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1. Introduction
In a previous paper (9), we introduced the spaces Fpt, of testing-functions

and the corresponding spaces F'p„ of generalised functions. For 1 ^ p :g oo,
Fp(= Fp 0) is the linear space of all complex-valued measurable functions <t>
denned on (0, oo) which are infinitely differentiable on (0, oo) and for which

xk —- eLP{0, oo) for each k = 0,1,2, .... In symbols,
dx

(1.1)

Fp is equipped with the topology generated by the semi-norms {?£}"= 0 where,
for <t> e Fp,

xkt

dxk
 p

= 0,1,2,.. .) (1.2)

(and || ||p denotes the usual L"(0, oo) norm). Then, for any complex number n,
and 1 g p ^ oo, we define Fpll by

. (1.3)

Fp M is equipped with the topology generated by the semi-norms {7?'"}™= 0 where,
fo r^eF p , , ,

y r " (« = 7K*"|l« (fc = 0 , l ,2 , ...) (1.4)

with y£ as in (1.2). Finally, F'Ptll is the linear space of continuous linear func-
tionals on FPill; it is equipped with the topology of weak (or pointwise) con-
vergence.

The spaces FPill and F'Pfl are amenable to the study of various operators of
fractional integration and, in (9), we investigated the mapping properties of
J"m and K%m, the Riemann-Liouville and Weyl fractional integrals respectively,
as well as the Erdelyi-Kober operators I%f and KJm". We also gave a simple
application to differential operators. In this paper, we are going to turn our
attention to integral operators.

We shall be concerned with four operators Ht(a, b; c; m) (1 = 1, 2, 3, 4)
E.M.S.—19/3—S
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typical of which is Ht{a, b; c; m), defined for Re c>0 and suitable functions <j>
by

H^a, b; c; m)flx) = f ^ P F(H, b; c; 1- ^\mtm-'4,{t)dt. (1.5)
Jo ' W \ t /

Here m>0 is real, a, b and c are complex and F(a, b; c; z) = 2Fi(a, b; c; z)
is the Gauss hypergeometric function. Form = 1, the operators Hi(a,b; c; m)
have been discussed at length for classical functions by Love in (5) and (6).
Love's results unified the work of many authors who had earlier treated parti-
cular cases; see (5) and (6) for references. Here we work with generalised
functions in F'pll rather than classical functions. With tools such as analytic
continuation available, it is not surprising that the restrictions on the parameters
involved are not so numerous as in Love's work. On the other hand, we end up
with a generalised solution which may or may not correspond to a classical
solution. However, we shall give one result to indicate how, in a particular
case, we can recover a classical solution.

In Section 2, we gather together a few facts about F(a, b; c; z) which we
require in the sequel. In Section 3, we develop the properties of Hl(a, b; c; m)
on Fpll by establishing a connection with the operators F^. Analytic con-
tinuation and results in (9) enable us to extend the definition of H±{a, b; c; m)
to values of c with Re c ^ 0 (although in this case we will no longer be able to
use the integral representation (1.5)). In Section 4, we introduce the other three
operators Ht(a, b\ c; m) (i = 2, 3, 4) on Fpll and obtain connections between
them. H3(a,b; c; m) and H4(a, b; c; m) are the adjoints of H2(a, b; c; m)
and Ht(a, b; c; m) respectively and moreover we find that

[H2(a, b; c; m)]"1 = JJ ,(-a , -b; -c; m)
a fact which does not emerge clearly in (5).

The use of adjoint operators enables us to define the operators
Ht(a, b; c; m) (i = 1, 2, 3, 4)

on F'p „ and in Section 5 we obtain their mapping properties as well as giving
formulae for the solution/of

Hi(a,b; c; m)f=g,
where g is a given generalised function. Finally, in Section 6, we compare and
contrast our results with those of Love and also discuss the problem of finding
classical solutions.

In the course of our travels, we establish on Fpfl and F'p<fL the second index
laws for the operators /*m and K%m\ if oc+fi+y = 0, then

are valid under appropriate conditions. These arise naturally in the discussions;
they have been discussed for classical functions by Love (7) and for a class of
generalised functions by Erdelyi (1).
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Throughout, we shall use the notation and terminology of (9). In particular,
we shall assume that m > 0, that 1 ̂  p ^ oo (unless the contrary is stated) and
thatp, q are connected by \jp + \jq = 1.

We shall denote Gauss' hypergeometric function by F{a, b; c; z). Thus for
complex numbers a, b and c with c ̂  0, — 1, —2, ..., and for | z \ < 1,

(2.1)
( ) n

where, for example,

(<0o = 1,

(a)n = a(a+ 1)...(a+ M-1) = T(a + ri)IT{a) (« ̂  1).

For brevity we shall write

F*(a,b; c; z) = F{a,b; c; z)/r(c).

Thus, for \z\ < 1 and for any complex numbers a, b and c

(2.2)

The restriction c # 0, — 1, —2, ... is no longer necessary since the reciprocal of
the gamma function is an entire function. F*(o, b; c; z) as defined by (2.2) is
an entire function of a, b and c, and an analytic function of z for | z | < 1.

We shall require values of F(a, b; c; z) for z on the negative real axis. We
therefore extend F*(a, b; c; z) to the half-plane Re z < \ using one of Kummer's
relations ((2), p. 105)

F\a,b; c; z) = (l-z)-°F* (a, c-b; (2.3)

using the principal branch of (1— z)~". The extended function is an entire
function of a, b and c, and an analytic function of z for Re z< \. Also, by (2.2)
and analytic continuation,

F*(a,b;c;z) = F*(b,a;c;z) (2.4)
for R e z < i .

To discuss the operator Hx(a, b; c; m) we require the following result.

