gλ from Ẑ into K(G), respectively.

Lemma 4.1. Let µ ∈ Ẑ, and let L be a closed subgroup of G such that Z ⊆ L ⊆ Gµ.
Then Ĝ/L · I is closed in Prim(C∗(G)) for every I ∈ r−1(µ).

Proof. Let (χα · I)α be a net in Ĝ/L · J converging to some J ∈ Prim(C∗(G)). Then
J ∈ r−1(µ), and so I and J are of the form I = ker(indGGµ σ) and J = ker(indGGµ τ) for
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certain characters σ, τ extending λ. Now

χα · I = ker(χα ⊗ indGGµ σ) = ker(indGGµ(χα | Gµ · σ))→ ker(indGGµ τ),

and hence (χα | Gµ) · σ → τ in Ĝµ. Since χα | L ≡ 1 for all α, we get that σ | L = τ | L
and hence τ = ση for some η ∈ Ĝµ/L. Now choose any χ ∈ Ĝ/L extending η. Then, as
required,

J = ker(indGGµ(ση)) = ker(χ⊗ indGGµ σ) = χ · I ∈ Ĝ/L · I.

�

Theorem 4.2 answers the question of when the quotient map from Prim(C∗(G)) onto
Glimm(C∗(G)) is open.

Theorem 4.2. For a two-step nilpotent locally compact group G with centre Z the
following two conditions are equivalent.

(i) The map λ→ Fλ from Ẑ into K(G) is continuous.

(ii) The quotient map from Prim(C∗(G)) onto Glimm(C∗(G)) is open.

Proof. To prove that (i) implies (ii), suppose that there is an open subset V of
Prim(C∗(G)) such that Sat(V ), the saturation of V with respect to ∼, fails to be open.
Then there exists P ∈ Sat(V ) and a net (Pα)α in Prim(C∗(G)) \Sat(V ) converging to P

in Prim(C∗(G)). With λα = r(Pα) and λ = r(P ), we get that λα → λ in Ẑ and hence,
by hypothesis, that Fλα → Fλ in K(G). This implies that Ĝ/Fλα → Ĝ/Fλ in K(Ĝ/Z).

Now, since P ∈ Sat(V ), there exists χ ∈ Ĝ/Fλ such that χ · P ∈ V (Lemma 3.1). As
Ĝ/Fλα → Ĝ/Fλ, for each α there exists χα ∈ Ĝ/Fλα such that χα → χ. It follows that
χα ·Pα → χ ·P . Since V is open, χα ·Pα ∈ V and hence Pα ∈ Sat(V ) eventually. This is
a contradiction.

Conversely, suppose that (ii) holds. Since K(G) is compact, the map µ→ Fµ is contin-
uous at λ if for every net (λα)α converging to λ, whenever Fλα → H for some H ∈ K(G),
then H = Fλ. Notice that by Lemma 3.5, if Fλα → H and λα → λ, then H ⊇ Fλ. By
way of contradiction, suppose there is a net (λα)α in Ẑ such that λα → λ and Fλα → H

with Fλ properly contained in H.
Choose P ∈ r−1(λ). There exist Pα ∈ r−1(λα) such that Pα → P in Prim(C∗(G)).

Now let
C =

⋃
α

Ĝ/Fλα · Pα
⋃

Ĝ/H · P.

We claim that C is closed in Prim(C∗(G)). To that end, notice first that each of the sets
Ĝ/Fλα · Pα and Ĝ/H · P is closed in Prim(C∗(G)). Indeed, this follows from Lemma 4.1,
since Fλα ⊆ Gλα and hence also H = limα Fλα ⊆ Gλ. It remains to consider a net
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(χαβ · Pαβ )β , converging to some Q ∈ Prim(C∗(G)), with the additional property that,
for no β0 is

χαβ · Pαβ ∈ Ĝ/Fλα0
· Pα0

for some α0 and all β > β0. We need to show that then Q ∈ Ĝ/H · P . It follows that
λαβ → λ, whence Q ∈ r−1(λ). Let

Pα = ker(indGGλα ϕα), P = ker(indGGλ ϕ) and Q = ker(indGGλ ψ),

where ϕα ∈ Ĝλα and ϕ, ψ ∈ Ĝλ. Since Pα → P we can assume, after passing to a subnet
if necessary, that

(Gλαβ
, ϕαβ )→ (L, ϕ | L)

in S(G) for some subgroup L of Gλ. Clearly, then H = limβ Fλαβ ⊆ L and

(Fλαβ , ϕαβ | Fλαβ )→ (H, ϕ | H).

