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Abstract. The class ¢eld theory for the fraction ¢eldofa two-dimensional complete normal local
ring with ¢nite residue ¢eld is established by S. Saito. In this paper, we investigate the index of the
normgroup in theK2-idele class group for a¢niteAbelian extension of such ¢elds and deduce that
the existence theorem does not hold for almost ¢elds in this case.
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1. Introduction

For a ¢eld K , the class ¢eld theory for K is the theory which describes the Galois
group GK :� Gal�Kab=K� of the maximal Abelian extension Kab over K in terms
of a certain group CK endowed with a topology which is de¢ned by using K-groups
of ¢elds related to K . One of the main purposes of class ¢eld theory is to de¢ne
the group CK as above and a continuous homomorphism rK : CK ÿ!GK , which
is `almost' isomorphic.

The class ¢eld theory has been proven for certain ¢elds which have an `arithmetic'
origin. In fact, the following theorem is known by works of many people including
Bloch, Parshin, Fesenko, K. Kato and S. Saito. (For precise statements, see
[R] and the papers listed in the references of [R], cf. Section 2.)

THEOREM 1.1 (Kato, Parshin, Fesenko, Kato and Saito). Let K be an
n-dimensional local ¢eld �nX 0� or a ¢eld which is ¢nitely generated over its prime
¢eld. Then, there exists a certain group CK endowed with a topology which is de¢ned
by using K-groups of ¢elds related to K and a continuous homomorphism
rK : CKÿ!GK such that the homomorphism r�K : G�Kÿ!C�K induced by rK is an
isomorphism. Here, for a group endowed with a topology T, we denoted the group
of continuous homomorphisms Tÿ!Q=Z of ¢nite order by T�.
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Remark 1.2. (1) When K is a local ¢eld, one can take the multiplicative group K�

as the group CK , and when K is a number ¢eld, one can take the idele class group
of K as the group CK .

(2) In the case of a two-dimensional local ¢eld, one can take the Milnor K-group
KM

2 �K� (endowed with the topology of Kato, Parshin and Fesenko) as the group
CK , as we review in Section 2. In the case of an n-dimensional local ¢eld (nX 3),
one can take the topological Milnor K-group K top

n �K� (endowed with the topology
of Parshin and Fesenko) as the group CK . In the case nX 3, this group is not a
topological group in general, that is, the multiplication is not necessarily continuous
(although it is sequentially continuous). This is why we called CK as `a group
endowed with a topology'.

Let K be one of the ¢elds in the above theorem and for a ¢nite Abelian extension L
over K , de¢ne the subgroup DL of CK by

DL :� Ker�CK ÿ!
rK GKÿ!Gal�L=K��:

Then, by the above theorem, the correspondence

FK :
finite Abelian
extensions of K

� �
ÿ! finite index open

subgroups of CK

� �
;

which is de¢ned by FK �L� :� DL, gives a bijection.
For a ¢nite Abelian extension L overK , one can de¢neCL and rL : CLÿ!GL in the

same way as CK and rK . Moreover, we have the following theorem:

THEOREM 1.3 (Kato, Parshin, Fesenko, Kato and Saito).With the above notation,
there exists a homomorphism N : CLÿ!CK which is induced by the norm homomor-
phisms of K-groups such that NCL � CK is open and the following diagram is com-
mutative:

CL ÿÿÿÿÿ!rL GL

N
??y ??y

CK ÿÿÿÿÿ!rK GK ;

where the right vertical arrow is induced by the inclusion K � L.

Assume that one already knows Theorems 1.1 and 1.3. Then one can immediately
obtain the following theorem, which is known as the existence theorem:

THEOREM 1.4. (Kato, Parshin, Fesenko, Kato and Saito). Let K be as in Theorem
1.1 and L be a ¢nite Abelian extension over K. Then we have NCL � DL. In particular,

306 ATSUSHI SHIHO

https://doi.org/10.1023/A:1026509119814 Published online by Cambridge University Press

https://doi.org/10.1023/A:1026509119814


the correspondence

CK :
finite Abelian
extensions ofK

� �
ÿ! finite index open

subgroups of CK

� �
;

which is de¢ned by CK �L� :� NCL, is well-de¢ned and it gives a bijection.

Now let us recall the class ¢eld theory for the fraction ¢eldK of a two-dimensional
complete normal local ring A with ¢nite residue ¢eld, which is proven by S. Saito.
(For precise statements, see Section 2.) Let P be the closed point of SpecA and
let f : Xÿ!SpecA be a proper birational morphism such that X is regular and
Y :� f ÿ1�P�red is a simple normal crossing divisor. (In this paper, we will call a
morphism Xÿ!SpecA satisfying this condition as a resolution of A.) Let G be

the dual graph of Y and define the rank r�K� of K by r�K� :� rkH1�G;Z�.
Then we can describe the class ¢eld theory for K as follows:

THEOREM 1.5 (Saito). Let the notations be as above. Then there exists a certain
topological group CK de¢ned by using K-groups of ¢elds related to K and a continuous
homomorphism rK : CKÿ!GK such that the homomorphism r�K : G�Kÿ!C�K induced
by rK is surjective and Ker�r�K � � Gal�Kcs=K�� � �Q=Z�r�K� holds. Here Kcs is the
maximal cs extension of K �for de¢nition, see De¢nition 2.3�.

Let the situation be as above and for a ¢nite Abelian extension L of K , de¢ne the
subgroup DL by

DL :� Ker�CK ÿÿ!
rK GKÿ!Gal�L=K��;

as before. Then, by the above theorem, the correspondence

FK :
finite Abelian
extensions ofK

� �
ÿ! finite index open

subgroups of CK

� �
de¢ned by FK �L� :� DL is surjective, and it is bijective if and only if r�K� � 0 holds.

On the other hand, for a ¢nite Abelian extensionL overK , one can de¢ne the norm
homomorphism N : CLÿ!CK such that NCL � CK is open and the diagram

CL ÿÿÿÿÿ!rL GL

N

???y ???y
CK ÿÿÿÿÿ!rK GK

is commutative (see Section 2). If the ranks of K and L are equal to zero, one can see
easily, as in the previous case, that NCL � DL holds. (This fact is remarked by Koya
[Ko].) But in general case, the situation is not so easy. Hence one may propose the
following problem:
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PROBLEM 1.6. Let K be the fraction ¢eld of a two-dimensional complete normal
local ring A with ¢nite residue ¢eld. Then,

(1) For a ¢nite Abelian extension L � K, is the index of the group NCL in CK ¢nite? If it
is ¢nite, how can we bound this index?

(2) Assume the former part of the problem 1. is true. Then, is the correspondence

CK :
finite Abelian
extensions of K

� �
ÿ! finite index open

subgroups of CK

� �
;

which is de¢ned by CK �L� :� NCL, surjective?
(3) For a ¢nite Abelian extension L � K, does the equality NCL � DL hold?

Remark 1.7. One can easily see the following: (3) implies (1), and if (3) is true for
any L, then (2) is also true, since we have CK � FK . Moreover, as we will see later
(Proposition 2.7), if (2) is true, then (3) is true for any L.

The purpose of this paper is to give an answer to the above problems.
Let K be as above, let L be a ¢nite Abelian extension of K and put

d�L=K� :� �L : K�. Then, from the viewpoint of the class ¢eld theory for K , the
following three quantities seem to be important:

d 0�L=K� :� �CK : DL� � �L : L \ Kcs�;
r�L=K� :� r�L� ÿ r�K�;
c�L=K� :� �CK : NCL�:

As for the relation between the above quantities, we obtained the following theorem,
which is the ¢rst main result in this paper:

THEOREM 1.8. Let l be a prime number. Let K be the fraction ¢eld of a
two-dimensional complete normal local ring with ¢nite residue ¢eld, and let L be
a cyclic extension of K of degree ln �n 2N�. For 0W iW n, let Ki be the intermediate
¢eld of K and L such that �Ki : K � � li holds. Let m be the integer such that
L \ Kcs � Km holds, and de¢ne ri �1W iW n� by ri :� r�Ki� ÿ r�Kiÿ1�. �So, in the above
notation, we have

d�L=K� � ln; d 0�L=K� � lnÿm; r�L=K� �
Xn
i�1

ri:�

Then we have the following:

(1) For any i, ri X 0 holds.
(2) ri is divisible by liÿ1�l ÿ 1�. �Hence r�L=K� is nonnegative and divisible by l ÿ 1:�
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(3) NCL � CK is an open subgroup and the following inequality holds:

c�L=K�W lnÿm�
Pn

i�m�1
ri

liÿ1�lÿ1�:

(In particular, the inequality

c�L=K�W d 0�L=K�l r�L=K�
lÿ1

holds.� Moreover, if r�K� � 0 holds, there exists another inequality

ln�d
r�L=K�

ln eW c�L=K�;

where, for a real number a, dae denotes the least integer which is not less than a.

We have the following corollary:

COROLLARY 1.9. Let K be as above and let L be a ¢nite Abelian extension. Let
d�L=K�; d 0�L=K�; r�L=K�; c�L=K� be as above and let P �resp. P0� be the set of prime
numbers which divides d�L=K� �resp. d 0�L=K��. Then,
(1) There exist non-negative integers al �l 2 P� such that r�L=K� �

P
l2P al�l ÿ 1�holds.

(2) NCL � CK is open and the following inequality holds:

c�L=K�W d 0�L=K�
Y
l2P0

l
1

lÿ1

 !r�L=K�
:

In particular, the former statement of (1) in Problem 1.6 is valid. (But the validity
itself is a rather easy consequence of class ¢eld theory (Lemma 3.1).)

In some cases, we can actually calculate the quantities d 0�L=K�; r�L=K� and c�L=K�
(see Section 4 and 5). For example, we can show the following:

PROPOSITION 1.10.Let l be a prime and let aX 0 be an integer. Let k be a ¢nite ¢eld
which contains primitive lth root of unity and the order jkj is greater than a. Let K be
either Frac�k��x; y��� or Frac�W �k���x���. Then, there exists a ¢nite Abelian extension
L � K such that the following equalities hold:

d 0�L=K� � d�L=K� � l; r�L� � a�l ÿ 1�; r�K� � 0; c�L=K� � la�1:

In particular, NCL � DL does not hold in general, that is, 3. in Problem 1.6 is not
always true.