Lemma 2.1. Let a, b and c be complex numbers and let 8 > 0. Then there
exists a constant M, independent ofv, such that, for 0<v<l, the four expressions

\F\a,b; c; l-l/OI.

i-F\a,b; c; l-
ob

i-F*(a,b\ c; l-l/tf)
da

dc
F*(a,b; c; 1-1/iT)

are all less than or equal to Mvmia(m *•«.»«*•«-'•

https://doi.org/10.1017/S0013091500015558 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500015558


268 ADAM C. McBRIDE

Proof. The proof of this result for m = 1 is given in (8). The general result
then follows easily.

3
We now proceed to the discussion of Hx{a, b; c; m) on Fpilt. We recall

that for R e c > 0 , m > 0 and suitable functions </), H^a, b; c; m)<t> is defined, for
0<x<oo, by

H^a.b; c; m)<£(x) = \ {xm-tmy-yF\a, b; c; l-xmltm)mtm-l<f>{t)dt. (3.1)
Jo

To begin with, we note

Lemma 3.1. LetRe c>0, — Re/j—m + l/p<mm (m Re a, m Re b), $ eFPtli.
Then

(i) the integral (3.1) for H^a, b; c; m)4>(x) exists and defines a continuous
function of x on (0, co),

(ii) for each fixed x e (0, oo), Ht(a, b; c; m)<j>[x) is an analytic function of the
{single) variables a, b, c in the regions —Re/i — m+llp<min(mRea,
m Re b) and Re c>0.

Proof. For x e (0, oo) we have, from (3.1),

H^a, b; c; m)<j)(x) = xmc \ {l-vmy-lF*(a, b; c; l-l/vm)mvm-1<j)(xv)dv.
Jo

(3.2)
By Lemma 2.1 above and Lemma 2.2 of (9), for any given d>0, there exists M
independent of v e (0, 1) such that

\{l-try-1F*(a, b; c; l-l/vm)mvm-l<l>(xv)\
< M ( l — P m ) R e C ~ 1 D m i n ("< Re a, m Re b)-lvm- l^xv\Re il- l/p

for v e (0, 1). Under the given conditions on the parameters, the right-hand side
of this inequality is an integrable function of v over (0, 1) provided 5 is chosen
sufficiently close to 0. Hence the integral on the right of (3.2) converges
uniformly on compact subsets of (0, oo) and (i) follows, (ii) follows similarly
using Lemma 2.1 since, under the given conditions, we may differentiate under
the integral sign in (3.2) with respect to a, b or c.

The main use of Lemma 3.1 is in resolving a minor technical detail below.
The information it gives turns out to be relatively little as we shall see later.

To obtain a full description of the mapping properties of H1 (a, b; c; m) on
FPtll we proceed to establish a connection with fractional integrals.

Lemma 3.2. Let

Re<x>0, Re)?>0, -Re fi-m + l/p<mm (m Re £, mRei;), 4>eFP,r

Then, for x>0,

S ' tt, P; « + )?; m)x" ' "^(x) . (3.3)
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Proof.

m y (xm-umy-lun"l+m-ldu— {um-
(a) Jo T(^) Jo

r (a
By Lemma 2.2 of (9), there is a constant M: \ <j>(t) | ^ MtKt "~1/p(0< f <oo).
It then follows easily that the repeated integral is absolutely convergent under
the given conditions on the parameters. By Fubini's Theorem we may justi-
fiably invert the order of integration to obtain

— my —mat rx

Jo Jr
Under the substitution w = (um-tm)l(xm-tm) the inner integral becomes

?; l-xm/n

using'EuIer's Integral, formula (10) on p. 59 of (2). Finally, therefore,

— »»; —ma
(xm-tm

Jo

-t], P; a + P; m)xm'-mV(x) as required.

This^completes the proof.

Corollary 3.3. Let

Rec>ReZ>>0, - R e /j.—m+llp<min {m Re a, mReb), <j>eFpll.

Then for x>0,
H^a, b; c; m)<j>{x) = r^hx-malb

xmxma4>{x). (3.4)

Proof. In Lemma 3.2, we take a = c—b, p = b, £, = rj + a—b, and replace
H and 0(x) by n-mrj+mb and x~m«+mb<i>(x). The conditions in Corollary 3.3
then imply that the conditions of Lemma 3.2 are satisfied so that (after a slight
rearrangement)

H^a, b; c; m)^{x) = xm^mc-mbF^-hIxt.
a-b'bx-m^mb<i>{x) (3.5)

for x> 0. The free parameter r\ disappears when we rewrite (3.5) in terms of the
inhomogeneous operators 1% and (3.4) follows almost immediately.

In (9), we extended the operators /J'm" and /*m on FPll using analytic con-
tinuation to values of a with Re a :g 0. The right-hand side of (3.4) therefore
has a meaning even if the condition Rec>Re6>0 is removed. We must
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however retain the restriction - R e ^ - m + l//)<mw (m Re a, mReb); for
details, we refer the reader to Section 3 of (9). We now use (3.4) to extend the
definition of H1 {a, b; c; m) on FPfl removing the restriction Re c>0.

Definition 3.4. For <j> e Fpil with — Re n —m+llp<min (m Re a, m Re b),
we define Hx{a, b; c; m)<p by

H^a, b; c; m)<p(x) = rx^
bx~malb

xmxma<p(x) (x>0).

Note. We must be a little careful here and check that this new definition
coincides with the original where both make sense, namely where the above
conditions are satisfied and Re c> 0. Certainly this is the case if Re c> Re b > 0
by Corollary 3.3. However, under the given conditions both sides are analytic
functions of b (using Lemma 3.1 for the left-hand side). The principle of
analytical continuation then gives the desired result for Re c>0.

With Definition 3.4 available, we can now use results in (9) to obtain the
mapping properties of Hl (a, b; c; m).

Theorem 3.5. If — Re n — m+\!p<min (m Re a, m Re b), Hv{a, b; c; m)
is a continuous linear mapping of FP)l into Fpfl+mc.

If, in addition, — Re \i—m +1 \p <min {m Re c, m Re (a+b)), H^(a,b; c; m)
is an isomorphism of'FPtlt onto FPill+mc and, for ty e FPili+mc,

[//,(«, b; c; m)] 'V(x) = x—J^fx-"/^^(x) . (3.6)

Notice that, in the above theorem, " isomorphism " is used in the sense of
Zemanian (10, p. 27).

