A GENERALIZATION OF GLOBAL CLASS FIELD
THEORY

TAE KUN SEO AND G. WHAPLES

Introduction. Let R be a field of rational functions of one variable over a
field of constants Ry. Dock Sang Rim (6) has proved that the global reciprocity
law in exactly the usual sense holds whenever R, is an absolutely algebraic
quasi-finite field of characteristic not equal to 0: this was known before only
when R, was a finite field. We shall give another proof of Rim’s result by
means of a noteworthy generalization of the usual global reciprocity law.
Namely, let Ry be a finite field and let F be the set of all fields & contained in
some fixed R¥#-9°%- and of finite degree over R. The reciprocity law states
that there exists a family {fi}, & € F, of functions f;: C, — G(k¢-cl%- /)
(where C; is the idéle class group of k) enjoying certain properties such as
the norm transfer law. Let F* denote the set of all fields which are composite
of a field in F and a quasi-finite algebraic extension of R, possibly of infinite
degree. We shall show that if the idéle class groups Cy are replaced by their
closures C; under a certain topology, we can define a generalized norm
Nyp: Cp— Cy for all k, L € F* with ¢ C L, and a family {f.}, 2 € F*, of
functions defined on the groups C,, such that the global reciprocity law holds
for our much larger set of ground field F* with the Cy replaced by the C,.
Finally, let £ € F* and let F(k) denote the set of finite extensions of k. The
global reciprocity law in exactly the usual sense holds for the family
{fe}, L € F(k), of functions f;, obtained by restricting the fL to the subgroup
C, C Cy: this proves Rim'’s result.

Since our proof uses only routine topological constructions, our results are
in a certain sense trivial.

Several papers (the most recent being 3; 4; 5) have been written already
on global reciprocity law over ground fields of infinite degree but they replace
the usual idéle class group by something else.

1. Extended ideles. Let & be a local field (i.e., complete under a discrete
rank 1 valuation) and call its residue class field & good if it is quasi-finite,
absolutely algebraic, and of characteristic p #% 0. We shall consider only such
local fields. Topologize the multiplicative group % of 2 by taking the sub-
groups {k"ky'}, for all positive integers #» and ¢, as a base for the open
neighbourhoods of 1, where k(;’ denotes the group of elements congruent
1 mod =*.
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PROPOSITION 1. If k is good, then k' is a Hausdorff space under this topology.

Proof. We must show that N,,k™"k = {1}. Let « be contained in this
intersection. Its residue class @ is contained in M,k Suppose that @ = 1.
Then since k is good, @ is a primitive mth root of unity for some m > 1 and
prime to p. Let ¢ be a prime different from p and dividing m. If & were a
¢’th power for every j, then k would contain primitive ¢’+!th roots of unity
for every j, the Steinitz degree of £ over Z/p would be divisible by p*, and
k would not be quasi-finite. Thus, @ = 1, i.e., « = 1 mod =. Considering the
nexghbourhoods kE?'k¢y shows that a = 1.

Let £ be the completion of & under this topology. Proposition 1 shows that
there is a monomorphlsm kB — k We shall identify & with its image in E so
that & C k. Artin (1) defined £ in the case when [ is finite: if that is S0,
then & is compact and the local norm residue symbol can be extended to an
isomorphism of E onto the Galois group of k2el-os- /b however, if £ is not
finite, then £ is not compact and the local norm residue symbol can only be
extended to a monomorphism into.

Let Z denote the product over all primes p of the rings Z, of p-adic integers
with p-adic topology on the Z, and product space topology on Z. There is
an obvious injection Z — Z: namely, # € Z goes into the element of Z whose
p-component is # at every prime p. We identify Z with its image under this
injection and consider Z C Z. Then (1) the topology on Z induces on Z the
topology defined by taking the subsets {mZ}, m ¢ Z, m 5~ 0, as base for the
open neighbourhoods of 0, and Z is the completion of Z under this topology.
The natural definition of 2 as Z-module can be uniquely extended to a
definition of £ as Z-module.