Remark 1.11. The examples in the above proposition attain the equality in the ¢rst
inequality in 2. of Theorem 1.8. So this inequality is best possible in a sense.
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Moreover, using Proposition 1.10, we can show the following theorem, which is
the second main result in this paper:

THEOREM 1.12. Let A be a two-dimensional complete normal local ring with ¢nite
residue ¢eld k, and let K be the fraction ¢eld of A. Then:

(1) There exists an unrami¢ed extension K 0 � K such that the correspondence

CK 00 :
finite Abelian
extensions of K 00

� �
ÿ! finite index open

subgroups of CK 00

� �
given by CK 00 �L� :� NCL is not surjective for any unrami¢ed extension K 0 � K 00.

(2) If k 6� F2 holds, then the correspondence

CK :
finite Abelian
extensions of K

� �
ÿ! finite index open

subgroups of CK

� �
given by CK �L� :� NCL is not bijective.

Hence, (2) in Problem 1.6 is not true for many ¢eldsK . Moreover, the bijectivity of
CK , which is known as the existence theorem (Theorem 1.4) in the case of the class
¢eld theory for the ¢elds in Theorem 1.1, does not hold for almost ¢elds in our case.

Remark 1.13. The behavior of quantities d 0�L=K�; r�L=K� and c�L=K� (K � L is as
in Corollary 1.9) is not so simple. We will give two remarks concerning this.

(1) Let M be an intermediate ¢eld of K and L. Then it is clear that r�L=K� �
r�L=M� � r�M=K� holds. But it is not always true that d 0�L=K� �
d 0�L=M�d 0�M=K� and c�L=K� � c�L=M�c�M=K� hold. (See Examples 5.1 and 5.4.)

(2) By (2) of Theorem 1.8, the following statement holds: let K � L be a cyclic exten-
sion such that �L : K� is a power of a prime, and assume r�K� � 0 and
r�L� > 0 hold. Then d 0�L=K� < c�L=K� holds and so NCL is not equal to DL.
But this conclusion is not always true if we drop the assumption `�L : K � is a power
of a prime'. In fact, there exists an example of cyclic extension K � L such that
�L : K � � 6, r�K� � 0, r�L� � 2 and d 0�L=K� � c�L=K� � 6 hold. (See Example
5.4.)

The content of each section is as follows: In Section 2, we will give a review of class
¢eld theory for two-dimensional local ¢elds due to K. Kato and class ¢eld theory for
the fraction ¢elds of two-dimensional complete normal local rings with ¢nite residue
¢elds due to S. Saito. In Section 3, we will give a proof of Theorem 1.8 and Corollary
1.9. In Section 4, we will explain how to calculate the quantities d 0�L=K�; r�L=K� and
c�L=K� under certain assumptions. The method is based on the argument by
Tsuchihashi ([T]) which gives a nice way to calculate the dual graph of
two-dimensional Abelian covering singularities and the argument by Saito ([S1])
which allows us to connect the Galois group of the maximal cs extension (de¢ned
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in Section 2) with the ¢rst homology group of certain dual graph. In Section 5, we will
give two examples and show Proposition 1.10 and Theorem 1.12.

NOTATION. For an Abelian group M, denote the maximal torsion subgroup ofM
by Mtor. For a group G and a G-module M, denote the G-coinvariant of M by MG.
For a graph (by which we always mean a connected ¢nite one-dimensional CW com-
plex) D, denote the set of vertices (resp. edges) of D by vertex�D� (resp. edge�D�).

2. Review of Class Field Theory

In this section, we will review the class ¢eld theory for a two-dimensional local ¢eld
developped by K. Kato, and the class ¢eld theory for the fraction ¢eld of a
two-dimensional complete normal local ring with ¢nite residue ¢eld developped
by S. Saito.

Let F be a two-dimensional local ¢eld, that is, a complete discrete valuation ¢eld
whose residue ¢eld is a local ¢eld. Then, on the second K-group K2�F � of F , Kato
de¢ned a certain topology which makes this group a topological group (see [Ka1]).
Then, the class ¢eld theory for F is described as follows:

THEOREM 2.1 (Kato). Let F be as above. Then there exists a canonical continuous
homomorphism rF : K2�F �ÿ!GF �called the reciprocity map� which satis¢es the
following:

(1) The homomorphism r�F : G�Fÿ!K2�F �� induced by rF is an isomorphism.
(2) For a ¢nite Abelian extension F � F 0, the following diagram is commutative:

K2�F 0� ÿÿÿÿÿ!
rF 0 GF 0

N

???y ???y
K2�F � ÿÿÿÿÿ!

rF GF ;

where N is the norm homomorphism of K-groups and the right vertical arrow is
induced by the inclusion F � F 0. Moreover, the image NK2�F 0� of K2�F 0� in
K2�F � is open.

As for the norm homomorphism of K-groups, we will use the following standard
fact later:

PROPOSITION 2.2. Let F � F 0 be a ¢nite separable extension of two-dimensional
local ¢elds and let O �resp. O0� be the ring of integers in F �resp. F 0�. Then, if
the extension F � F 0 is unrami¢ed, the norm map induces the surjection
K2�O0�ÿ!K2�O�.
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Next, let A be a two-dimensional complete normal local ring with ¢nite residue
¢eld and let K be the fraction ¢eld of A. Let PK be the set of prime ideals of height
one in A and for x 2 PK , let Ax be the x-adic completion of the localization of
A by the ideal x, and let Kx be the fraction ¢eld of Ax. (This is a two-dimensional
local ¢eld.) Then de¢ne the topological group CK (which is called the K2-idele class
group of K) as follows:

CK :�
Y
x2PK

0
K2�Kx�

 !,
K2�K�;

where
Q0 denotes the restricted product with respect to K2�Ax� � K2�Kx�. The

topology of CK is de¢ned as follows: For a ¢nite subset S in PK , de¢ne CK;S by

CK;S :� Im
Y
x2S

K2�Kx� �
Y
x=2S

K2�Ax�ÿ!CK

 !
:

Then, CK is the inductive limit of CK;S's. First endow the groupQ
x2S K2�Kx� �

Q
x=2S K2�Ax� with the topology induced by

Q
x2PK

K2�Kx�, and then
endow CK;S with the topology induced by the above group. Finally, endow CK with
the inductive limit topology induced by CK;S's. Denote the natural morphism
K2�Kx�ÿ!CK by ix.

Let L � K be a ¢nite extension of K . Then the integral closure B of A in L is a
two-dimensional complete normal local ring with ¢nite residue ¢eld which is ¢nite
over A. So one can de¢ne PL, CL etc. as in the case of K , by using B instead of A.

Next let us recall the notion of cs (= complete splitting) extension.

DEFINITION 2.3. Let K be as above. Then a �possibly in¢nite� Abelian extension
K � L is said to be a cs extension if any x 2 PK splits completely by any ¢nite
Abelian extension K �M satisfying M � L. Denote the maximal cs extenstion
of K by Kcs.

Remark 2.4. We would like to note that, in this paper, a cs extension is assumed to
be Abelian.

Then, the class ¢eld theory for K is described as follows:

THEOREM 2.5 (S. Saito). Let K be as above. Then there exists a canonical con-
tinuous homomorphism rK : CKÿ!GK �also called the reciprocity map� satisfying
the following:

312 ATSUSHI SHIHO

https://doi.org/10.1023/A:1026509119814 Published online by Cambridge University Press

https://doi.org/10.1023/A:1026509119814


(1) For any x 2 PK, the following diagram is commutative:

K2�Kx� ÿÿÿÿÿÿ!
rKx GKx

ix

???y ???y
CK ÿÿÿÿÿÿ!rK GK ;

where rKx
is the reciprocity map of two-dimensional local ¢eld Kx and the right

vertical arrow is the homomophism induced by the inclusion K � Kx.
(2) The homomorphism r�K : G�Kÿ!C�K is surjective and Ker�r�K � � Gal

�Kcs=K�� � �Q=Z�r�K� holds.

Remark 2.6. By statement (2) in the above theorem, the rank r�K� of K depends
only on A and independent of the choice of a resolution f : Xÿ!SpecA.

One can see, as a corollary of the above theorem, that the following diagram is
commutative for a ¢nite Abelian extension K � L:

CL ÿÿÿÿÿÿ!rL GL

N

???y ???y
CK ÿÿÿÿÿÿ!rK GK ;

where the right vertical arrow is induced by the inclusion K � L and N : CLÿ!CK is
the homomorphism induced by the norm homomorphism of K-groups.

Finally in this section, we will show what we remarked in Remark 1.7.

PROPOSITION 2.7. Let K be the fraction ¢eld of a two-dimensional complete normal
local ring with ¢nite residue ¢eld and assume the following:

(1) For any ¢nite Abelian extension K � L, NCL is a ¢nite index open subgroup of CK.
�This is always true as we will see in Lemma 3.1.�

(2) The correspondence

CK :
finite Abelian
extensions of K

� �
ÿ! finite index open

subgroups of CK

� �
de¢ned by CK �L� :� NCL is surjective.

Then, for any ¢nite Abelian extension K � L, we have NCL � DL.
Proof. Assume the conclusion is false and let L � K be a counter-example such

that �CK : DL� is minimal. Then, since CK is surjective, there exists a ¢nite Abelian
extension L0 � K such that DL � NCL0 holds.
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Now let us assume that NCL0 � DL0 holds. Then we have DL � DL0 . Let L00 be the
composite ¢eld LL0. Then we have

DL00 � Ker�CK ÿ!GK ÿ!Gal�L00=K��
� Ker�CK ÿ!GK ÿ!Gal�L=K�� \Ker�CK ÿ!GK ÿ!Gal�L0=K��
� DL \DL0 � DL:

On the other hand, we have

Im�CKÿ!GKÿ!Gal�L00=K�� � Gal�L00=L00 \ Kcs�;
Im�CKÿ!GKÿ!Gal�L=K�� � Gal�L=L \ Kcs�:

Hence the natural map

Gal�L00=L00 \ Kcs�ÿ!Gal�L=L \ Kcs�

is injective. So we have L00 � �L00 \ Kcs�L. In particular, we have L0Kcs � LKcs: By
the same argument, we also have LKcs � L0Kcs, so LKcs � L0Kcs holds. Let
K1;K2 be ¢nite cs extensions of K such that L � L0K1 � LK2 holds. Then, we have

NCL � NCLK2 � NCL0K1 � NCL0 ;

NCL0 � NCL0K1 � NCL:

Hence, NCL � NCL0 � DL holds and this contradicts to the de¢nition of L. So we
have NCL0 �0 DL0 .