Proof. Let <}> e Fp<ll. Then ^ " 0 e FPilt+ma (Theorem 2.6 (i) of (9)). Since
Re (ji+ma) + m> l/p, we can apply Theorem 3.6 of (9) with \i and <j> replaced
by n + ma and xma(t> respectively to deduce that Ib^,xn"'4>eFfill+ma+mb. Then

x ixmX <per p,p+mb

(Theorem 2.6 (i) of (9)). Finally, since Re (n+mb)+m>\jp, we can again
apply Theorem 3.6 of (9) with n and <p replaced by n+mb and x~maIxmxma<l>
respectively to obtain IxZ

bx~maIxn,x""'4> e FPII+mc. Further, the theorems quoted
above also show that H^a, b; c; m), being the composition of four continuous
linear mappings, is itself a continuous linear mapping of FPfl into FPlt+mc.
The second part of the theorem is proved similarly; the extra conditions are
needed to ensure the invertibility of Ixm and Ic

x~
b (see Theorem 3.6 of (9) again).

We note that it is also possible to prove the theorem by using (3.5) above instead
of Theorem 3.5 of (9).

One interesting consequence is

Corollary 3.6. If

xl/eFPtll+mc and —Ren—m + l/p<min (m Re a, mRe b, m Re c, mRe(a + b)),

then for x>0,

[Hx(a, b; c; m)]'V(x) = x'^H^-a^-c; -c; m)xm^(x). (3.7)
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Proof. This follows immediately from (3.6) and Definition 3.4; in the latter
a, b, c, n and <j>(x) have to be replaced by -a, b-c, —c, ti+ma+mc and
xma(j>(x) respectively.

Next we remark that if $ e Fp>,, and - Re \i - m +1 jp < min (m Re a, m Re b),
then

H^a, b; c; m)<£ = H^b, a; c; m)4>. (3.8)

Indeed, this follows for Re c>0 from (2.4) and (3.1) and then in general by
analytic continuation. It is hardly surprising that the restrictions on the para-
meters are symmetric in a and b. However, the right-hand side in Definition 3.4
is not symmetric in a and b. We exploit this lack of symmetry to establish the
second index law for the operators I*m on the spaces FPI1. There are various
ways of stating this of which we choose the following (see (3.13) of (9)).

Theorem 3.7. If<x + P + y = 0 and if<f>eFpil where

— Re/i —ffj + l//»<min (0, m Re y)
then, for x>0,

xm a/^xm^(x) = I^x - % " ^ ( x ) . (3.9)

Proof. Under the given conditions we apply (3.8) with a, b, c, n and <j>(x)
replaced by - a , /}, /?, fi—mp and x~mP<j>{x) respectively. To do this we need

— Re (/i — m/J) — m + l/p<min ( — m Re a, m Re /?)
or

- R e j i -m + 1/jxmin ( - m Re (a+0), 0) = min (m Re y, 0)

and this is the case by hypothesis. Hence (3.8) gives

Hi t - a , P; P; rnXx""^) = Ht(P, - a ; 0; m)(X-^<j>).

Using Definition 3.4 then gives

l^x^I^x-^x-^^ = I^'x-mPI^xmpx-mfi(l>. (3.10)

Theorem 3.6 shows that under the given circumstances, <j>eFpll implies that
pl p

l,il, and, in addition, I°m is the identity operator on FPtll.
Hence, putting y = — a—p in (3.10) gives (3.9) as required.

4
We now introduce three more integral operators related to H^a, b; c; m).

For any complex numbers a and b, R e c > 0 ( w > 0 as usual) and suitable
functions <j>, we define H2(a, b; c; m)<j> by

H2(a,b; c; m)^(x) = f* (x"-l-)e-1F*(a, b; c; l - r / x " ) m « — V W , (4.1)
Jo

where x>0. Proceeding as in (5, p. 195), we deduce that, for x>0,

H2(a, b; c; m)<j>(x) = xm°Hx{a, c-b; c; m)x-"Ifl^(x) (4.2)
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whenever either side exists. In particular, if we apply Theorem 3.5 with b, \i
and <j>(x) replaced by c- b, fi — ma and x~ma<f>(x) respectively we find that

<l>eFPyll=>H2(a,b; c; m)4>eFPill+mc

provided that — Re (ji —ma) — m + l/p<min (m Re a, m Re (c—b)) and Re c>0.
However, the right-hand side of (4.2) is meaningful even without the restriction
R e o O . We can therefore use (4.2) to extend the definition of H2(a, b; c; m)
on FPwll.

Definition 4.1. For0 eFPiflv/ith -Re/i—m+l/p<min (0,m Re(c-a-6))>
we define H2(a, b; c; ni)(j> by

H2{a,b; c; m)<j>(x) = xTH^a, c-b; c; m)x-ma<j>(x) (x>0).

In view of the preceding remarks, the definition is meaningful and agrees with
(4.1) when, in addition, R e o O .

Using Theorem 3.5, we can easily prove

Theorem 4.2. If — Re /x — m +1 \p<min (0, mRe(c-a—b)), then

H2(a, b; c; m)

is a continuous linear mapping ofFpl, into Fpil+mc and, for <f> e FPtll,

H2(a,b;c;m)<t>(x) = xm°Ib
xmx-m°r^»cj>(x) (x>0). (4.3)

If, in addition,
— Ren—m+llp<min (m Re (c—a), m Re (c-b)),

then H2(a, b; c; m) is an isomorphism of FPll onto FPtll+mc"and, for any
\j/ e FPt)l+mc, the equation

H2(a, b; c; m)<f> = if, (4.4)

has a unique solution <t> e Fpit given by

4>(x) = Ib
xZ.cxmaI^x-maxj)(x) (x>0). (4.5)

This leads to

Corollary 4.3. Let

— Re n—m+llp<min (0, m Re (c-a—b), m Re (c—a), mRe(c-b)), <f> e FPfl

andil/eFp>ll+mc. Then

H2(a,b; c; m)<j> = \j/o<j> = Hx(-a, -b; -c; m)ip.