Let k& be a product formula field for a set of non-archimedean valuations
M(k) (i.e., a field of algebraic functions of one variable). Assume that the
field of constants ky of k is good. Define the group J, of extended k-idéles by
replacing the kv’ in the definition of idéles by the groups ky. That is, J, is the
subgroup of HpeM(k)Ep consisting of the elements which are units at all but
finitely many primes. (Unit in £y = limit of units of kp.) We do not consider
Jp or J, as topologlcal groups. Under natural identifications we consider
k C Jx C Ju; since Jy is a Z-module, this defines an action of Z on &'; let
% denote the group of all ", & € k', n € Z; it is a Z-module contained in J,.
Define C; = jk/ls: it is a Z-module and there is a natural homomorphism
of C, into C.

PROPOSI}‘ION 2. If ko is good, this homomorphism Ci — Cy is a monomor phism;
ve,JyMk=F.

Proof. Suppose that a = o™ with a € Jy, a € k', m € 2. Proposition 1
shows that a is uniquely determined by « and m. If m € Z, then a € &, and
the proof is complete; thus, assume that m ¢ Z. If |a|y # 1 for any p € M,
we easily see that an equation o, = a™ with ay € ky is impossible; therefore,
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lalp = 1 for all p, i.e., a is in ko; hence, a is a root of unity, and hence o™ is
also in ky, and this completes the proof.

2. Fake degrees and fake norms. If k is any subfield of a field K, let
deg K/k mean the Steinitz number II p® (product taken over all positive
prime integers p with »(p) a non-negative integer or o0 ) which is the l.c.m.
of the degrees of all finite algebraic extensions K’ of k with K’ C k. We shall
use this notion only when K/k is algebraic or when % is complete under a
non-archimedean valuation and K is the completion of an algebraic extension
of k. In these cases one can show that ¥ C L C K implies

(1) deg K/k = (deg L/k)(deg K/L).

Call a Steinitz number 11 p*® quasi-finite if v(p) % oo for every p. If k is
any quasi-finite field and K/k algebraic, then K is quasi-finite if and only if
deg K/k is quasi-finite.

From now on, let R be the field of rational functions of one variable over a
finite field of constants Ry: one may take Ry = Z/p. Let F* denote the set of
all subfields k of some fixed R¥#-4°%- such that R C k' C k with k'/R of
finite degree and k/k’ a constant field extension of quasi-finite degree. It is
easy to see that F* is closed under finite algebraic extension and quasi-finite
constant field extension.

The field R is of course a product formula field for the set My of all primes
(= equivalence classes of valuations) of R. If & € F* then k is a product
formula field for the set M} of all its primes. Its field of constants &, is ‘‘good”’
in the sense of § 1. Every prime in M has only finitely many extensions to
ap € M,: the ramification number of p in 2/R will be finite but the residue
class degree will be a quasi-finite Steinitz number, not finite unless deg k/R
is finite.

If L, K ¢ F* define L ~ K to mean that deg LK/K and deg LK/L are
finite. It is an equivalence relation.

PropPoSITION 3. Let L, K € F* let B € Mk, and let K3, L, and Rs be the
completions of L, K, and R at P. Then
L ~ K < (deg K/R)/(deg (L/R)) is rational
& (deg Kp/Rs)/ (deg Le/Rw)) is rational
& Ly ~ Ks.
Proof. These quotients of Steinitz numbers make sense since none of the
exponents is c0. Of course, such a quotient is rational if and only if the ex-
ponents in numerator and denominator are equal at all but finitely many p.
If L ~ K, then (deg K/R)/(deg L/R) = (deg LK/L)/(deg LK/K) by (1);
thus, it is rational. Let RC L' CL and RC K’ C K with L'/R, K'/R
finite and L/L/, K/K’' constant extensions. If (deg K/R)/deg(L/R) is
rational, then deg(KL'/K’L’)/deg(K’L/K’L’) is rational; thus, deg KL/KL’
and deg KL/K'L are finite since a constant extension is completely deter-
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mined by its degree, therefore, deg KL/K and deg KL/L are finite. This
proves the first "' and the last “&"’ follows in the same way.