Then we have �CK : DL0 � < �CK : DL� and then it contradicts to the de¢nition of L
again. So the assertion is proved. &

3. Proofs (I)

In this section, we prove Theorem 1.8 and Corollary 1.9. First we prove Theorem 1.8
(1).

Proof of Theorem 1.8 (1). For any element s 2 Gal�K sep
iÿ1=Kiÿ1�, s�Kcs

i � is a cs
extension of s�Ki� � Ki. Hence Kcs

i is a Galois extension of Kiÿ1 and we have
the following exact sequences:

1ÿ!Gal�Kcs
i =Ki� ÿ!Gal�Kcs

i =Kiÿ1� ÿ!Gal�Ki=Kiÿ1� ÿ!1;
1ÿ!Gal�Kcs

i =K
cs
iÿ1� ÿ!Gal�Kcs

i =Kiÿ1� ÿ!Gal�Kcs
iÿ1=Kiÿ1� ÿ!1;

Then one can see that the cokernel of the composite

f : Gal�Kcs
i =Ki�ÿ!Gal�Kcs

i =Kiÿ1�ÿ!Gal�Kcs
iÿ1=Kiÿ1�
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is a Z=lZ-module. Let p be a prime distinct from l. Then the homomorphism

Gal�Kcs
i =Ki� 
Z=pZ

� �Z=pZ�r�Ki�ÿ!Gal�Kcs
iÿ1=Kiÿ1� 
Z=pZ � �Z=pZ�r�Kiÿ1�

induced by f is surjective. So ri :� r�Ki� ÿ r�Kiÿ1� is nonnegative, as desired. &

Before giving the proof of Theorem 1.8 (2) and (3), we ¢rst prepare two lemmas.

LEMMA 3.1. Let K be the fraction ¢eld of a two-dimensional complete normal local
ring with ¢nite residue ¢eld and let L be a ¢nite Abelian extension of K. Then
NCL is a ¢nite index open subgroup of CK and we have the equality

�CK : NCL� � �L : L \ Kcs��Lcs \ Kab : LKcs�:

Moreover, if �L : K � is a power of a prime number l, then both sides are also powers of l.
Proof. First, by Proposition 2.2 and the class ¢eld theory for two-dimensional

local ¢eld, we have the following properties:

(1) For any x 2 PK and any y 2 PL lying above x, NK2�Ly� � K2�Kx� is open.
(2) Let x 2 Px and let y be an element in PL lying above x. Assume Ly is unrami¢ed

over Kx and denote the ring of integers of Ly;Kx by Oy, Ox respectively. Then
NK2�Oy� � K2�Ox� holds.

One can easily check the fact that NCL is open in CK , by using the above properties
and the de¢nition of the topology of CK .

Next let us consider the following diagram:

0 ÿÿÿÿÿ! Gal�Kcs=K�� ÿÿÿÿÿ! G�K ÿÿÿÿÿ!r�K C�K ÿÿÿÿÿ! 0????y
????y N�

????y
0 ÿÿÿÿÿ! Gal�Lcs=L�� ÿÿÿÿÿ! G�L ÿÿÿÿÿ!r�L C�L ÿÿÿÿÿ! 0;

where horizontal lines are exact. By using the snake lemma, we obtain the following
exact sequence:

0ÿ!Gal�L=L \ Kcs��ÿ!�CK=NCL��ÿ!Gal�Lcs \ Kab=LKcs��ÿ!0:

Put d :� �L : K �. Then, since NCL is open in CK and the composite CKÿ!
CL ÿ!N CK (where the ¢rst map is induced by the inclusion K � L) is the d-th power
map, CK=NCL is a discrete Z=dZ-module. Then one can check easily that jCK=NCLj
is ¢nite if and only if j�CK=NCL��j is ¢nite, and if they are ¢nite, they are equal.
Hence, it suf¢ces to show the following:

(1) jGal�Lcs \ Kab=LKcs�j is ¢nite.
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(2) If p is a prime number such that �p; d� = 1 holds, then jGal�Lcs \ Kab=LKcs�j is
prime to p.

Put G :� Gal�Lcs \ Kab=LKcs�. Since it is a subquotient of Gal�Lcs=L� � Ẑr�L�, it is
Abelian. For a prime p, let Gp be the pro-p completion of G. Then Gp is a ¢nitely
generated Zp-module, since it is a subquotient of Zr�L�

p . Hence, G�p can be expressed
in the form

G�p � �Qp=Zp�ap � Tp;

where ap 2N and Tp is a ¢nite Abelian p-group. On the other hand, since �CK=NCL��
is a Z=dZ-module, G� is a Z=dZ-module. Hence G�p is also a Z=dZ-module. Hence
ap � 0 holds for any p (so Gp � �G�p�� is ¢nite for all p) and if �d; p� � 1 holds,
Gp is trivial. Hence G � Qp Gp is ¢nite and jGj is prime to p if �d; p� � 1 holds,
as desired. &

LEMMA 3.2. Let K be the fraction ¢eld of a two-dimensional complete normal local
ring A with ¢nite residue ¢eld and let l be a prime number. Let L be a ¢nite Abelian
extension over K and assume that the image of the homomorphism

f : CK ÿ!
rK GKÿ!Gal�L=K�

is isomorphic to Z=lnZ for some n 2N. Then there exists an element x in PK and
y 2 PL lying above x such that �Ly : Kx� � ln holds.

Proof. Let S be the subset of PK which rami¢es in the extension K � L, and de¢ne
J by

J :� Im
Y
x=2S

K2�Ax�ÿ!CK

 !
:

By Proposition 2.2, J is contained in NCL, hence it is contained in Ker�f �. So f
factors through

CK=J � Coker K2�K�ÿ!
M
x=2S
�K2�Kx�=K2�Ax�� �

M
x2S

K2�Kx�
 !

:

Let g be the composite

M
x2PK

K2�Kx� ÿ!p CK=J ÿ!
f

Gal�L=K�;

where p is the natural surjection and f is the map induced by f . Then, by de¢nition,
Im�g� � Z=lnZ holds. For each x 2 PK , choose an element y�x� in PL lying above
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x. Then the following diagram is commutative:L
x2PK

K2�Kx� ÿÿÿÿÿ!
�sKx L

x2PK
Gal�Ly�x�=Kx��������� i

???yL
x2PK

K2�Kx� ÿÿÿÿÿ!
g

Gal�L=K�;
where sKx is the composite

K2�Kx� ÿ!
rK GKxÿ!Gal�Ly�x�=Kx�

and i is the sum of natural inclusions. Then, we have

Im�g� �
X
x2PK

i � sx�K2�Kx�� �
X
x2PK

i�Gal�Ly�x�=Kx��:

Then, since Im�g� � Z=lnZ holds, there exists an element x 2 PK such that
i�Gal�Ly�x�=Kx�� � Im�g�. Then we have �Ly�x� : Kx� � ln, so we are done. &

Now we will prove the key proposition for the proof of Theorems 1.8 (2) and (3).

PROPOSITION 3.3. Let l;K and L be as in Theorem 1.8. De¢ne the notations as
follows:

Lcs;l�resp:Kcs;l� : the maximal pro-l cs extension of L ( resp. K),
G :� Gal�L=K��� Z=lnZ�;
M :� Gal�Lcs;l=L�; M1 :�MG; M2 :�M1=M1;tor;

Fi : the cs extension of L corresponding to Ker�M !Mi� �i � 1; 2�:

Then we have F1 � Lcs;l \ Kab and F2 � LKcs;l .
Proof. First we show the equality F1 � Lcs;l \ Kab. Since Ker�M !M1� is

G-invariant, the extension K � F1 is Galois and there exists the following exact
sequence:

1ÿ!M1ÿ!Gal�F1=K�ÿ!Gÿ!1:

Since the action of G on M1 is trivial, M1 is contained in the center of Gal�F1=K�.
Then, since G is cyclic, the group Gal�F1=K� is Abelian. Hence, we have
F1 � Lcs;l \ Kab: On the other hand, since the action of G to the group
Ker�Gal�Lcs;l \ Kab=K�ÿ!G�� is trivial, we have Lcs;l \ Kab � F1. Hence we have
the equality F1 � Lcs;l \ Kab.

Next we prove the inclusion LKcs;l � F2. Let us consider the composite of natural
homomorphisms

Gal�LKcs;l=L� ÿ!Gal�LKcs;l=K� ÿ!Gal�Kcs;l=K�:
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One can easily see that it is injective. So Gal�LKcs;l=L� is a freeZl-module. Moreover,
since Gal�LKcs;l=K� is Abelian, the action of G on Gal�LKcs;l=L� is trivial. Hence
there exists a natural surjection M2ÿ!Gal�LKcs;l=L�. So we have LKcs;l � F2.