On the other hand, χαβ · Pαβ → Q and χαβ | Fλαβ ≡ 1. Hence

(Fλαβ , ϕαβ | Fλαβ )→ (H, ψ | H),

which yields that ψϕ−1 ∈ Ĝλ/H. Choose any χ ∈ Ĝ/H such that χ | Gλ = ψϕ−1. It
follows that

Q = ker(indGGλ ψ) = ker(indGGλ(χ | Gλ · ϕ)) = ker(χ⊗ indGGλ ϕ) = χ · P.

This finishes the proof that C is closed in Prim(C∗(G)).
Finally, let V = Prim(C∗(G)) \C. Then V is open in Prim(C∗(G)), but Sat(V ) is not.

In fact, since Fλ is properly contained in H, [P ] \ Ĝ/H · P is a non-empty subset of V

and, therefore,

[P ] = Sat([P ] \ Ĝ/H · P ) ⊆ Sat(V ).

If Sat(V ) were open, then Pα would eventually belong to Sat(V ), contradicting the fact
that [Pα] = Ĝ/Fλα · Pα ⊆ C for all α. The quotient map is, therefore, not open, and this
contradiction proves that (ii) implies (i). �

The proof of the next lemma also makes substantial use of the properties of continuity
of induction and continuity of restriction.

Lemma 4.3. Let λ ∈ Ẑ and τ ∈ F̂λ be such that τ | Z = λ. Then ker(indGFλ τ) is a
primal ideal of C∗(G) if and only if there exists a net (λα)α in Ẑ such that λα → λ in Ẑ

and Gλα → Fλ in K(G).
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Proof. Let I = ker(indGFλ τ), and suppose first that such a net in Ẑ exists. Then, since
λα → λ and Gλα → Fλ, there exist ϕα ∈ Ĝλα such that ϕα | Z = λα and (Gλα , ϕα) →
(Fλ, τ) in S(G) (Theorem 2.6). It follows that Pα = ker(indGGλα ϕα) → P for every
P ∈ h(I), whence I is a primal ideal.

Conversely, let I be primal and let (Pα)α be a net in Prim(C∗(G)) converging to P for
every P ∈ h(I). Let λα = r(Pα) and Pα = ker(indGGλα ϕα), as usual. Then λα → λ and
after passing to a subnet if necessary, we can assume that Gλα → H for some H ⊆ K(G).
Now, since

indGGλα ϕα → indGFλ τ and (indGGλα ϕα) | Gλα ∼ ϕα,

the theorem on continuity of restriction implies that (Gλα , ϕα)→ (H, ϕ) for every char-
acter ϕ of H that is weakly contained in (indGFλ τ) | H. Since obviously Fλ ⊆ H,

(indGFλ τ) | H ∼ {ϕ ∈ Ĥ : ϕ | Fλ = τ}.

Thus there can be only one such ϕ. Equivalently, H = Fλ and hence Gλα → Fλ in K(G),
as was to be shown. �

Since a C∗-algebra A is quasi-standard if and only if every Glimm ideal of A is primal
and the quotient map q : Prim(A)→ Glimm(A) is open [3, Theorem 3.2], the following
corollary is an immediate consequence of Theorem 4.2 and Lemma 4.3.

Corollary 4.4. Let G be a two-step nilpotent locally compact group and Z its centre.
Then C∗(G) is quasi-standard if and only if the following two conditions are satisfied.

(i) The map λ→ Fλ from Ẑ into K(G) is continuous.

(ii) For each λ ∈ Ẑ there exists a net (λα)α in Ẑ such that λα → λ in Ẑ and Gλα → Fλ

in K(G).