To prove the middle “<”, notice that the residue class field of K’ is of
finite degree over the field of constants of K’ and if d is the g.c.d. of this degree
and deg K/K’, then deg K/K' = d - deg Ky/Kg', where d is an ordinary
integer; similarly for deg L/L’. Therefore, the middle ‘<" holds.

If ¢ € Z and p is any prime, define v(a, p) by |a|, = |p|,"®?, where |a],
is the p-adic value of the p-component of ¢ (v(a, p) = oo if this p-component
is 0). The function h: a — II p*@? is a homomorphism, under multiplication,
of Z onto the Steinitz numbers: its kernel is the group of units of Z, it maps
the set of non-O-divisors of Z onto the quasi-finite Steinitz numbers, and it
reduces to the identity on the positive integers.

PROPOSITION 4. Let S* denote the set of quasi-finite Steinitz numbers, P the
positive integers. There exist functions ¢: S* — Z such that

(4.1) h o ¢ = identity on S*;

(4.2) ¢(a) = a fora € P;

(4.3) alb = ¢(a)|¢o(d) for a,b € S*;

(4.4) If a/b is rational, then a/b = ¢(a)/d(D).

Proof. Call two elements of S* equivalent if their quotient is rational,
choose representatives of the equivalence classes and define ¢(r) so that

he(r) = r for all representatives 7; then define ¢(rp) = p¢(r) if p is rational
and rp € S*.

Remark 1. It is an interesting problem, upsolved so far by us, whether ¢
can be chosen to be a homomorphism S* — Z.

Choose a particular fixed ¢ satisfying Proposition 4 and for k& € F* define
the fake degree d(k/R) to be ¢(deg k/R). If k C K € F*, define 9(K/k) =
d(K/R)/9o(k/R): this implies that 9(K/k) = 9(L/k) - 9(K/L) whenever
ECLCK, and d(K/k) is the ordinary degree whenever this is finite.
Similarly, for each prime spot P of K define fake local degree d(Ks/ks) to be

¢(deg (Ke/R%))/¢(deg (ks/Rs)).

PropPoSITION 5. Let k, K € F* with k C K; then for allp € M,,

(2) I(K/k) = Zppd(Kn/kg),
where the sum s taken over all B € My which divide p.

Proof. Since p has only finitely many extensions to K we can find K’ with
K'/k finite and K/K' a constant extension such that each P’ € Mg, which
divides p has only one extension P to My; then d(Ke/Kg') = 0(K/K') for
each Plp and (2) holds for K/k since it holds for the finite extension K'/k.

Now we define fake norms. Let k, K € F* with # C K and let P € M.
To simplify printing we shall sometimes denote completions at P by £* and K*
instead of k$ and Kg. If 4 is any element of K3 which is algebraic over ks,
then its fake local norm Ng ;54 is defined to be (Ngs A )3 E*/E) | where K’
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is any finite algebraic extension of k* containing 4 and contained in K* and
Ngij#A is the ordinary norm. This is independent of the choice of K’ and
defines Nk 3 on an everywhere dense subset of Kg: extend it by continuity
to a homomorphism Ng 5: Ky — k.
ProrosiTiON 6. If Rk C L C K € F*and B € M, then
Nenw® = Nppp 0 Ngrg.