Proof. Since by hypothesis,

— Re (n + mc) — m + llp

<min(mRe(-c), m R e ( - a - i ) , mRe(-a), mRe(-b)),
we can apply Definition 3.4 with a, b, c, // and'<£(*) replaced by -a, —b, —c,
H + mc and \//(x) respectively to obtain

Ht(-a, -b; -c; m)^(x) = IxZ
cxmai;bx-my(x) (x>0).

The result follows at once from Theoremj^and in particular (4.5).
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Our other two operators are the adjoints of H^a, b; c; m) and H2(a, b; c; m}
and reduce in the case m = 1 to those studied by Love in (6). For complex
numbers a and b, Re c>0 and suitable functions $, we define H3(a, b; c; m)<j>
and HA{a, b; c; m)(t> on (0, oo) by

H3(a, b; c; m)4>(x) = mx"-1 [ ( i " - * " ) ' " 1 ^ * , b; c; l-xmm<l>(t)dt (4.6)
J X

//4(a, b; c; m)<t>(x) = mxm~l {tm-xmy-lF*(a, b; c; \-tmjxm)^t)dt. (4.7)
J X

As we might expect, it is possible to express these operators in terms of operators
of the form XJ'm* or K%m. Indeed, proceeding as in Lemma 3.2, we find that for
x>0,

-n, a; a+jS; fn)*-"4-" ' -""*"-1^) (4.8)

provided Rea>0, Re)8>0, <t>^Fpll and Re^-l /p<min (m Re ^, mRei;).
It follows, as before, that

H3(a, b; c; m)</>(x)
y. — mrj~ma — mb + mc + m— 1 jsa + b — c + n, c — bjs-Ji, bYmtj + ma + mb — m + J J , / V O

or
H3(a, b; c; m)<j>(x) = / " ' X ^ j - ' X ^ t " - " * 1 ^ ) (4.9)

provided

Rec>Rei>0 , 4>eFplt and Re /i—w + l/^<min ( -m Re c, — mRe(a + 6)).

As before, we can use (4.9) to extend the definition of H3(a, b; c; m) on Fplt

removing the restriction Rec>Rei>0 .

Definition 4.4. For <j> e FPtll and

Re n — m+ l/<7<min ( — m Re c, —m Re (a + b)),

define H3(a, b; c; «J)0 by

H3(a, b; c; m)(j>(x) = f - ' ^ ' x " " ^ . ! " - " 1 " ^ ) (x>0).

By analytic continuation, this definition coincides with (4.6) when in addition
Re c>0. Using the mapping properties of K^ or K£m derived in Theorems 3.7
and 3.8 of (9), we immediately obtain

Theorem 4.5. If

Re/i—/n + l/<7<min (—m Re c, — m Re (a+6)), ^3(a, 6; c; w)

is a continuous linear mapping ofFPtll into FPitl+mc. If, in addition,

Re fi—m + llq<min (-m Re o, —mReb),H3(a,b; c; m)

is an isomorphism ofFPifl onto FPill+mc and, for any $ e FPi)t+mc, the equation

H3(a,b; c; m)<l> = ij/ (4.10)
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has a unique solution <l> e FPtfl given by

^(x) = x-ma+m-1JC-m*xm°X^cx-m+VW (x>0). (4.11)
As regards HA(a, b; c; m), we may use (4.6) and (4.7) and proceed as in ((6),

pp. 1073-4) to show that for Re c>0,

H^a, b; c; m)<j>(x) = xm°H3(a, c-b; c; m)X-ma4>(x) (4.12)

whenever either side exists. In particular, from Theorem 4.5, (4.12) is valid if
<j)eFPwll, Ren-m + llq<min(mRe(a-c), mRe(b-c)) and ReoO. The
right-hand side is meaningful even without the restriction Re c>0 and we can
use (4.12) to extend the definition of HA(a, b; c; m) on FPilt.

Definition 4.6. For 4>e FPill and

Re ii—m+ l/<7<min (m Re (a—c), m Re (b — c)),

define H4(a, b; c; m)<l> on (0, oo) by

H4(a, b; c; m)(j>(x) = xm°H3(a, c-b; c; m)x-ma<t>(x).

The definition agrees with (4.7) when also Re c>0.
Using Definition 4.4 and Theorem 4.5 we obtain

Theorem 4.7. If

Re fi — m+ l/<7<min (m Re (a—c), m Re (b — c)), H4(a, b; c; m)

is a continuous linear mapping ofFpll into Fpll+mc and, for <j> e FPtll,

H4(a, b; c; m)(j)(x) = xma+m-1Kb
xmx-maKc

x^
bx-m+1

<j>(x) (x>0). (4.13)

If, in addition, Re fi—m + l/#<min(0, m Re (a+b—c)), HA(a,b; c; m) is an
isomorphism ofFpfl onto FPifl+mc and, for any ip e Fp<ll+mc, the equation

H4(a, b; c; m)^ = i// (4.14)

has a unique solution <j> e Fpfl given by

^(x) = xm-12C^cxmflJi:;7m
6x-m'I-m+VW (x>0). (4.15)

Comparing (4.15) with Definition 4.4 produces the following analogue of
Corollary 4.3.

Corollary 4.8. Let

Re ix-m + \/q<mm (0, m Re (a+b-c), m Re (a-c), m Re (b-c)), <j> e FPtll

and\l/eFPill+mc. Then

HA(a,b; c; m)4> = \jj<>4> = H3(-a, -b; - c ; m)\}i.

To conclude this section, we state the second index law for the operators K%m

analogous to Theorem 3.7.