Remark 4.5. Suppose that G is a simply connected two-step nilpotent Lie group with
the property that every Glimm ideal of C∗(G) is primal. Then C∗(G) is quasi-standard [2,
Theorem]. Equivalently, condition (ii) of Corollary 4.4 already ensures condition (i). It
is unlikely that this same conclusion holds true for arbitrary locally compact two-step
nilpotent groups. However, we are unaware of a counterexample. On the other hand, it
is worth pointing out that there are three-step nilpotent simply connected Lie groups
G such that every Glimm ideal of C∗(G) is primal, yet nevertheless C∗(G) fails to be
quasi-standard (see [2, Proposition 4] and [4]).

5. The Glimm class of a primitive ideal

For an arbitrary locally compact group G, let FC−(G) denote the normal subgroup
consisting of all elements with relatively compact conjugacy classes. If G = FC−(G),
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then Prim(C∗(G)) is a Hausdorff space [16], and, for connected groups, the converse is
true [7]. Thus it is not surprising that, when studying the extent to which the Hausdorff
property fails for Prim(C∗(G)), the subgroup FC−(G) of G is of importance.

Tits [21] has shown that FC−(G) is closed in G provided that G is connected. However,
it need not be closed in general [21]. In passing we give an example of a two-step nilpotent
group G for which FC−(G) fails to be closed.

Example 5.1. Let C be the compact group (Z2)Z, and let

D = {(xn)n ∈ C : xn = 0 for all n 6 nx for some nx ∈ Z},

endowed with the topology that makes the subgroups Dk, k ∈ Z, with

Dk = {(xn)n ∈ D : xn = 0 for all n 6 k},

a neighbourhood basis of the identity. Let G denote the group of upper triangular matrices1 x y

0 1 z

0 0 1

 ,

where x ∈ C and y, z ∈ D. It is then easily verified that such a matrix belongs to FC−(G)
if and only x ∈ D. Hence FC−(G) is a proper dense subgroup of G.

From now on, let G be a two-step nilpotent locally compact group. Note that, in this
case, x ∈ FC−(G) if and only if the subgroup [G, x] of Z is relatively compact. For every
compact subgroup K of Z, let G(K) = {x ∈ G : [x, G] ⊆ K}. Then FC−(G) =

⋃{G(K) :
K a compact subgroup of Z}. In particular, if G is compact free (that is, no non-trivial
element of G generates a relatively compact subgroup), then FC−(G) equals the centre
of G.

Lemma 5.2. Let N = FC−(G) and π ∈ Ĝ. Then

[ker π] ⊆ h(ker(indGN (π | N))).

Proof. Let P = kerπ and λ = r(P ), and consider any Q ∈ [P ]. Then r(Q) = λ, and
hence there are characters σ and τ of Gλ extending λ such that P = ker(indGGλ σ) and
Q = ker(indGGλ τ). Since G/N is abelian,

indGGλ τ ≺ indGN ((indGGλ τ) | N).

Moreover, by Lemma 2.2, since τ is G-invariant,

(indGGλ τ) | N ∼ indNGλ∩N (τ | Gλ ∩N),
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and similarly for σ. Therefore it suffices to verify that

indNGλ∩N (τ | Gλ ∩N) ∼ indNGλ∩N (σ | Gλ ∩N),

which is equivalent to τ | Gλ ∩ N = σ | Gλ ∩ N . Of course, it is enough to show that
τ | Gλ ∩G(K) = σ | Gλ ∩G(K) for every compact subgroup K of Z. Now, fix K and let

L = Gλ ∩G(K) and M = Kλ ∩K.