Finally we prove the inclusion F2 � LKcs;l . Let us consider the following exact
sequence:

1ÿ!M2ÿ!Gal�F2=K� ÿ!p Gÿ! 1:

SinceG acts onM2 trivially andG is cyclic, Gal�F2=K� is Abelian. Hence it is a ¢nitely
generated Zl-module. Let N be the intermediate ¢eld between K and F2 which cor-
responds to Gal�F2=K�tor. Then, Gal�F2=LN� is a torsion Abelian group, since it
is a subgroup of Gal�F2=N� � Gal�F2=K�tor. On the other hand, it is a free
Zl-module, since it is a subgroup of M2. Hence we have F2 � LN. Now we have
the following claim:

CLAIM. N is a cs extension of K .
Proof. Let us consider the following homomorphism:

h : CK ÿ!
rK GK ÿ!Gal�N=K�:

It suf¢ces to show that h is a zero map. Let K � N 0 be a subextension of K � N such
that Gal�N 0=K� � Z=lbZ holds for some b 2N and consider the homomorphism

h0 : CK ÿ!h Gal�N=K� ÿ!Gal�N 0=K� � Z=lbZ:

Assume jIm�h0�j is greater than ln. Then, by Lemma 3.2, there exists an element
x 2 PK and an element y 2 PN 0 lying above x such that �N 0y : Kx� > ln holds. On
the other hand, choose an element z 2 PLN 0 lying above y and let w 2 PL be the
element lying under z. Then, since LN 0 � L is a cs extension, we have the inequality

�N 0y : Kx�W ��LN 0�z : Kx� � �Lw : Kx�W ln:

This is a contradiction, so we have jIm�h0�jW ln.
Now assume that Im�h� is nontrivial and let a be a nontrivial element of Im�h�.

Then there exists a surjection n : Gal�N=K�ÿ!Z=lbZ (for some b 2N) such that
the order of the image of a is greater than ln, since Gal�N=K� is a free Zl-module.
If we de¢ne N 0 to be the sub¢eld of N corresponding to Ker�n�, we have
jIm�h0�j > ln and this contradicts to what we have shown in the above parapraph.
So Im�h� is trivial, that is, N is a cs extension of K . &

By the above claim, we have F2 � LN � LKcs;l , as is desired. &

COROLLARY 3.4. Let the notations be as in Theorem 1.8 and put
G :� Gal�L=K�;M :� Gal�Lcs=L�. Then we have c�L=K� � lnÿmjMG;torj:
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Proof. By Lemma 3.1, we have c�L=K� � lnÿm�Lcs \ Kab : LKcs�. Since the index
�Lcs \ Kab : LKcs� is a power of l again by Lemma 3.1, we have

�Lcs \ Kab : LKcs� � �Lcs;l \ Kab : LKcs;l �
and so we have

c�L=K� � lnÿm�Lcs;l \ Kab : LKcs;l � � lnÿmjMG;torj;
by Proposition 3.3. &

Now we will give a proof of Theorems 1.8 (2) and (3).

Proof of Theorem 1.8 (2). By replacing L by Ki, we have only to show the assertion
in the case i � n. De¢ne the notations as follows:

G :� Gal�L=K�; G0 :� Gal�L=Knÿ1�;
M :� Gal�Lcs;l=L�; M0 :� Gal�LKcs;l

nÿ1=L�;
V :�M 
Z Q; V 0 :�M0 
Z Q:

Consider the following exact sequence:

1ÿ!M0 ÿ!Gal�Kcs;l
nÿ1=Knÿ1� ÿ!Gal�L \ Kcs;l

nÿ1=Knÿ1� ÿ! 1:

From this sequence, one can see thatM0 is isomorphic toZr�Knÿ1�
l . Hence rn is equal to

the dimension of Ker�V ! V 0� as Ql-vector space.
By Proposition 3.3, M0 �MG0=MG0;tor holds. So V 0 � VG0 holds. Fix a generator s

of G � Z=lnZ. Since V is a Ql-vector space with G-action, it can be regarded as a
module over A :� Ql �s�=�sln ÿ 1�. For 0W jW n, let zlj be a primitive lj-th root
of unity and put Aj :� Ql�zlj �. Then one has the isomorphism of Ql-algebras

Aÿ!
Yn
j�0

Aj; s 7!�zlj �nj�0:

Let Vj be AjV . Then we have the natural decomposition V �Ln
j�0 Vj: Then, V 0 is

calculated as follows:

V 0 � VG0 �
Mn
j�0

Vj=��zlj �l
nÿ1 ÿ 1�Vj �

Mnÿ1
j�0

Vj:

Hence, we have the isomorphism Ker�V ! V 0� � Vn. Since Vn is a ¢nite-
dimensional An-vector spece, rn � dimQp

Vn is divisible by �An : Ql � � lnÿ1�l ÿ 1�.&

Proof of Theorem 1.8 (3). Let M be Gal�Lcs;l=L� and let G be Gal�L=K�. Then, by
Corollary 3.4, one has c�L=K� � lnÿmjMG;torj:

Let A;V ;Aj;Vj �0W jW n� be as in the proof of Theorem 1.8 (2), and let
aj �1W jW n� be the integer satisfying Vj � A�ajj (as Aj-vector spaces). Then we have
the following:
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CLAIM.

a0 � r�K�; aj � rj
ljÿ1�l ÿ 1� �1W jW n�:

Proof. By the similar argument to the proof of Theorem 1.8 (2), we obtain the
equality

r�Ki� � dimQl

Mi

j�0
Vj

 !
� a0 �

Xi
j�1

l jÿ1�l ÿ 1� aj

for 0W iW n. The claim follows from it. &

Let p be the projection Vÿ!Lm
j�0 Vj and de¢ne N and M0 by N :� p�M�,

M0 :� Ker�p� respectively. Then we have the following diagram:

0 ÿÿÿÿÿ! M0 ÿÿÿÿÿ! M ÿÿÿÿÿ! N ÿÿÿÿÿ! 0???y ???y ???y
0 ÿÿÿÿÿ! Ln

j�m�1 Vj ÿÿÿÿÿ! V ÿÿÿÿÿ!p Lm
j�0 Vj ÿÿÿÿÿ! 0:

PutG0 :� Gal�L=Km�. Then, by the similar argument to the proof of Theorem 1.8 (2),
one can see that the morphism p : Vÿ!Lm

j�0 Vj is nothing but the natural morphism
Vÿ!VG0 : Hence we have N �MG0=MG0;tor. So, by Proposition 3.3, we have

N � Gal�LKcs;l
m =L� � Gal�Kcs;l

m =Km�:
By taking G-coinvariant of the upper horizontal line in the above diagram, we obtain
the exact sequence

M0;Gÿ!MGÿ!NGÿ! 0:

Now note the following claim:

CLAIM. NG is a free Zl -module.
Proof. Let Kcs;l

m be the maximal pro-l cs extension of Km. Then, since Km is a cs
extension of K , we have Kcs;l

m \ Kab � Kcs;l . The inclusion in the other direction
is trivial, so we have Kcs;l

m \ Kab � Kcs;l : So, by Proposition 3.3,
NG � Gal�Kcs;l=Km� � Gal�Kcs;l=K� holds. So it is a free Zl-module. &

By the above claim, we have jMG;torjW jM0;G;torj; so the inequality
c�L=K�W lnÿmjM0;G;torj holds. Hence, to show the ¢rst inequality in Theorem 1.8
(3), it suf¢ces to show the equality

j�M0=�sÿ 1�M0�torj � l
Pn

j�m�1 aj ;

where s is as in the proof of Theorem 1.8 (2). Let k � k be the norm on Ql such that
klk � lÿ1 holds. Then, since sÿ 1 induces an automorphism on
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M0 
Z Q �Ln
j�m�1 Vj ��: W �, we have

j�M0=�sÿ 1�M0�torj � jM0=�sÿ 1�M0j
� kdet�sÿ 1jW �kÿ1

� k
Yn

j�m�1
NAj=Ql

�zlj ÿ 1�ajkÿ1

� l
Pn

j�m�1 aj ;

as is desired.
Finally, we prove the last inequality in Theorem 1.8 (3). By Proposition 3.3, we

have

MG=MG;tor � Gal�LKcs;l=L�
and by the assumption r�K� � 0, it is trivial. So we have

jMG;torj � jMGjX jMG 
Zl Fl j � j�M 
Zl Fl�Gj:

If we ¢x a generator s of G, we can regardM 
Zl Fl naturally as a ¢nitely generated
module over B :� Fl �s�=�sÿ 1�ln . So there exists integers bj 2N �1W jW ln� such
that

M 
Zl Fl �
Mln
j�1
�B=�sÿ 1�jB��bj

holds (as B-modules). SinceM 
Zl Fl is an r�L�-dimensional vector space over Fl , we
have the equality

Pln
j�1 jbj � r�L�: On the other hand, we have

�M 
Zl Fl�G � �M 
 Fl�=�sÿ 1��M 
 Fl� �
Mln
j�1

F�bjl :

So we have the inequality

j�M 
 Fl�Gj � l
Pln

j�1 bj X ld
1
ln

Pln

j�1 jbje � ldr�L�=l
ne:

So we have jMG;torjX ldr�L�=l
ne and the desired inequality follows from this.

Finally we will give a proof of Corollary 1.9.

Proof of Corollary 1.9. If d�L=K� is a prime, then the extension K � L is cyclic. So
the assertion is contained in Theorem 1.8.

Let us prove the general case by induction on d�L=K�. Let M be an intermediate
¢eld of K and L such that �M : K � is a prime number. By de¢nition, we have

r�L=K� � r�L=M� � r�M=K�; d�L=M� j d�L=K�; d�M=K� j d�L=K�:
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By using this, the assertion (1) is easily deduced from the inductive hypothesis and
Theorem 1.8 for the extension K �M.

Before proving (2), note the following claim:

CLAIM. d 0�L=M�d 0�M=K� j d 0�L=K� holds. In particular, we have the inequality
d 0�L=M�d 0�M=K�W d 0�L=K�.