Theorem 4.9. If<x + p+y = Oandif<j>eFPill where

Re fi — l//?<min (0, m Re y),
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then, for x>0,
xm*Kfi

xmxm*<f>(x) = K^x-^K^ix). (4.16)

This can be proved by observing that under appropriate conditions

HA(a, b; c; m)<f> = HA(b, a; c; m)4> (4.17)

and proceeding as in Theorem 3.7 making use of Theorem 3.8 of (9).

5
We are now going to discuss the operators H^a, b; c; m) (/ = 1, 2, 3, 4)

relative to the spaces F'Pf „.
We consider first Hx (a, b; c; m) and to motivate our definition we deal with

regular functionals. We require the following

Definition 5.1. For each complex number fi and 1 ^ p ^ oo, we define L"
by

We can turn L£ into a Banach space by introducing the norm || ||p M defined
by

\\f\\P,t,= \\x-"f(x)\\p (/eLJ)

where || ||p denotes the usual norm on L"(0, oo).
If /eLJ and R e o O we can define Hx(a, b; c; /M)/using (1.5), with <£

replaced by / , under appropriate conditions on a, b and p. Indeed we can
prove

Lemma 5.2. If

R e o O and — Re/ i -w + l/p<min {m Re a, mReb), Hx{a, b; c; m)

(as given by (1.5)) is a continuous linear mapping ofL* into L*+mc.

Proof. Using (1.5) and putting t = xv we have (see (3.2)) for x>0,

= xmc \ ' ( l - u T " 1 ^ * ^ , b; c; l-
Jo

Ht(a,b; c; m)f(x) = xmc \(l-uT"1^*^, b; c; l-l/vm)mvm-1f(xv)dv.
Jo

For simplicity write d = min (m Re a, m Re b) and choose 5 > 0 such that
— Re n—m + \lp<d—5. Applying Lemma 2.1, there exists a constant M such
that
| x- '—'/J^a, b; c; m)f(x) \

^ M P (l-»")Ree~ V - ' + ^ W - 1 1 (xv)-»f(xv) \dv
Jo

)- Rec(| x""/(x) |)

(see (3.3) of (9)) = g(x) say. Then

| x-'—'HAa, b; c; m)/(x) | ^ g(x). (5.1)
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Now since (d—5 + Re fi) + m>l/p, we can apply an extension of a result of
Kober (4, Theorem 2 (i)) to deduce that, since | x'Jipc) | e L"(0, oo), g e L"(0, oo)
and there is a constant K independent of/such that

\\gix)\\p^K\\x-"f{x)\\p. (5.2)

Kober's result deals with the case m = 1, \i = 0. The general case follows
easily by a simple change of variable; compare Lemma 3.1 of (9). Now (5.1),
(5.2) give

|| x-*-»'tf^a, b; c; m)f(x) \\p £ K|| *-*/(*) ||p

=>||ff !(«,*; c; m)f(x) \\Pill+mc g K\\f(x) ||Pf/J

and the result follows.
Now let /eL%. Then/generates a regular functional, r/say, in the space

F'p p according to the formula

Jo
(5.3)

the integral on the right being absolutely convergent by Holder's inequality.
If Re c>0 and Re (i—m+ l/#<min (m Re a, m Re b), Lemma 5.2 shows that
Ht(a, b; c; m)f exists and belongs to L%+mc. Hence H^a, b; c; m)f
generates a regular functional xEx{a, b; c; m)feF'Pill.mc according to the
formula

^a, b; c; m)f, <fr) = \ H^a, b; c; m)f{x)4>(x)dx ((j>eFPtll_mc). (5.4)
Jo

It seems reasonable that we should define H^a, b; c; m) on the space F'Plt in
such a way that if the above conditions are satisfied,

H^a, b; c; m)xf=xHl{a, b; c; m)f. (5.5)

Note. No confusion should arise from using the same symbol/^ (a, b; c; m)
for the operator on F'PtfL as well as the operator on Fpll.

(5.5) implies that if Re c>0, Re n—m + l/q<min (mRea, mReb),
H^a, b; c; m) maps regular functional in F'pil into regular functionals in
F'p,p-mc- Further if ̂  e Fp,M_mc, we have

{ff,(fl, b; c; m)r/, </>) = (xH^a, b; c; m)f, <f>) by (5.5)

f00

H^a, b; c; m)f(x)4>(x)dx by (5.4)

Jo

= f" (('{xr-ne~lF*(a, b; c; l-x-/<")'w<""1/(0*] <S>(x)dx by (1.5)
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f {xm-tm)c-1F\a, b; c; l-xmltm)<j>(x)dx\dt

= [°f(t)HA{a, b;c; m)tff)dt by (4.7)
Jo

or, using (5.3),
{H,{a, b;c; m)xf, <j>) = ( T / , H 4 ( a , b; c; m)<t>). (5.6)

The inversion of the order of integration above is justified since the
integrals involved are absolutely convergent by Lemma 5.2, Theorem 4.7 and
Holder's inequality. The derivation of (5.6) required Re c>0 in order that we
could use (1.5) to obtain Hx(a, b; c; m)f. If Re c g 0, the integral in (1.5)
will not exist for an arbitrary element/eLlM, nor can we use a formula such as
Definition 3.4 unless / ha s some additional differentiability. Nevertheless, by
Theorem 4.7, the right-hand side of (5.6) is still meaningful provided only
(j>eFplt-mc and Re (i—m + llq<min (m Re a, mReb). We can even go
further and replace r/by any functional in F'Ptll, regular or not. Hence we are
led to the following definition.

Definition 5.3. For feF'pll and Re n—m + \jq<mm (m Re a, m Re b), we
define H^a, b; c; w)/as the member of F'pii-mc such that

{H^a, b; c; m)f, <j>) = ( / , H 4 (a , b; c; m)4>) (<!>eFPill_mc).

Remark 5.4. No confusion should arise from the use of " / " to denote an
arbitrary generalised function as well as a classical function generating the
regular functional xf. Indeed it is often convenient to identify a classical function
with the functional it generates, although we shall not do so in this paper.