Since [L, G] ⊆ Kλ ∩K, L/M is contained in the centre of G/M . Notice next that, since
τ |M = σ |M = 1, P and Q are elements of Prim(C∗(G/M)), and since M is compact,
Prim(C∗(G/M)) is open and closed in Prim(C∗(G)). Thus P and Q cannot be separated
by a continuous function on Prim(C∗(G/M)). Finally, since L/M is contained in the
centre of G/M , we obtain that τ | L = σ | L, as required. This finishes the proof of the
lemma. �

It can happen that, for π ∈ Ĝ, the inclusion of Lemma 5.2 is strict. Examples can be
found within the class of two-step nilpotent simply connected Lie groups (see [4] and
Example 6.3 below). However, it is not unlikely that for the trivial representation 1G we
always have [ker 1G] = h(ker(indGN 1N )) = Prim(C∗(G/N)). Such a conjecture is strongly
supported by the partial results that follow. In the sequel we shall always identify the
dual group Ĝ/Z(G) with the corresponding closed subset of Prim(C∗(G)) and write [1G]
for [ker 1G].

Lemma 5.3. Let H be a system of open subgroups of G each of which contains the
centre, and suppose that H is upwards directed by inclusion and satisfies⋃

{H : H ∈ H} = G.

If [1H] = Ĥ/Z(H) for all H ∈ H, then [1G] = Ĝ/Z(G).

Proof. Let Z = Z(G), and for H0 ∈ H set

XH0 =
⋃
{Ĝ/H : H ∈ H, H0 ⊆ H}.

By the hypotheses on H, XH0 is a subgroup of Ĝ/Z and⋂
{Z(H) : H0 ⊆ H ∈ H} = Z.

Thus XH0 separates the points of G/Z and hence is dense in Ĝ/Z.
Let S denote the open subset of Ĝ/Z consisting of all points of Ĝ/Z that can be

separated from 1G by a continuous function on Prim(C∗(G)). We are going to prove that
S ∩XH0 = ∅ for some H0 ∈ H. Since XH0 is dense in Ĝ/Z, this will show that S = ∅, as
required.
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For each H ∈ H, let µH denote normalized Haar measure on the compact subgroup
Ĝ/H of Ĝ/Z. Now, since the mapping (χ, Q) → χ · Q from Ĝ/Z × Prim(C∗(G)) onto
Prim(C∗(G)) is continuous, to every continuous function f on Prim(C∗(G)) we can
associate a function fH on Prim(C∗(G)) defined by

fH(P ) =
∫
Ĝ/H

f(χ · P ) dµH(χ).

Using the continuity property again and the fact that Ĝ/H is compact, we see, easily,
that fH is continuous. Moreover, since Ĝ/H → {1G} in K(Ĝ) as H → G, it follows that
fH converges to f pointwise on Prim(C∗(G)) as H → G.

Now, let χ ∈ S and fix a continuous function f on Prim(C∗(G)) such that f(χ) 6=
f(1G). By what we have shown above there exists H0 ∈ H such that fH(χ) 6= fH(1G) for
all H ∈ H containing H0. We claim that for every such H, χ | H can be separated from
1H by a continuous function on Prim(C∗(H)). To that end, recall first that the action of
G on H by conjugation gives rise to an action (x, Q)→ Qx of G on Prim(C∗(H)), and let
Prim(C∗(H))/G denote the space of all ideals I of C∗(H) of the form I = ∩{Qx : x ∈ G},
where Q ∈ Prim(C∗(H)). The ideals in Prim(C∗(H))/G are precisely the maximal closed
G-invariant ideals of C∗(H). Endow Prim(C∗(H))/G with the hull-kernel topology. Then
we have continuous mappings

s : Prim(C∗(H))→ Prim(C∗(H))/G,

defined by s(Q) = ∩{Qx : x ∈ G} for Q ∈ Prim(C∗(H)), and

t : Prim(C∗(G))→ Prim(C∗(H))/G,

by t(P ) = P ∩ C∗(H) for P ∈ Prim(C∗(G)). Since Ĝ/H is compact and Prim(C∗(G))
is a T1-space, Ĝ/H · P is closed in Prim(C∗(G)) and hence equal to t−1(t(P )) for every
P ∈ Prim(C∗(G)). In particular, for every open subset V of Prim(C∗(G)), t−1(t(V )) =
Ĝ/H ·V is open, and this implies that t is actually open. Since fH is constant on Ĝ/H · P
for every P ∈ Prim(C∗(G)), we can therefore define a function gH on Prim(C∗(H))/G

by setting gH(t(P )) = fH(P ), and gH is continuous. Then gH ◦ s is a continuous function
on Prim(C∗(H)) satisfying

gH ◦ s(χ | H) = gH(t(χ)) = fH(χ) 6= fH(1G) = gH ◦ s(1H).