Proof. If K �M is a cs extension, d 0�M=K� � 1 holds. So

d 0�L=M�d 0�M=K� � �L : Mcs \ L� j �L : Kcs \ L� � d 0�L=K�
holds. If K �M is not a cs extension, then M is not contained in Kcs \ L. Since
d�M=K� is prime, we have �M�Kcs \ L� : Kcs \ L� � �M : K �: Hence

d 0�L=M�d 0�M=K�
� �L : Mcs \ L��M : K �
� �L : Mcs \ L��M�Kcs \ L� : Kcs \ L�j�L : Kcs \ L� � d 0�L=K�

holds. &
Now we prove the assertion (2). By de¢nition,

c�L=K� � �CK : NCM ��NCM : NCL�W c�L=M�c�M=K�
holds. Then, by using the above claim and the inductive hypothesis, we obtain

c�L=M�c�M=K�

W d 0�L=M�
Y

ljd 0�L=M�
l

1
lÿ1

 !r�L=M�
d 0�M=K�

Y
ljd 0�M=K�

l
1

lÿ1

 !r�M=K�

W d 0�L=K�
Y

ljd 0�L=K�
l

1
lÿ1

 !r�L=K�
;

as is desired. &

4. Resolution of Two-Dimensional Abelian Covering Singularities

Throughout this section, let k be a ¢nite ¢eld of characteristic p, let A be either
k��x; y�� or W �k���y��, and let K be the fraction ¢eld of A. In this section, we will
describe how to calculate the rank r�L� and the action of Galois group
Gal�L=K� on Gal�Lcs=L� for a Kummer extension L � K satisfying some conditions.
(If we can calculate them, one can calculate the quantities c�L=M�; r�L=M� for an
intermediate ¢eld M such that M � L is cyclic and �L : M� is a power of a prime,
by using Corollary 3.4. We will do it in two examples in the next section.)

To calculate the rank r�L�, it is important to resolve the singularities of the
spectrum of the integral closure B of A in L. The singularities which occur in this
way are sometimes called Abelian covering singularities, and in complex analytic
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case, the resolution of two-dimensional Abelian covering singularities is studied by
Tsuchihashi ([T]). We study the case of positive characteristics or mixed
characteristics, following his method. On the other hand, to see the action of
Gal�L=K� on Gal�Lcs=L�, we slightly generalize an argument of Saito ([S1, II, Section
2]). This allows us to identify the group Gal�Lcs=L� with the completion of the ¢rst
homology group of a certain graph as Gal�L=K�-modules.

Let s be a natural number and let fi 2 A; ri 2N �1W iW s�. First we impose the
following assumption on k:

�A1�: k contains a primitive rith root of unity for any 1W iW s.

LetA be the unrami¢ed extension of Awith residue ¢eld k (:= the algebraic closure
of k), and let K be the fraction ¢eld of A. Let L be K �zi�1W iW s=�zrii ÿ fi�1W iW s: Next
we impose the following assumption:

�A2�: L is a ¢eld.

Then, L :� K �zi�1W iW s=�zrii ÿ fi�1W iW s is a ¢nite Abelian extension of K , and the
Galois group G :� Gal�L=K� is naturally isomorphic to

Ls
i�1 Z=riZ�1�. De¢ne

B;B by

B :� A�zi�1W iW s=�zrii ÿ fi�1W iW s; B :� A�zi�1W iW s=�zrii ÿ fi�1W iW s;

respectively. They are local integral domains.
Put X � SpecB, Y � SpecA and let P;Q be the closed point of X ;Y respectively.

(Note that the Galois group G acts on X .) Let Di be the divisor of Y de¢ned by the
ideal �fi� � A, and put D :�Pi Di. Choose the minimal embedded resolution
y : Zÿ!Y of �Y ;D�: That is, Z is regular, y is a proper morphism which induces
the isomorphism Z ÿ yÿ1�D�ÿ!Y ÿD and yÿ1�D�red is a simple normal crossing
divisor without �ÿ1�-curves. Let I be the set of prime divisors with support in D
and for C 2 I , let EC be the proper transform of C with respect to y. Then
yÿ1�D�red is expressed as the sum

yÿ1�D�red �
X
C2I

EC �
X
j2J

Ej;

where J is an index set and for j 2 J, Ej is an irreducible divisor. Let E be
P

j2J Ej .
Let W be the normalization of X �Y Z. The action of the Galois group G on X

induces the action of G on W . Let n : Wÿ!Z (resp. l : Wÿ!X ) be the composite
of the normalization Wÿ!X �Y Z and the projection X �Y Zÿ!Z (resp.
X �Y Zÿ!X ). Let us de¢ne eE by eE :� lÿ1�P�red � nÿ1�E�red:

Let Y be SpecA, letW be W �Y Y and let eE be the pull-back of eE toW . Now we
impose the following assumption:

�A3�: The number of irreducible components of eE is equal to that of eE, and for
any pair of distinct irreducible components �eE1;eE2� of eE, the intersection
�eE1 \eE2�red is empty or a disjoint union of k-rational points.
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Let us ¢x a topological generator of
Q

l 6�p Zl�1� and identify G �Ls
i�1 Z=riZ�1�

with
Ls

i�1 Z=riZ by using it. Denote the element

�0; � � � ; 0; �1
i

; 0; � � � ; 0� 2 G

simply by ei �1W iW s�. For C 2 I , de¢ne the element tC 2 G by tC :�Ps
i�1 mC;iei,

where mC;i 2 Z is the multiplicity of C in Di. For j 2 J, de¢ne the element
tj 2 G by tj :�Ps

i�1 nj;iei; where nj;i 2 Z is the multiplicity of Ej in y�Di.
For i 2 I [ J, we de¢ne a subgroup Gi � G as the subgroup generated by tj's
�j 2 I [ J� such that Ei \ Ej 6� ;, and for i; j 2 I [ J, we de¢ne a subgroup
Gij � G as the subgroup generated by ti and tj.

Let D be the dual graph of E �Pj2J Ej. For a 2 vertex�D� corresponding to Ej,
de¢ne Ga � G by Ga :� Gj , and for a 2 edge�D� corresponding to Ei \ Ej, de¢ne
Ga � G by Ga :� Gij. Now we de¢ne a graph eD which is endowed with an action
of G (which we will call as a G-graph in the sequel) as follows: First, vertex�eD�
and edge�eD� is de¢ned as follows.

vertex�eD� :� f�a;A� j a 2 vertex�D�;A 2 G=Gag;
edge�eD� :� f�a;A� j a 2 edge�D�;A 2 G=Gag:

For �a;A� 2 vertex�eD� and �b;B� 2 edge�eD�, we de¢ne that �a;A� is a face of �b;B� if
and only if a is a face of b in the graph D and A contains B. The action of G
on the graph eD is de¢ned by g � �a;A� :� �a; g� A�. (Note that the above de¢nition
of the G-graph eD is independent of the choice of a topological generator ofQ

l 6�p Zl�1�, up to isomorphism.)
Then, our main theorem in this section is as follows (cf. Tsuchihashi [T, Section 3]):

THEOREM 4.1 Under the assumptions �A1�; �A2� and �A3�, there exists an
isomorphism of G-modules

H1�eD;Z� 
Z Ẑ � Gal�Lcs=L�:

(In particular, r�L� � rkH1�eD;Z�:�
We ¢rst show an easy lemma which we need for the proof of the above theorem:

LEMMA 4.2. Let R be a two-dimensional complete regular local ring with algebraic-
ally closed residue ¢eld of characteristic p, and x; y be a regular parameter of R. Put
U :� SpecR. Let Dx;Dy be the divisor of U de¢ned by x; y respectively and put
D :� Dx [Dy:

Let ri 2N �1W iW s� be integers prime to p and let ai; bi 2N �1W iW s� be
integers. Let S0 be R�zi�1W iW s=�zrii ÿ xaiybi �1W iW s and let S be the normalization
of S0. Put V :� SpecS. Fix a connected component V0 of V and let f : V0ÿ!U
be the natural map.
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Let

G :� Aut�V=U� �
Ms

i�1
Z=riZ�1�

 !
and H :� ptame

1 �U;D� �
Y
l 6�p

Zl�1�
 !2

0@ 1A
and let j : Hÿ!G be the natural map. Then:

(1) fg 2 G j g�V0� � V0g � j�H� holds.
(2) The singularities of V are all toric singularities �in the sense of [Ka4]�.
(3) f ÿ1�Dx�red and f ÿ1�Dy�red are irreducible.

Proof. The assertion (1) is obvious. Let us de¢ne the homomorphisms of monoids
a : Nsÿ!N2; b : Nsÿ!Ns by a�ei� � �ai; bi�; b�ei� � riei, where ei �1W iW s� is the
natural basis of Ns. De¢ne the monoid Q by the push-out of the diagram

N2 ÿa Ns ÿ!b Ns

in the category of monoids. Then S0 � R
Z�N2�;g Z�Q�, where g : Z�N2�ÿ!Z�Q� is
induced by the homomorphism N2ÿ!Q induced by the above diagram. Let Qsat

be the saturation of Q. Then one can check that S � R
Z�N2�;g0 Z�Qsat� holds, where
g0 : Z�N2�ÿ!Z�Qsat� be the composite

Z�N2� ÿ!g Z�Q�ÿ!Z�Qsat�:
Then, since �V ; �Qsat !d S�a� is log-ëtale over �U; �N2!e R�a� (where d is the natural
morphism and e is de¢ned by e��1; 0�� � x; e��0; 1�� � y), �V ; �Qsat !d S�a� is log
regular. So it has only toric singularities ([Ka4]).

Finally we will prove (3). Since f : V0ÿ!U is a tame covering, there exists an
integer n > 0 prime to p which satis¢es the following: If we puteV :� SpecR�z;w�=�zn ÿ x;wn ÿ y� and de¢ne ef : eVÿ!U as the natural homo-
morphism, there exists a morphism g : eVÿ!V such that ef � f � g holds. Then it
suf¢ces to show thatef ÿ1�Dx�red andef ÿ1�Dy�red are irreducible, and this is obvious.&

Remark 4.3. If we ¢x a topological generator of
Q

l 6�p Zl�1� and identifyG (resp.H)
with

Ls
i�1 Z=riZ (resp. �Ql 6�p Zl�2) by using it (resp. it and the regular parameter

x; y), the homomorphism j : Hÿ!G is expressed by j��1; 0�� � �ai�si�1;
j��0; 1�� � �bi�si�1:

Proof of Theorem 4.1 Let us prepare the notation as follows:

Z :� Z �Y Y ; Ei :� Ei �Y Y �i 2 I [ J�; E :�
X
j2J

Ej;

n � n�Y Y : Wÿ!Z:

First let us note the following claim:
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CLAIM 1. With the above notations, we have the following:

(1) The singular points of W (resp. W) is contained in nÿ1�Si;j2I[J�Ei \ Ej�� (resp.
nÿ1�Si;j2I[J�Ei \ Ej��), and they are all toric singularities.

(2) The intersections of irreducible components of eE (resp. eE ) are double points.