Since Theorem 4.7 details the mapping properties of HJfi, b; c; m) on the
spaces FPill, we can use standard theorems on adjoints (e.g. Theorems 1.10-1
and 1.10-2 in (10)) to obtain properties of H^a, b; c; m) on the spaces F'Ptll.

Theorem 5.5. If Re n-m + l/#<min (m Re a, m Re b), Hx(a, b; c; m) is a
continuous linear mapping ofF'pll into F'Ptll.mc and,forfeF'pil,

H^a, b; c; m) /= Ic^"x-m°Ib
xmxm°f. (5.7)

If, in addition, Re n-m+ l/#<min (m Re c, m Re (a+b)), H^a, b; c; m) is an
isomorphism ofF'pii onto F'p>fl-mc and, for any geF'Ptfl-mc, the equation

H^a,b; c;m)f=g (5.8)

has a unique solution feF'Pill given by

f=x-maI^xmaIb
xZ

cg. (5.9)

Proof. By Theorem 4.7, H^(a, b; c; m) is a continuous linear mapping of
Fp,p-mc i n t o Fp.n under the given conditions; the first statement follows from
Theorem 1.10-1*of (10). To establish (5.7), \ttfeF'Ptll, <f>eFp>ll_mc.
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Then

(H^a, b; c; m)f, $) = (/, H^a, b; c; m)<j>) by Definition 5.3

= (/, xma+m-1Kb
xmx-m°Kc

xZ"x-m+l4) by (4.13)

= (xm'f, xm-1Kxmx-m+1x-maxn-1Kc
xZ

bx-m+1<l>) by (2.13) of (9)

= (Ib
mxmaf, x-maxm-1KxZ"x-m+1(t>) by (3.29) of (9)

= (x-malb
xmxmaf, xm~ 1X^-*x-m +V) by (2.13) of (9)

= (IxZ
bx-maIxmxmaf, </>) by (3.29) of (9)

from which (5.7) follows. The two applications of (3.29) of (9) above are valid
under the given conditions. The remainder of Theorem 5.5 can be proved
similarly.

If we compare Theorems 3.5 and 5.5, we see that the restrictions on the
parameters in one are obtained from those in the other by interchanging/? and q,
H and —fi. This continues the trend we first mentioned after Theorem 3.9 of
(9).

We can handle the other operators similarly. We mention the salient facts
and omit proofs.

Consideration of regular functionals leads as before to
Definition 5.6. ForfeF'p<ll, we define H^a, b; c; m)f(i = 2, 3, 4) to be the

elements ofF'Ptll-mc such that, for all <j> e FPtll-mc,

(H2(q, b; c; m)f, <f>) = (/, H3(a, b; c; m)(j>) (5.10)

(H3(fl, b; c; m)f, 0) = (/, H2(a, b; c; m)<j>) (5.11)

(H4(o, b; c; m)f, <j>) = (/, H^a, b; c; m)<j>) (5.12)
(whenever the right-hand sides are meaningful).

Theorem 5.7. If Re n~m+ l/?<min (0, m Re (c — a—b)), H2(a, b; c; m) is
a continuous linear mapping ofF'Pfll into F'Pill.me and,forfeF'pft,

H2(a, b; c; m)f = x " - / ^ - " " / £ » / . (5.13)

If, in addition, Re \i — m + l/#<min (m Re (c— a), m Re (c-b)), H2(a, b; c; m)
is an isomorphism ofF'pll onto F'Ptll-mc and, for each geF'Pilt-mc, the equation

H2{a,b; c;m)f=g (5.14)

has a unique solution feF'Ptll given by

f=H1(-a, -b; -c; m)g =lb
xZ

cxn°i;bx-mag. (5.15)

Theorem 5.8. If

— Re/i—m+l/p<min (—m Re c, —m~Rs(a+b)),H3(a,b; c; m)

is a continuous linear mapping ofF'plt into F'pil_mc and,forfeF'pll,

H3(a,b; c; m ) / = xm-1KxZ
bx-maKxmxma-m+1f. (5.16)
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If, in addition, — Re n~m + l//?<min ( - m R e a , —mRe b), H3(a, b; c; m) is
an isomorphism ofF'pil onto F'Ptll.mc and, for each geF'Ptll.mc, the equation

H3(a,b;c;m)f=g (5.17)

has a unique solution feF'pil given by
„ — mo + m- l v — b^mav-b — c-. — m+1- (e 1 o\

= X KxmX A.xm X g. P-l<\)
Theorem 5.9. If

— Re ft—m + ljp<min (m Re (a—c), m Re (b — c)), H4(a, b; c; m)

is a continuous linear mapping ofF'pil into F'Ptli-mc and,forfeF'pil,

H4(a, b; c; m) /= xma+m-1Kb
x»,x-maKc

xZ
bx-m+if. (5.19)

If, in addition, —Re \x—m + l//?<min (0, m Re (a+b — c)), HJfl, b; c; m) is an
isomorphism ofF'pft onto F'Ptll.mc and, for each geF'pfl_mc, the equation

H4(a,b; c; m)f=g (5.20)

has a unique solution feF'Ptfl given by

J = H3( — a, —o, —c, m)g = x Kxm x Kxmx g. (J-il)

Finally, we state the second index laws for I%m and K"m on F'Pi „.

Theorem 5.10. Let feF'Pill and a+P+y = 0.

(i) J/Re^—m + l/g<min (0, mRey), then

xmxlxmxmyf= i;jX-mfiIxm
xf. (5.22)

(ii) / / —Refi — l/q <min (0, m Re y), then

xmyKp
xmxmxf = K^x-mpK;jf. (5.23)

The basis ofTheorem 5.10 is the symmetry of the H,(a,b; c; /n)/between a and 6
which is inherited from the symmetry oiH^a, b; c; m)<j> as exemplified by (3.8)
and (4.17).

In this section we compare and contrast our results with those of Love in (5)
and (6). Since Love's results are stated for m = 1, we shall also take m = 1
in the remainder of the paper. Corresponding results for general m are easily
obtained by simple changes of variables.