This proves the claim.
Finally, by hypothesis, [1H] = Ĥ/Z(H). Thus we have shown that

χ /∈
⋃
{ ̂G/Z(H) : H ∈ H, H ⊇ H0},

and this finishes the proof of the lemma. �
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Recall that an element of a topological group is called compact if the closure of the
cyclic group it generates is compact. A locally compact group G is said to be compact-free
if the unit element is the only compact element of G. These notions generalize those of a
torsion element and torsion-freeness for discrete groups. If G is nilpotent, then the set Gc

of all compact elements of G forms a closed normal subgroup of G, G/Gc is compact-free,
and Gc is compact whenever G is compactly generated [13].

The proof of the following lemma imitates an argument from [20, Lemma 2.5], where
it has been used to determine the support in Ĝ of the conjugation representation of G

on L2(G) for a compactly generated, compact-free, two-step nilpotent group.

Lemma 5.4. Suppose that G has a closed central subgroup N such that [G, G] ⊆ N

and N is of the form N = Rp × Zq, p, q ∈ N0. Then [1G] = Ĝ/Z(G).

Proof. Let λ ∈ Ẑ(G) and µ = λ | N . There exist (a1, . . . , ap) ∈ Rp and (b1, . . . , bq) ∈
Rq such that

µ(x, y) = exp
(

2πi
( p∑
j=1

xjaj +
q∑

k=1

xkbk

))
for all x = (x1, . . . , xp) ∈ Rp and y = (y1, . . . , yq) ∈ Zq. For n ∈ N, define µn ∈ N̂ by

µn(x, y) = exp
(

2πi
(

1
2n

( p∑
j=1

xjaj +
q∑

k=1

ykbk

)))
.

Then µn → 1N , and therefore we can extend µn to a character λn of Z(G) such that

λn → 1Z(G) as n→∞. Now

Kλn ∩N =
{

(x, y) :
p∑
j=1

xjaj +
q∑

k=1

ykbk ∈ 2nZ
}

,

and hence, since [G, G] ⊆ N ,

Gλn = {u ∈ G : [u, G] ⊆ Kλn ∩N} ⊆ Gλn−1 ⊆ Gλ

for all n > 2. It follows that the sequence (Gλn)n converges in K(G) to

H =
∞⋂
n=1

Gλn ⊆ Gλ.

By Theorem 2.6, for every n ∈ N, we find a character ϕn of Gλn such that ϕn | Z(G) = λn

and (Gλn , ϕn)→ (H, 1H) in S(G). By continuity of inducing,

indGGλn ϕn → indGH 1H,
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and hence the sequence (Pn)n, where Pn = ker(indGGλn , ϕn) for n ∈ N, converges in

Prim(C∗(G)) to every point in Ĝ/H. Since H ⊆ Gλ it follows that Ĝ/Gλ ⊆ [1G]. Finally,

since
⋂{Gλ : λ ∈ Ẑ(G)} = Z(G), the subgroup of Ĝ/Z(G) generated by all Ĝ/Gλ, λ ∈

Ẑ(G), is dense in Ĝ/Z(G). This proves that [1G] = Ĝ/Z(G). �

Theorem 5.5. Let G be a two-step nilpotent locally compact group such that the clo-
sure of its commutator subgroup contains a maximal compact subgroup K. Let G(K) =
{x ∈ G : [x, G] ⊆ K}. Then

[1G] = ̂G/G(K).

In particular, if G is compact-free, then [1G] = Ĝ/Z(G).

Proof. Recall first that since K is compact and normal, Prim(C∗(G/K)) is open and
closed in Prim(C∗(G)). Hence the Glimm class of 1G in Prim(C∗(G)) coincides with
the Glimm class of 1G/K in Prim(C∗(G/K)). Since G(K)/K equals the centre of G/K,
after passing to G/K, we can therefore assume that G has a closed central subgroup F

such that F is compact-free and [G, G] ⊆ F . It suffices to show that, in this situation,
[1G] = Ĝ/Z(G).