Proof. It is easy to see the former assertion of (1). As for the latter assertion of (1)
and the assertion (2), it suf¢ces to show for W and eE. Let F be a double point ofS

i2I[J�Ei \ Ej�, and let Ẑ; Ŵ be the completion of Z;W at F , nÿ1�F � respectively.
Then, it suf¢ces to show the assertions after pulling back to Ẑ; Ŵ , since the
assertions are local. Then they are reduced to (2) and (3). of Lemma 4.2 for
V � Ŵ ;U � Ẑ.

By (2) of the above claim, we can de¢ne the dual graphs G�eE�;G�eE� of eE;eE
respectively. Since the action of G on W induces the action of G on eE and eE,
we can regard G�eE�;G�eE� as G-graphs, and by the assumption �A3�, there exists
a natural isomorphism of G-graphs G�eE� � G�eE�. By this observation, it suf¢ces
to show the following claims:

CLAIM 2. There is an isomorphism of G-graphs G�eE� � eD.
CLAIM 3. There is an isomorphism of G-modules

H1�G�eE�;Z� 
 Ẑ � Gal�Lcs=L�:

Proof of Claim 2. By using the assumption �A3�, one can check that the dual graph
of E and that of E are also isomorphic. Since they are trees, it suf¢ces to show the
following (cf. [T, Section 2]):

(1) For i; j 2 J, we have the isomorphism of G-sets

n ÿ1�Ei \ Ej�red � G=Gij:

(2) For i 2 J, we have the isomorphism of G-sets

the irreducible components
of n ÿ1�Ei�

� �
� G=Gi:

First we prove the assertion (1). Let Ŵ be the completion of W at nÿ1�Ei \ Ej�.
Then, by de¢nition of Gij and by Lemma 4.2 (1) (for V � Ŵ ), the stabilizer of
an element of p0�Ŵ � is Gij. Then, noting the isomorphism of G-sets

nÿ1�Ei \ Ej�red � p0�Ŵ �;

we obtain the assertion.
Next we prove (2). By the argument of the previous paragraph and (3) of Lemma

4.2 (for V � Ŵ ), one can see the following: For an irreducible component F in
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nÿ1�Ei� and for any j 2 I [ J such that Ei \ Ej 6� ;, we have

fg 2 G j g�F � � F g � Gij:

So, by de¢nition of Gi, we have fg 2 G j g�F � � F g � Gi. On the other hand, one can
check that the covering F=Giÿ!Ei is unrami¢ed. Since Ei is isomorphic toP1

k (where
k is the algebraic closure of k), we have F=Gi � Ei and fg 2 G j g�F � � F g � Gi:

Hence, we obtain the assertion. &

Proof of Claim 3. Let a : X 0ÿ!X be the normalization ofX and let P0 be the unique
point in aÿ1�P�. Let b : Xÿ!W be a resolution of W de¢ned by succesive toric
blow-ups at singular points such that bÿ1�eE�red is a simple normal crossing divisor.
(Note that W has only toric singularities.) Then, there exists a morphism
c : Xÿ!X 0 such that the following diagram is commutative:

X 0  ÿÿÿÿÿc X

a

???y b

???y
X  ÿÿÿÿÿl

W :

Let X0 be X ÿ P�� X 0 ÿ P0�. Then we have the following diagram:

pab
1 �X0� ÿÿÿÿÿ! pab

1 �X� � ÿÿÿÿÿ pab
1 �cÿ1�P0�red��������� ???y ???y

pab
1 �X0� ÿÿÿÿÿ! pab

1 �W � � ÿÿÿÿÿÿ pab
1 �eE�:

It induces the following diagram:

pab
1 �X0� ÿÿÿÿÿ!a

pcs
1 �cÿ1�P0�red��������� ???y

pab
1 �X0� ÿÿÿÿÿ!

b
pcs
1 �eE�;

where pcs
1 is the quotient of algebraic fundamental group which classi¢es complete

splitting Abelian coverings ([S1, II,2]). Moreover, b is G-equivariant, since it is
induced by l, which is G-equivariant by de¢nition.

By [S1, II, Proposition 2.2], a induces the isomorphism pcs
1 �X0� � pcs

1 �cÿ1�P0�red�.
Now let us admit the following claim for a while, whose proof will be given later:
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CLAIM 4. There exists a commutative diagram

pcs
1 �cÿ1�P0�red� ÿÿÿÿÿ!

g
H1�G�cÿ1�P0�red�;Z� 
 Ẑ???y d

???y
pcs
1 � ~E� ÿÿÿÿÿ!E

H1�G�eE�;Z� 
 Ẑ;

such that g; d; E are isomorphisms and E is G-equivariant.

Then, E � b induces the G-equivariant isomorphism

pcs
1 �X0�ÿ!H1�G�eE�;Z� 
 Ẑ:

Since we have Gal�Lcs=L� � pcs
1 �X0� by de¢nition ([S1], [S2]), we are done.

Hence Theorem 4.1 is reduced to Claim 4. Now let us prove this claim. Let C be the
category of connected reduced schemes C of ¢nite type over k which satisfy the
following conditions:

(1) Each irreducible component Ci �i 2 I� is one-dimensional and the set SC of
singular points of C (regarded as the reduced closed subscheme of C ) is equal
to �Si;j2I �Ci \ Cj��red.

(2) SC is a disjoint union of k-rational points and for any s 2 SC, there exist exactly two
irreducible components ofCwhich contain s. (That is, any point s 2 SC is a double
point.)

Now we introduce the notion of modi¢cation in the category C: Let j : C 0ÿ!C be
a morphism in the category C and let s 2 SC . Then j is called a modi¢cation at s if
jjC0ÿjÿ1�s� : C0 ÿ jÿ1�s�ÿ!C ÿ fsg is an isomorphism and jÿ1�s� � C0 is an
irreducible component of C0 which is smooth over k. For a modi¢cation
j : C0ÿ!C at s 2 SC and an irreducible component Ci of C, we de¢ne the proper
transform of Ci as the closure of jÿ1�Ci ÿ fsg�.

Then cÿ1�P�red and eE are in the category C and the morphism
bjcÿ1�P�red

: cÿ1�P�redÿ!eE is a composite of modi¢cations, since b is a composite
of toric blow-ups at k-rational points. So, to prove Claim 4, it suf¢ces to show
the following claim:

CLAIM 5. For C 2 C, denote its dual graph by G�C�. Then we have a system of
isomorphisms f fC : pcs

1 �C� �ÿ!H1�G�C�;Z� 
 ẐgC2C which satis¢es the following con-
ditions:

(1) If C admits an action of a group G, then fC is G-equivariant.
(2) For any modi¢cation j : C 0ÿ!C, there exists an isomorphism g : H1

�G�C0�;Z� 
 Ẑÿ!H1�G�C�;Z� 
 Ẑ which makes the following diagram com-
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mutative:

pcs
1 �C 0� ÿÿÿÿÿ!

fC0 H1�G�C0�;Z� 
 Ẑ

j�

???y g

???y
pcs
1 �C� ÿÿÿÿÿ!

fC
H1�G�C�;Z� 
 Ẑ:

Now we prove Claim 5. For C 2 C and a closed subscheme D � C, denote the
Henselization of C at D by CD. Since the argument in the proof of [S1, II, Theorem
2.4] is valid for any C 2 C, we have the exact sequence

H0
et�C ÿ SC;Q=Z� ÿ!hC

M
x2SC

H0
et�Cx ÿ fxg;Q=Z�
H0

et�x;Q=Z�
ÿ!pcs

1 �C��ÿ!0:

One can check easily the isomorphisms

H0
et�C ÿ SC;Q=Z� �

M
i2I

Q=Z;
H0

et�Cx ÿ fxg;Q=Z�
H0

et�x;Q=Z�
� Q=Z;

and via these isomorphisms, hC is nothing but the cochain homomorphism of the
dual graph G�C�. Hence, we can identify Coker�hC� naturally with the dual of
H1�G�C�;Z� 
 Ẑ. We de¢ne the homomorphism fC as the dual of the natural
isomorphism Coker�hC� �ÿ!pcs

1 �C��. Then one can easily check that the
homomorphism fC satis¢es the condition (1). of the claim.

Now let C 2 C, s 2 SC and let j : C 0ÿ!C be a modi¢cation at s. Put S :� jÿ1�SC�.
Then, the diagram in [S1, p.60] is functorial with respect to the morphism of pairs
�C0;S�ÿ!�C;SC�, since it is induced by the localization sequence of etale
cohomology. Moreover, since jÿ1�s� is smooth over k, we have (cf. [S1, p.61])

pcs
1 �C0�� �Ker�H1

et�C0;Q=Z�ÿ!H1
et�C 0 ÿ S;Q=Z� �H1

et�jÿ1�s�;Q=Z��M
x2jÿ1�SCÿfsg�

H1
et�x;Q=Z��:

Hence we obtain the following commutative diagram:

H0
et�C ÿ SC ;Q=Z� ÿÿÿÿ!hC L

x2SCÿfsg
H0

et�Cxÿfxg;Q=Z�
H0

et�x;Q=Z�
� H0

et�Csÿfsg;Q=Z�
H0

et�s;Q=Z�
ÿÿÿÿ! pcs

1 �C�� ÿÿÿÿ! 0

a

????y b

????y j�

????y
H0

et�C 0 ÿ S;Q=Z� ÿÿÿÿ!j L
x2jÿ1�SCÿfsg�

H0
et�C0xÿfxg;Q=Z�
H0

et�x;Q=Z�
� H0

et�C0jÿ1 �s�ÿj
ÿ1�s�;Q=Z�

H0
et�jÿ1�s�;Q=Z�

ÿÿÿÿ! pcs
1 �C0�� ÿÿÿÿ! 0;

where j� is the dual of j�. Since the morphism C 0 ÿ Sÿ!C ÿ SC is an isomorphism,
a is an isomorphism, and the ¢rst factor of the homomorphism b is also an
isomorphism. Moreover, if we set s 2 Ci1 \ Ci2 , j

ÿ1�s� meets with the proper trans-
forms of Ci1 and Ci2 , and does not meet with other irreducible components of
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C0. Hence, we have

H0
et�C0jÿ1�s� ÿ jÿ1�s�;Q=Z�

H0
et�jÿ1�s�;Q=Z�

� Q=Z

and one can check easily that the second factor of b is also an isomorphism.
Therefore, we have the commutative diagram

Coker �hC� ÿÿÿÿ!
f �C

pcs
1 �C��

g1

???y j�
???y

Coker �j� �ÿÿÿÿ! pcs
1 �C0��;

where all the homomorphisms are isomorphisms.
Next, let us consider the functoriality of the diagram in [S1, p.60] with respect to

the inclusion SC0 � S. Then we obtain the following diagram:

H0
et�C0 ÿ S;Q=Z� ÿÿÿ!j L

x2jÿ1�SCÿfsg�
H0

et�C0xÿfxg;Q=Z�
H0

et�x;Q=Z�
� H0

et�C0jÿ1 �s�ÿj
ÿ1�s�;Q=Z�

H0
et�jÿ1�s�;Q=Z�

ÿÿÿÿ! pcs
1 �C0�� ÿÿÿ! 0x??? x??? x???