As usual we shall focus attention on Hy(a, b; c; 1). We shall have occasion
to consider H^a, b; c; 1)/where/is either a classical function or a generalised
function. I f / i s a classical function (for example in LJ) we must assume that
Re c>0 and define H^a, b; c; l ) /by (1.5) with <f> replaced by/and m = 1;
that is

H^a,b; c; l)/(x) = \\x-i)c-lF*{a,b; c; l-x/t)f(t)dt (x>0) (6.1)
Jo

with appropriate conditions on a and b to guarantee the existence of the integral.
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If / i s a generalised function, we define Hx{a, b; c; l)/by Definition 5.3 and
use (5.7), with m = 1.

Working with certain classes of locally integrable classical functions (defined
below), Love has to impose considerable restrictions on the parameters and
proofs are different for different ranges of the parameters. On the other hand,
in our results for generalised functions, the restrictions are less numerous and
there is no need to split up proofs into different cases. This is hardly surprising
when we consider the powerful tools, such as analytic continuation, which are
available for generalised functions but not for locally integrable functions.

In (5), Love gives six solution formulae, valid under appropriate sets of
conditions (the sets not being disjoint) for the equation

H1(a,b;c;l)f=g, (6.2)

where / , g are classical functions satisfying an appropriate local integrability
condition. Three of these formulae are

/(*) = x~°i; V / * - <g(x) (6.3)

/(*) = x~blb
x-

cxe~ai; bxa+b-cg(x) (6.4)

/(*) = x-°£-n{x°U2(-a, n-b; n-c; l)g(x)} (6.5)

(where n is a positive integer, n— Re c>0 and H2(—a, n—b; n—c; \)g{x) is
defined using the analogue of (4.1) with m = 1). The other three are obtained
by interchanging a and b and using the fact that

H^a; c; l) /=H1(a,fc; c; 1)/
(compare (3.8)).

As a contrast, we consider (6.2) where/, g are generalised functions and
suppose that the conditions of Theorem 5.5 are satisfied with m = 1, i.e.

Re j i - l /p<min(Rea , Re b, Re c, Re (a + b)), geF'Pifl_c.

Theorem 5.5 ensures that the right-hand side of (6.3) is the unique solution in
F'Pt „. However, (6.4) and (6.5) are also valid under the same conditions and are
merely alternative ways of writing (6.3). Indeed, if we apply Theorem 5.10 (i)
with a, P, y, \i and /replaced by c—a, —b,a+b—c,(i — c and g (which is per-
missible under the given conditions)

= x-bi;axblx-
cg using (3.31) of (9);

we have (6.3) with a and b interchanged. As regards (6.5), suppose n is a non-
negative integer; then we may apply Theorem 5.7 with a, b, c, /x and/replaced
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by —a, n—b, n — c, \i — c and g to deduce that

d"
x " — {x"H2(-a, n-b; n-c; l)g

dx"

A"

~dx~"

= x-°i;nrx-
bx°Ib

x-
cg (compare (3.10) of (9))

= x—/"bxalb
x-cg using (3.31) of (9)

and we have (6.3) again.
We now indicate how our results involving generalised functions can be

u sed to obtain results concerning classical solutions of (6.2); thus given g(x)
d efined for x e (0, oo) we try to find f(x) such that

J>- b; c; l-xlQf(t)dt = g(x), (6.6)

where equality is to hold almost everywhere on (0, oo). (Here R e o O as
indicated earlier.) We shall identify functions differing only on a set of measure
zero on (0, oo). In (5), Love discusses (6.6) relative to spaces Qr. (We use r
rather than q to avoid confusion with 1/p+l/q = 1.) By definition, for each
real r,

Qr = {f- xrf(x)eL\0, X) for each Xe(0, oo)}. (6.7)

We shall discuss (6.6) relative to the spaces L£ (see Definition 5.1). Given/eL£,
we again denote by r / the element of F^ _M defined by (5.3). We can regard

/ - > t / a s an imbedding of Ljj into F'q< _„. We shall use T to denote any such
imbedding and will not show the dependence on/>, /i explicitly; this should not
cause confusion.

It is natural to try to compare the spaces Qr and L£. Since local integrability
does not imply integrability over (0, oo), there is no hope of any inclusion of the
form QrczL%. However, in the other direction we have

Lemma 6.1. L^cQ, provided —Repi—l/qKr.

rx
Proof. Let /eL£ so that | x~»f(x) \"dx<oo for any Xe(0, oo). Then,

Jo
by Holder's inequality, if 1 <p<oo,

rx rx
I xrf(x) | dx = xr+Re" | x *f(x) | dx

Jo Jo
f rx -)i/« (rx -)i/P

since ( r+Re n)q> — 1 by hypothesis. The proof is similar if p = 1 or oo. The
result follows.

E.M.S.—19/3—T
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We know from Lemma 5.2 that if (6.6) is to have a solution/in L£, g must
belong to L£+c. We could regard this as a very rough analogue of Theorem 7,
p. 185 of (5); however, our condition on g is an integrability condition whereas
Love's condition, namely I~cgeQr, is more a differentiability condition. We
can prove theorems corresponding to other results in (5). For example, compare
(5, Corollary 1, p. 179) and

Theorem 6.2. IfgeL£+c where

- R e ii- l/#<min (Re a, Re b, Re c, Re(a+b)) and Re c>0,

(6.6) has at most one solution fe L%.

Proof. It is instructive to give two proofs.

(i) Choose r such that —Re \i— \\q<r<vam (Rea, Re b, Re c, Re(a+b)).
Then also —Re (ji + c)— l/q<r<min (Re a, Re b, Re c, Re (a+b)) since
Rec>0. Thus geL£+c=>geQr by Lemma 6.1. By Corollary 1 on p. 179 of (5),
(6.6) has at most one solution fe Qr. However, under the given conditions,
L£c:Qr by Lemma 6.1 again; the result follows.