To that end, let H denote the set of all open subgroups H of G such that H contains
Z(G) and H/Z(G) is compactly generated. We claim that [1H] = Ĥ/Z(H) for every
H ∈ H. Once this is shown, an application of Lemma 5.3 yields that [1G] = Ĝ/Z(G).

Now, being compact free, F is of the form F = Rp × L, p ∈ N0, where L is discrete
and torsion-free. Since H/Z(H) is compactly generated, so is [H, H] ⊆ F . Therefore the
closed commutator subgroup H ′ of H is contained in some closed subgroup of F of the
form Rp ×M , where M is a finitely generated subgroup of L and hence isomorphic to
Zq for some q ∈ N0. Thus Lemma 5.4 applies to H and establishes the claim. �

Let P ∈ Prim(C∗(G)) and λ = r(P ). We call P a Glimm point if its Glimm class [P ]
equals the singleton {P}. Now, if P = ker(indGGλ ϕ), then k([P ]) = ker(indGFλ(ϕ | Fλ)).
This implies that P is a Glimm point if and only if Gλ = Fλ. However, this latter equality
may be difficult to verify because in general Fλ is not easily computable.

If P is a Glimm point, then in particular P is a separated point of the topological space
Prim(C∗(G)), that is, P can be separated from every distinct point in Prim(C∗(G)) by
open sets. Conversely, suppose that V is an open subset of Prim(C∗(G)) consisting of
separated points. The argument of [9, Proposition 7] then shows that each point in V is
even a Glimm point. This fact, in conjunction with the following lemma, can be used to
identify Glimm points in Prim(C∗(G)) (see [4] and Example 6.3).

Lemma 5.6. P ∈ Prim(C∗(G)) is a separated point of Prim(C∗(G)) if and only if the
map λ→ Gλ is continuous at r(P ).
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Proof. Let P be a separated point, so that {P} = h(P ) is a maximal limit set in
Prim(C∗(G)). Since K(G) is compact, it suffices to show that if (λα)α is a net in Ẑ

converging to λ = r(P ) and Gλα → H in K(G) for some H, then H = Gλ. We know
that H ⊆ Gλ, so suppose that H is strictly contained in Gλ. Since λα → λ, there are
Pα ∈ r−1(λα) such that Pα → P in Prim(C∗(G)). Let Pα = ker(indGGλα ϕα) and P =
ker(indGGλ ϕ). Then, by Theorem 2.6, after moving to a subnet if necessary, we can assume
that (Gλα , ϕα) → (H, ϕ | H) in S(G). By continuity of inducing, h(ker(indGH(ϕ | H)))
is a limit set in Prim(C∗(G)), containing P . However, since H is a proper subgroup of
Gλ, there exists ψ ∈ Ĝλ such that ψ 6= ϕ, but ψ | H = ϕ | H. Then Q = ker(indGGλ ψ) ∈
Prim(C∗(G)), Q 6= P and Q is a limit point of (Pα)α, a contradiction.

Conversely, suppose that P is not separated, and choose Q ∈ Prim(C∗(G)) such that
Q 6= P and Q cannot be separated from P by open subsets. Then P, Q ∈ r−1(λ) for
some λ ∈ Ẑ, and hence P = ker(indGGλ ϕ) and Q = ker(indGGλ ψ) for certain ϕ, ψ ∈ Ĝλ

such that ϕ | Z = λ = ψ | Z. Since there is a net in Prim(C∗(G)) converging to both
P and Q, by Theorem 2.6 there are (λα, Gλα , ϕα) ∈ P such that λα → λ in Ẑ and
(Gλα , ϕα) → (H, ρ) for some (H, ρ) ∈ S(G) such that H ⊆ Gλ and ϕ | H = ρ = ψ | H.
Since ϕ 6= ψ, we necessarily have that H is properly contained in Gλ. This shows that
µ→ Gµ is discontinuous at λ. �

6. Examples

We conclude the paper with three examples, two of which are Heisenberg type groups,
while the third one are the universal two-step nilpotent simply connected Lie groups. At
least for Examples 6.2 and 6.3 below, the description of Glimm(C∗(G)) as a set and of
its topology requires the results of § 3.