H0
et�C0 ÿ SC0 ;Q=Z� ÿÿÿ!

hC0 L
x2SC0

H0
et�Cxÿfxg;Q=Z�
H0

et�x;Q=Z�
ÿÿÿ! pcs

1 �C�� ÿÿÿ! 0;

So the following diagram is induced:

Coker � j� �ÿÿÿÿ! pcs
1 �C 0��

g2

x??? ��������
Coker �hC0 � ÿÿÿÿ!

f �
C0

pcs
1 �C0��:

Since f �C0 is an isomorphism, g2 is also an isomorphism. If we de¢ne the
homomorphism g : H1�G�C 0�;Z� 
 Ẑÿ!H1�G�C�;Z� 
 Ẑ as the dual of the
composite gÿ12 � g1, we have the diagram in the condition (2). in Claim 5. Hence
Claim 5 is proved, and so the proof of Theorem 4.1 is now ¢nished. &

Remark 4.4. Let the notations be as in this section and assume that the conditions
�A1� and �A2� are satis¢ed. Then, the condition �A3� is also satis¢ed if we replace A
by some unrami¢ed extension of A.
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5. Proofs (II)

In this section, ¢rst we give two examples of Abelian extensions K � L such that
c�L=K� is computable by using the result of previous sections. Then we give a proof
of Proposition 1.10 and Theorem 1.12.

EXAMPLE 5.1. Let n; a 2N and let p and l be distinct primes. Let k be a ¢nite ¢eld
of characterictic p such that jkj > a holds and k contains a primitive ln-th root of
unity. Let A be k��x; y�� (resp. W �k���y��) and let K be the fraction ¢eld of A. For
a 2 k (resp. a 2W �k�), de¢ne ga by ga :� �y� ax�l � xl�1 (resp.
ga :� �y� ap�l � pl�1.) Fix a subset I of k (resp. W �k�) such that jI j � a� 1 (resp.
jI j � a� 1 and the map I ,!W �k�ÿ!k is injective). Let f1 2 A be

Q
a2I ga and let

L :� K�z1�=�zln1 ÿ f1�: Then,

PROPOSITION 5.2. The conditions �A1�; �A2� are satis¢ed for the extension K � L.

The condition �A1� is trivial. To show the condition �A2�, ¢rst note the following
lemma:

LEMMA 5.3. Let the notations be as above and let A be as in the previous section.
Then,

(1) ga is a prime element of A for any a 2 A.
(2) ga and gb are coprime in A for a; b 2 I; a 6� b.

Proof. In this proof, we denote the element p 2 A by x in the case A �W �k���y�� to
simplify the description of the proof.

First we prove (1). Let ja : Aÿ!A be the automorphism de¢ned by

ja

X
i

ciyi
 !

�
X
i

ci�yÿ ax�i;

where ci 2 k��x�� (resp. W �k�) in the case A � k��x; y�� (resp. A �W �k���y��). Then we
have ja�ga� � g0. So it suf¢ces to show that g0 is a prime element of A.

Proof. Let us de¢ne the order � on N2 by

�i; j� � �i0; j0 � () i � j > i0 � j0 or i � j � i0 � j0 and jX j0:

For a 2N2, let a0 2N2 be the unique element which satis¢es the following two
conditions:

(1) a0 6� a and a0 � a hold.
(2) If b 2N2 satis¢es b 6� a and b � a, then b � a0 holds.

Let m be the maximal ideal of A. For �i; j� 2N2, let I�i;j� be the ideal of A which is
generated by mi�j�1 and the element of the form xayb ��a; b� 2N2; �a; b� � �i; j��.
Take a multiplicatively closed subset L � A of A containing 0; 1 such that the
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map L,!Aÿ!A=m �: k is bijective. Then, since I�i;j�=I�i;j�0 � kxiyj holds for any
�i; j� 2N2, we have the following:

(*) For any nonzero element f of A, there exists a unique pair ��i; j�; l�
2N2 � �Lÿ f0g� such that f 2 lxiyj � I�i;j�0 holds.

Now let us assume that g0 � h1h2 holds. Then there exist ��i1; j1�; l1�;
�i2; j2�; l2� 2N2 � �Lÿ f0g� satisfying

h1 2 l1xi1yj1 � I�i1;j1�0 ; h2 2 l2xi2yj2 � I�i2;j2�0 :

Then, we have

g0 � h1h2 2 l1l2xi1�i2yj1�j2 � I�i1�i2;j1�j2�0 :

On the other hand, we have g0 � yl � xl�1 2 yl � I�l�1;0�. Hence, by the uniqueness of
the expression in ���, we have l1l2 � 1; i1 � i2 � 0 and j1 � j2 � l.

Then, by using ��� repeatedly, one can write

h1 2 l1yj1 �
Xj1�1
v�0

m1;vx
vyj1�1ÿv � I�j1�2;0�; �m1;v 2 L�;

h2 2 l2yj2 �
Xj2�1
v�0

m2;vx
vyj2�1ÿv � I�j2�2;0�; �m2;v 2 L�:

For v > j1 � 1 (resp. v > j2 � 1), put m1;v � 0 (resp. m2;v � 0). Then, we have

g0 ÿ yl � h1h2 ÿ yl 2
Xmax�j1;j2��1

v�0
�l1m2;v � l2m1;v�xvyl�1ÿv � I�l�2;0�:

If we assume j1j2 > 0, then l � 1ÿ v is always positive on the right-hand side. Hence
we have g0 ÿ yl 2 I�l;1�. On the other hand, we have g0 ÿ yl � xl�1 2 xl�1 � I�l;1�. It is
a contradiction. Hence, we have j1j2 � 0. Then, either h1 or h2 is invertible. So g is a
prime element in A, which is a UFD.

Next we prove (2). By using the automorphism ja, we may assume that a � 0 and
b is invertible (but not necessarily in I). Assume g0 and gb are not coprime. Then
there exists an element u 2 A

�
such that gb � ug0 holds.

Let b and u be the image of b and u in A=�y; xl�1� respectively. Then, from the
equality gb � ug0, we obtain

b
l
xl � 0 in A=�y; xl�1�:

But one can check that it is impossible, since b is invertible. Hence we obtain the
assertion.

Proof of Proposition 5.2 (A2). By Lemma 5.3, f1 2 A is a product of distinct
primes. Since A is a UFD, one can see that the order of f1 in K�=�K��ln (where
K :� FracA) is equal to ln. Then, by Kummer theory, L � K �z1�=�zln ÿ f1� is a ¢eld.&
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Now let us replace k by a ¢nite extension so that the assumption �A3� is also
satis¢ed. Let D; y;D;eD be as in the previous section and let Ca �a 2 I� be the prime
divisor de¢ned by the ideal �ga� � A. Then one can check, by direct calculation,
the following descriptions of D; yÿ1�D�red, y

�D and D:

(1) D �Pa2I Ca:

(2) yÿ1�D�red :�Pa2I Ea �
P

1W iW l;a2I Ea;i � E0; where Ea;Ea;i and E0 are all
irreducible and Ea is the proper transform of Ca. For any a 2 I, Ea meets with
Ea;1 at one point and does not meet with the other components.

(3) y�D :�Pa2I Ea �
P

1W iW l;a2I i�al � 1�Ea;i � alE0:

(4) Let Ga �a 2 I� be the following graph:

Ea;1 Ea;2 Ea;3 Ea;lÿ1 Ea;l Fa


ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ ÿ ÿ ÿ ÿ ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ


Then, D is de¢ned by D :� `a2I Ga= �, where � is the equivalent relation gen-
erated by Fa � Fb for a; b 2 I, and E0 is de¢ned to be the vertex Im�Fa jGa! D�.

From these descriptions, the structure of theG-grapheD is described as follows. First,
let G0a �a 2 I� be the graph in Figure 1. Then, as a graph, eD is expressed aseD � `a2I G

0
a= �, where � is the equivalent relation generated by

Fi
a � F i

b �a; b 2 I�. Denote the vertex Im�F i
a jG0a! eD� by Ei

0 �0W iW l ÿ 1�. Then
the action of G � Z=lZ on eD is described as follows: Fix a generator s of G. Then
the action of s on eD is de¢ned by

s�Ea;i� � Ea;i; s�Ei
0� � Ei�1

0 �0W iW l ÿ 2�; s�Elÿ1
0 � � E0

0 :

Figure 1. The graph G0a.
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Then, by Corollary 3.4, Theorem 4.1 and direct calculation, we have

d�L=K� � ln; r�L� � a�l ÿ 1�; r�K� � 0; c�L=K� � la�n:

Let L0 be Lcs \ Kab. Then we have

d�L0=K� � c�L=K� > d�L=K� and d 0�L0=L� � 1:

On the other hand, we have

d 0�L0=K� � d�L0=K�; d 0�L=K� � d�L=K�;

since r�K� is equal to zero. Hence, we have

d 0�L0=L�d 0�L=K� � d�L=K� < d�L0=K� � d 0�L0=K�:

In particular, the `multiplicativity' does not hold for d 0�ÿ=ÿ�.