Proof. Let L* = Lg. Suppose that 4 is in K* and is algebraic over k*.
Let f(x) be the monic irreducible polynomial with coefficients in L* satisfied
by 4 and let L’ be the finite extension of k* generated by the coefficients of
f(x). Then

Ngpgpd = (NL'(A)/IC*A)&(K*/L,(A»
NL’/k*((NL*(A) /L*A)3(K*/L*(A)))3(L*/Lr)
since NL'(A)/L*A = NL’(A)/L'A = if(O) and
a(K*/L'(A4)) = o(K*/L*)a(L'(4)/L')"'a(L*/L')
= 9(K*/L*)o(L*(A)/L*)~*9(L*/L") = a(K*/L*(4))a(L*/L").

Now define Ng,: Jx — J; as follows: the p-component of N, shall be
Iy pIg pNg A 3, wherie A*BAdenotes the P-component of A and Ip, the
canonical isomorphism kg — kp. This is exactly like the usual definition of

norm of an idéle and it defines a homomorphism, also called N, of Cx into
Cy. Our fake norm satisfies the transitivity law by Proposition 6.

Remark 2. Our fake degrees and fake norms have the following disadvantage:
if K/k is normal separable and K N L = k, then deg LK/L = deg K/k and
Nix; = Nk need not hold for fake degree and norm, unless deg K/k is
finite. If we could construct a ¢ which was a homomorphism (see Remark 1)
we could remove this disadvantage.

3. Generalized reciprocity law. For k € F the usual norm residue
function f; can be uniquely extended by continuity to a Z-homomorphism
Fur Jo — G(koel-clos /b) Let k € F* and let K/k be abelian of finite degree .
We can find %', K’ € F with ¥ C k&, d(k/k') prime to n, K = K'k, K'/F
finite abelian and G(K/k) = G(K'/k’) under restriction.

Leta € J,. We can find a; € J, such thata € J;"ay. There is a finite S C M,
such that K/k is unramified and a; is a local unit at all primes outside S. At
each p € S the p-component of a; is congruent modulo the local conductor of
K /k to a finite linear combination of powers of the local prime element times
elements of local field of constants. Therefore, we can further assume that there
isana’ € Jp with a = Cypa’ mod NepJx.

There is a unique ox € G(K/k) with o = ?,c,(Nk/,ka/k/a’) on K’. It is inde-
pendent of the choice of &/, K’, S, and a’. Define f‘k: Ji — G (kbel-cos. /) by
requiring that f;(a) = ox for all a € J,, all finite abelian K/k: this is possible
in a unique way because of the compactness of the Galois group.
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The function f; could have been defined in many other equivalent ways:
(3) Fo@) = Fo@3® ™) = £, (a")o* 1
for o/, k', K’ as above. Also,  equals the product of the extended local norm

residue functions. Its definition involves one arbitrary choice, namely the
function ¢ satisfying Proposition 4.

THEOREM 1. The family { f,}, k € F*, has the following properties:

(a) B C L € F* = rst jabel.clos. ofL = fk o NL,k (“‘rst” denotes the restriction);

(b) For o € G(R¥&:%5-/R) og4 O]‘;u = fkq oo, where ag(p) = apo~! for
0 E G(Ralg clos. /R)’

(¢) For K/k finite abelian, the kernel of rsty ofk is exactly k' N J k.

Proof. (a) and (b) follow by routine constructions like those used to prove
Proposition 6. From (a), it follows that if K/k is finite abelian, then & N /¢
is contained in the kernel of rstg ofk. Let a be contained in this kernel. Then
for K', k', o’ as above, we see that a = Cp-0’ mod Ng,Jx and (3) vields
Fe@) = fu@)?* /% =1 on K’ with 9(%’/k) prime to degree K’/k’. Therefore,
firr@) =1 on K’ and by the ordinary reciprocity law, o’ = o' Ng/ /8’ with
B’ € Jg. We easily see that a = o' Ng,Cxx®B’ mod NguJx, completing
the proof of (c).

COROLLARY. Let k € F*, let F(k) be the family of finite extensions of k, and
let | fi}, Ii € F(k), be the restrictions to the ordinary idéle class groups Cy, of the
functions fr. Then the global reciprocity law over k holds for this family.
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