Example 6.1. Let k be a locally compact field and G the group of upper triangular
matrices 1 x z

0 1 y

0 0 1

 ,

where x, y, z ∈ k. It is easy to check that Gλ = Z for all λ ∈ Ẑ, λ 6= 1Z . As for
the real Heisenberg group it follows that C∗(G) is quasi-standard and the mapping
λ→ ker(indGZ λ) is a homeomorphism between Ẑ and Glimm(C∗(G)).

Example 6.2. Let p be a prime, Ωp the p-adic number field and ∆p the subring
of p-adic integers. We first study the two-step nilpotent group G of upper triangular
matrices 1 x z

0 1 y

0 0 1

 ,
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where y, z ∈ Ωp and x ∈ ∆p. In what follows we write this matrix as a triple (x, y, z), and
denote by N the abelian normal subgroup consisting of all elements (0, y, z). Since G/N

is compact, G is of type I and hence, with the usual identification, Ĝ = Prim(C∗(G)).
Our aim is to determine the Glimm ideal space of C∗(G).

For k ∈ Z, pk∆p is a compact open subgroup of Ωp, and such groups are the only
non-trivial closed subgroups of Ωp (see [14, (10.16)(a)]). Note that

pk∆p ⊇ pk+1∆p,
⋃
k∈Z

pk∆p = Ωp and
⋂
k∈Z

pk∆p = {0}.

Fix a character χ of Ωp with kernel ∆p, and for each y ∈ Ωp, define λy ∈ Ω̂p by λy(x) =
χ(yx), x ∈ Ωp. Then the mapping y → λy is a topological isomorphism between Ωp and
Ω̂p. We now compute Gλy for y 6= 0. There is a unique k ∈ Z such that y ∈ pk∆p\pk+1∆p.
Then

Kλy = {(0, 0, z) ⊆ G : χ(yz) = 1}
= {0} × {0} × y−1∆p = {0} × {0} × p−k∆p,

and this implies that

Gλy = {(x, y, z) ∈ G : [(x, y, z), G] ⊆ Kλy}
= {(x, y, z) ∈ G : (0, 0, xy′ − x′y) ∈ Kλy for all x′ ∈ ∆p and y′ ∈ Ωp}
= {(x, y, z) ∈ G : xΩp ⊆ p−k∆p and y∆p ⊆ p−k∆p}
= {(0, y, z) ∈ G : y ∈ p−k∆p} = {0} × p−k∆p ×Ωp.

Let Λk = {λy : y ∈ pk∆p \ pk+1∆p}, k ∈ Z. Then Ω̂p \ {1Ωp} is the disjoint union of
the open sets Λk. The above computation shows that the map µ → Gµ is constant on
each set Λk. Moreover, if (λn)n is an arbitrary sequence in Ẑ \ {1Z} converging to 1Z ,
then Gλn → N . Indeed, if λn = λyn with yn ∈ Λkn , then necessarily kn →∞ and hence
Gλn = {0} × p−kn∆p ×Ωp → N in K(G).

These facts now lead to the description of Glimm(C∗(G)). Indeed, by Lemma 5.6 and
the remark preceding it, every point of Ĝ \ Ĝ/Z is a Glimm point and hence Fλ = Gλ =
{0} × p−k∆p × Ωp for λ ∈ Λk, k ∈ Z. Now let γ ∈ Ĝ/Z. It follows from Lemma 5.2
or from the fact, that the quotient space N̂/G is Hausdorff, that [γ] ⊆ γ · Ĝ/N . On
the other hand, if (λn)n is an arbitrary sequence in Ẑ \ {1Z} converging to 1Z , then
(Fλn , γ | Fλn · λn)→ (N, γ | N) in S(G) and hence

indGFλn (γ | Fλn · λn)→ indGN (γ | N).