EXAMPLE 5.4. Let k be a ¢nite ¢eld of characteristic at least 5 which contains a
primitive third root of unity. Let A be k��x; y�� and let K be the fraction ¢eld of
A. De¢ne f1; f2 2 A by f1 :� y2 � x3; f2 :� �y� x�3 � x4. Let L be
K �z1; z2�=�z21 ÿ f1; z32 ÿ f2�. Then, one can check, by using Lemma 5.3, that the con-
ditions �A1�, �A2� are satis¢ed for K � L.

Now let us replace k by a ¢nite extension so that the assumption �A3� is also
satis¢ed. Let D � D1 �D2; y;D;eD be as in the previous section. Then Di is a prime
divisor for i � 1; 2 by Lemma 5.3 and one can check, by direct calculation, the
following descriptions of yÿ1�D�red, y

�D1, y�D2 and D:

(1) yÿ1�D�red �
P8

i�1 Ei; where Ei �1W iW 8� are irreducible and Ei is the proper
transform of Di for i � 1; 2. E1 meets only with E3 at one point and E2 meets
only with E8 at one point.

(2)

y�D1 � E1 � 3E3 � 6E4 � 2E5 � 6E6 � 4E7 � 2E8;

y�D2 � E2 � 3E3 � 6E4 � 3E5 � 12E6 � 8E7 � 4E8:

(3) The graph D is as follows:

E3 E4 E5 E6 E7 E8


ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ


From these descriptions, the structure of the G-graph eD (here G � Z=6Z) is
described as follows. As a graph,eD is as in Figure 2. The action ofG oneD is described
as follows: let us ¢x a generator s of G. Then the action of s is de¢ned by

s�Ei;j� � Ei;0 if �i; j� � �3; 2�; �4; 2�; �5; 5�; �6; 1�; �7; 1�; �8; 1�;
Ei;j�1 otherwise:

�
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LetM1 (resp.M2) be the intermediate ¢eld betweenK and L such that �L : M1� � 2
(resp. �L : M2� � 3) holds. Then, by using the above description of G-graph eD and
Corollary 3.4, Theorem 4.1, One can check the equalities c�L=M1� � 23;
c�L=M2� � 32. One can also check the equality r�M1� � r�M2� � 0. So one has
c�M1=K� � 3; c�M2=K� � 2. By de¢nition, both c�L=M1�c�M1=K� and c�L=M2�c
�M2=K� are divisible by c�L=K�. Hence 6 is divisible by c�L=K�. On the other hand,
we have c�L=K�X d 0�L=K� � 6. So we have c�L=K� � 6. In particular, we have

c�L=Mi�c�Mi=K� 6� c�L=K� �i � 1; 2�:

Hence the `multiplicativity' does not hold for c�ÿ=ÿ�.
In this example, K � L is a cyclic extension of degree 6 and we have

r�K� � 0; r�L� � 2; d 0�L=K� � c�L=K� � 6. So it gives an example which we
mentioned in Remark 1.13(2).

Now we give a proof of Proposition 1.10 and Theorem 1.12.

Proof of Proposition 1.10. By Example 5.1, it suf¢ces to show the following:

CLAIM. In the situation of Example 5.1, let us assume the following: k contains a
primitive l-th root of unity, jkj > a holds and n � 1. Then, the condition �A3� is auto-
matically satis¢ed for K � L. (That is, we do not have to enlarge k in the case n � 1.)

Now we prove this claim. Let n : Wÿ!Z as in the previous section and let E0 � Z
be as in Example 5.1. Then it suf¢ces to show that nÿ1�E0� has l connected
components. By the proof of Claim 2 in the proof of Theorem 4.1, nÿ1�E0� is etale
over E0 � P1

k. So, it suf¢ces to show that nÿ1�R� has l connected components for
a k-rational point R in E0.

Figure 2. The graph ~D.
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Take a k-rational point R of E0 ÿ
S

a2I Ea;l , where the notations are as in Example
5.1. (It is possible since E0 � P1

k and jkj > a holds.) Then, by easy calculation, one
can check the following: There exists a regular parameter x; y 2 ÔZ;R and
b 2 Ô�Z;R such that

ÔZ�YX ;pÿ1�R� � ÔZ;R�z�=�zl ÿ blx�a�1�l�
holds. (Here, ^ denotes the completion with respect to the Jacobson radical and
p : Z �Y Xÿ!Z is the projection.) Then we have

ÔW ;nÿ1�R� � normalization of ÔZ�YX;pÿ1�R�

�
Y
zl�1
ÔZ;R�z�=�zÿ zbxa�1�:

So nÿ1�R� has l connected components, as is desired. &

Proof of Theorem 1.12. First we prove the assertion (2). If r�K� > 0 holds, then it is
easy to see that CK is not injective. So we may assume r�K� is equal to 0 to prove the
assertion (2). Let A0 be k��x; y�� if the characterictic of K is positive and W �k���y�� if
the characteristic of K is equal to zero. Fix a prime number l which divides
jkj ÿ 1. (Here we used the assumption k 6� F2.) Then, by Proposition 1.10, there
exists an Abelian extension K0 � L0 such that d�L0=K0� � l and r�L0� � l ÿ 1 > 0
hold. Fix an inclusion A0 � A such that A is ¢nite over A0, and let K0 � K be
the induced inclusion. Let L be the composite ¢eld KL0. (It is Abelian over K .) Then
we have the following:

CLAIM. r�L� > 0 holds.
Proof. Put m :� �L : L0�. Let p be a prime number which does not divide m, and let

L00 be a cs extension of L0 such that �L00 : L0� � p holds. Then, since L00 and L are
linearly disjoint over L0, we have �LL00 : L� � p. On the other hand, one can see that
L � LL00 is also a cs extension. Hence L has a nontrivial cs extension. So r�L� is
positive. &

By the claim, we have r�L� > 0; r�K� � 0 and �L : K � � l. Then, by the last
inequality in Theorem 1.8(3), c�L=K� > l � d�L=K� holds. So, by Proposition 2.7,
CK is not surjective.

Next we prove the assertion (1). LetA0;K0 be as above and ¢x an inclusionA0 � A
as above. Let K0 � K be the induced inclusion and put d :� �K0 : K �. For a ¢nite
extension k of k, Let K0�k�;K�k� be the unrami¢ed extension of K0;K with residue
¢eld k, respectively. Then one can see that �K�k� : K0�k�� � d holds for any k. First,
let us note the following claim:

CLAIM. r :� supfr�K�k�� j k � k finite extension g <1:
Proof. Let P be the closed point of SpecA, let p : Xÿ!SpecA be a resolution and

let Y be pÿ1�P�red. For a ¢nite extension k of k, let Gk be the dual graph of
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Yk :� Y 
k k. Then we have r�K�k�� � rkH1�Gk;Z�. Let k0 be a ¢nite extension of k
such that every irreducible component of Yk0 is geometrically connected and every
double point of Yk0 is k0-rational. Then we have

r�K�k��W r�K�kk0�� �by Corollary 1.9�
� rk H1�Gkk0 ;Z�
� rk H1�Gk0 ;Z� �by definition of k0�
� r�K�k0��:

So we have the assertion.

Now ¢x a prime number l which is prime to pd and ¢x a ¢nite extension k � k0
which satis¢es the following:

(1) k0 contains a primitive l-th root of unity.
(2) jk0j > r� 1 holds.

Let k be a ¢nite extension of k0. Then, by Proposition 1.10, there exists a ¢nite
Abelian extension K0�k� � L0 such that �L0 : K0�k�� � l and c�L0=K0�k��X lr�2 holds.
Let eL0 be Lcs

0 \ K0�k�ab. Then, by Lemma 3.1, there exists an integer bX r� 1 such
that �eL0 : L0� � lb holds. As for the structure of the Galois group Gal�eL0=K0�k��,
we have the following claim.

CLAIM. Gal�eL0=K0�k�� � �Z=lZ���b�1� holds. (Hence we have Gal�eL0=L0� �
�Z=lZ��b.)

Proof. Assume the claim is false. Then there exists a surjection

j : Gal�eL0=K0�k��ÿ!Z=l2Z:

Let M be the intermediate ¢eld between K0�k� and eL0 which corresponds to Ker�j�.
Then, by Lemma 3.2, there exists an element x 2 PK0�k� and an element y 2 PM lying
above x such that �My : K0�k�x� � l2 holds. Let z 2 P ~L0

be an element lying above
y and let w 2 PL0 be the element lying under z. Then, since L0 � eL0 is a cs extension,
we have

�My : K0�k�x�W �eL0;z : K0�k�x� � �L0;w : K0�k�x�W l:

This is a contradiction. So we have the assertion. &

Now let L, eL be the composite ¢eld L0K�k�, eL0K�k�, respectively. Then, since l is
prime to d, eL is an Abelian extension of K�k� and we have
Gal�eL=K�k�� � �Z=lZ���b�1�. (Hence we have Gal�eL=L� � �Z=lZ��b.) Moreover,
one can see that L � eL is a cs extension. Using these, we can show the following
claim:

CLAIM. �Lcs \ K�k�ab : LK�k�cs� > 1 holds.
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Proof. It suf¢ces to show the inequality Lcs;l \ K�k�ab 6� LK�k�cs;l , where cs;l denotes
the maximal pro-l cs extension. Assume the contrary. Then eL is contained in
LK�k�cs;l . So there exists the natural surjection

p : Gal�LK�k�cs;l=L�ÿ!Gal�eL=L� � �Z=lZ��b:
On the other hand, since we have the inclusion Gal�LK�k�cs;l=L� � Gal�K�k�cs;l=K�k��
(in fact they are equal), we have the isomorphism Gal�LK�k�cs;l=L� � Zr�K�k��

l : Since
we have the inequalities r�K�k��W r < b, it contradicts to the existence of the
surjection p. So the claim is proved. &

Note that, by Lemma 3.1, we have the equality

c�L=K�k�� � d 0�L=K�k���Lcs \ K�k�ab : LK�k�cs�:
So, by the above claim, we obtain the inequality c�L=K�k�� > d 0�L=K�k��:Hence,CK�k�
is not surjective by Proposition 2.7. So the proof is ¢nished. &
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