(ii) g generates a regular functional rgeF'q_ _„_<. via (5.3). Thus applying z
to (6.6) gives

xHt{a, b; c; \)f=xg (6.8)

in F'q, _„_<.. Also any solution / i n L£ of (6.6) generates xfeF'qi _„ and under
the given conditions, (5.5) is valid and gives

tH^a, b; c; 1)/= H^a, b; c; l)rf. (6.9)

On the left-hand side H^a, b; c; 1) is defined via (6.6) while on the right-hand
side we use Definition 5.3. From (6.8) and (6.9) we seek/eLjj satisfying

H^a, b; c; l)rj=rg. (6.10)

Now, under the given conditions, we may apply Theorem 5.5 with/?, n replaced
by q and — n to deduce that the equation

H^a,b\ c; l)h = rg (6.11)

has a unique solution h eF'q> _„ given by

h = x-"i;bxalb
x-

cxg. (6.12)

Thus (6.6) will have either no solution in L£ or exactly one solution in Ljj (since
we are identifying functions which differ only on a set of measure zero), depen-
ding on whether there exists/e L£ such that h = xf, that is, depending on whether
h, as given by (6.12), is a regular functional.

We might call h, as given by (6.12), a generalised solution of (6.6). The
second proof of Theorem 6.2 has therefore established
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Corollary 6.3. IfgeL%+c with

- R e n-llq<min (Re a, Re b, Re c, Re (a+b)) and Re c>0,

(6.6) has a unique generalised solution in F'q- _„ given by

h = x-ai;bx"Ix-
cTg.

If we are interested in classical rather than generalised solutions we must put
further restrictions on our parameters and on g. We then obtain results analo-
gous to Theorems 8-12 in (5). Selecting just one at random, we shall prove an
analogue of Theorem 11. Our proof requires the following lemma.

Lemma 6.4. Let fe L£.
(i) For any complex numbers n and t],

zx"f=x"rf. (6.13)

(ii) If Re oc>0 and Re /i> -\\q,

zl%f=Ixxf. (6.14)

Proof. We prove (ii); (i) can be proved similarly using (2.13) of (9).

Since Re a >0 and Re n > — l/q, Ixf is defined by

I'J(x)= f*(* I,0!"'/(*)<*' (x>0). (6.15)
Jo r(«)

Under the given conditions we may apply Theorem 2.1 (i) of (4) (with fix), £
replaced by x~"f{x) and n) to deduce that IxfeL£+a so that zl'JeF'q< _jl_I. On
the other hand,/eLJ=>T/GF^_,, and we may apply Theorem 3.11 (with p, n
replaced by q, —fi) to deduce that IxifeF'qr _ll_a also. (Here /* is interpreted
in the sense of (3.29) of (9)). Thus both sides of (6.14) exist and belong to
F'q _„_„. To prove equality let $ e Fq_ll_x. Then

{I'xxf, #) = (T / , K%<t>) by (3.29) of (9)

= ['°f(x)Kx<Kx)dx by (5.3)

-jxr (j>(t)dt) dx
r(a) )

^r^-f{x)dx

= t" l'J(x)<Kx)dx by (6.15)
Jo

=>(/"*/, ^) = ( ^ / , 0 ) by (5.3).
The inversion of the order of integration in the fourth line above is justified since
the repeated integrals involved are both absolutely convergent by Holder's in-
equality. This completes the proof.
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We can now prove

Theorem 6.5. If Re b< 0, Re c> 0, - Re (ji+b) -1/?< min (0, Re a) and
Ib

x~
cgeL%+b (that is, there exists GeL£+b such that g = rx~

bG), then (6.6) has a
unique solution fe L% given by

f(x) = JC- ' JJ VG(*).

Proof. Under the given conditions, we certainly have Re c>0 and also
- Re n -1 \q < min (Re a, Re b, Re c, Re (a+b)). Further, since Re (c - b) > 0
we may apply Theorem 2.1 (i) of (4) (with/(x), ( and a replaced by x~"~bG(x),
H+b andc—b) to prove that Ge LJ+,, =*-<7eL£+c. Hence, by Corollary 6.3, (6.6)
has a unique generalised solution heF'qi _„ given by

fc = x~"I- bxalx-
c-:g

= x~alx-
bxaIb

x-
clx-

bxG by (6.14)

= x-"I-bxaxG using Theorem 3.11(i) of (9)

= x~ai;bxx"G by (6.13)

= X - " T / ; V G . by (6.14)

Thus, by (6.13) we have
h = T X - ' / ; V C . (6.16)

The first application of (6.14) above is valid since Re (c—6)>0 and

Re (jx + b)> -l/q

and the second is valid since Re(—b)>0 and Re (j.i+b+a)> — \\q. From
(6.16) we have h = if where

/=x"7;Vc.
By examining the Proof of Theorem 6.2, we see that/eL£ is a solution of

(6.6) and since t is a 1-1 mapping of L£ into F'9t _„, uniqueness of h gives unique-
ness of/. The result follows.

Here we mention that in (6), Love discusses the operators H3(a, b; c; l)and
H4(a, b; c; 1) relative to the spaces Rr; for each real r

Rr = {f: xrf(x)eLl(X, oo) for each X>0}.

(Compare with (6.7).) Analogously to Lemma 6.1 we find that L?czRr provided
that Refi + l/q<— r. We can then proceed as above to prove theorems on
classical solutions analogous to those in (6). Details are similar to those above
and are omitted.

Lemma 5.2 showed that the integrability condition geL*+c was necessary
for (6.6) to have a solution/e L£. On the other hand, the condition Ib

x~
cg e L*+b

in Theorem 6.5 states that# has a fractional derivative of order c—b (belonging
to L%+b). This is characteristic in the sense that any sufficient condition for a
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classical solution (in L£) of (6.6) (or the corresponding equations for the other
operators) seems to require of g a certain degree of differentiability. For further
discussions in this direction we refer the reader to Higgins (3).

In conclusion, we remark that results for special cases such as Jacobi poly-
nomials and Legendre functions can be obtained by the appropriate choices of
a, b, c and m.
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