Thus γ · Ĝ/N is a limit set in Ĝ, and this proves that [γ] = γ · Ĝ/N . Therefore, as a set,

Glimm(C∗(G)) =
⋃
k∈Z
{ker(indGp−k∆p×Ωp(αλ)) : λ ∈ Λk, α ∈ p̂−k∆p}

⋃
{ker(indGN α) : α ∈ N̂/Z},
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and the topology is given by Theorem 3.7. In particular, we have seen that conditions (i)
and (ii) of Corollary 4.4 are satisfied, so that C∗(G) is quasi-standard.

Example 6.3. For n > 2, let wn denote the two-step nilpotent real Lie algebra with
basis {X1, . . . , Xn} ∪ {Yi,j : 1 6 i < j 6 n} and non-zero products [Xi, Xj ] = Yi,j .
Note that w2 is the Heisenberg Lie algebra. Let Wn = exp wn be the associated simply
connected Lie group, and denote by Zn and zn the centre of Wn and wn, respectively.
These groups Wn are universal in the sense that every two-step nilpotent simply con-
nected Lie group is a quotient of some Wn. In [4, § 2], separation properties of Ŵn and
quasi-standardness of C∗(Wn) have been studied. In what follows we assume the reader
to be familiar with the usual notation in Kirillov theory.

Suppose first that n is even. Then the maximal coadjoint orbit dimension in w∗n equals
n = dim z⊥n [4, Theorem 2.4]. It follows from [2, Lemma 1] that C∗(Wn) is quasi-
standard and that the mapping λ → ker(indWn

Zn
λ) is a homeomorphism between Ẑn

and Glimm(C∗(Wn)).
Now let n be odd. This case requires a more detailed analysis. For

f =
n∑
r=1

αrX
∗
r +

∑
16i<j6n

βi,jY
∗
i,j ∈ w∗n,

let Bf denote the skew-symmetric n×n matrix with entries −βi,j for 1 6 i < j 6 n and
Tf the linear mapping from Rn into z⊥n with matrix Bf relative to the standard basis in
Rn and the basis {X∗1 , . . . , X∗n} in z⊥n . Then [4, Lemma 2.3]

Ad∗(Wn)f = f + Tf (Rn),

and πf is a separated point of Ŵn (equivalently, f has maximal coadjoint orbit dimension)
if and only if dimTf (Rn) = n − 1. In particular, C∗(Wn) fails to be quasi-standard [4,
Theorem 2.4]. We identify z∗n with Ẑn by the map f → λf , where

λf (x) = exp 2πif(log x), x ∈ Zn,

and write Ff and Gf instead of Fλf and Gλf , respectively. Let U be the open subset of
all f ∈ z∗n with dimTf (Rn) = n− 1. Then, for f ∈ U ,

Ff = Gf = exp{X ∈ wn : g(X) = 0 for all g ∈ Tf (Rn)}.

It follows from Lemma 5.6 or can be seen directly that the mapping f → Ff = Gf from
U into K(Wn) is continuous. If f ∈ z∗n \ U , then, for every g ∈ f + z⊥n , πg cannot be
separated from πf in Ŵn [4, Theorem 2.6]. Hence Ff = Zn. Thus, as a set,

Glimm(C∗(Wn)) = {ker(indWn

Zn
λf ) : f ∈ z∗n, f non-generic}⋃
{ker(indWn

Ff
τ) : τ ∈ F̂f , τ | Zn = λf , f ∈ z∗n generic}.
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The topology on Glimm(C∗(Wn)) can be described by Theorem 3.7 as follows. The first
set on the right is closed in Glimm(C∗(G)) and homeomorphic to z∗n \ U . The second
set on the right is homeomorphic to the subset {(Ff , τ) : f ∈ U, τ ∈ F̂f , τ | Zn = λf}
of S(Wn). Finally, a sequence (ker(indWn

Fl
τl))l converges to ker(indWn

Zn
λf ), f ∈ z∗n \ U , if

fn → f in z∗n and the sequence (Ffl , τl)l is convergent in S(Wn).
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