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Capsules are widely used in bioengineering, chemical engineering and industry.
The development of drug delivery systems using deformable capsules is progressing,
yet the regulation of drug release within a capsule remains a challenge. Meanwhile,
a microswimmer enclosed in a capsule can generate a large lubrication force on the
capsule membrane, which could result in deformation and mechanical damage to the
membrane. In this study, we numerically investigate how a capsule can be damaged by an
enclosed microswimmer. The capsule membrane is modelled as a two-dimensional neo-
Hookean material, with its deformability parametrised by capillary number. An isotropic
brittle damage model is applied to express membrane rupture, with the Lighthill-Blake
squirmer serving as the microswimmer model. In a sufficiently small capillary number
regime, pusher-type squirmers exhibit stable swimming along the capsule membrane,
while neutral-type and puller-type squirmers exhibit swimming towards the membrane
and remain stationary. As capillary number increases, the damage to the membrane
increases and rupture occurs in all swimming modes. For pusher-type squirmers, the
critical capillary number leading to rupture is dependent on the initial incidence angle,
whereas neutral-type and puller-type squirmers are independent of the initial value.
Furthermore, we present methods for controlling membrane damage by magnetically
orienting the microswimmer. The findings reveal that a static magnetic field can orient the
microswimmer, leading to membrane damage and rupture even for a capsule that cannot be
damaged by free swimming, while controlling the swimming path with a rotating magnetic
field enables soft membranes to maintain deformation without rupture.
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1. Introduction

Capsules are droplets enclosed by a thin elastic membrane and are found in various
situations, such as red blood cells and fish eggs in nature, cosmetics and agricultural
products in industrial processes. They are therefore widely used in fields such as
bioengineering and chemical engineering. In the agricultural field, Friedman & Mualem
(1994) conducted a study on the diffusion of fertilisers into soil from capsules. They
investigated the influence of membrane conductance and capsule density on the fertiliser
release rate, and managed to achieve the desired release rate using their proposed model. In
the field of biomedical engineering, encapsulation techniques have been used for targeted
drug delivery (Shi & Tan 2002; Skirtach et al. 2008; Bhujbal, de Vos & Niclou 2014;
Kamat et al. 2024), and controlled release of the drug in capsules has become an important
issue. To consider this issue, controlled release of certain substances has been achieved
by varying the permeability of the capsule membrane. For example, Kamat ez al. (2024)
changed the ratio of complexing chitosan and calcium-alginate in the capsule membrane,
and controlled the release rate of NaFeCN within the mortar. Skirtach et al. (2008)
made aggregates of gold nanoparticles in polyelectrolyte shells, and changed the capsule
permeability by near-infrared illumination. Bhujbal et al. (2014) used liposomes to contain
active cytotoxic compounds, and managed to release those compounds in the long term to
treat brain tumours. They changed the ratio of phospholipid and cholesterol in liposomes
to obtain different release rates. Shi & Tan (2002) conducted research on encapsulating
vitamin D, within a capsule made of chitosan. They found that the capsule can achieve
sustained release in the intestine juice and delayed release in the gastric environment
by changing the molecular weight and concentration of chitosan. Despite the advent of
sophisticated control techniques for membrane permeability by employing light irradiation
and chemical concentration fields, viscous forces also play an important role in membrane
mechanics. The viscous stress exerted on the capsule membrane by the surrounding fluid
flow has the potential to cause damage to the membrane and result in the unintended
release of drugs. Consequently, it is imperative to undertake a comprehensive study of the
motion and deformation of capsules within the context of fluid flow.

Theories of capsule dynamics have been developed sufficiently by Barthes-Biesel,
Pozrikidis and their colleagues. As outlined in the seminal work of Pozrikidis (2010),
an overview of capsule dynamics can be found in the Introduction. Barthes-Biesel (1980)
conducted an analytical study on the dynamics of a microcapsule under linear shear flow,
deriving an analytical solution in the limit of small deformation. In order to extend this to
large deformations, Barthes-Biesel ef al. (2002) investigated the mechanical properties of
two-dimensional hyperelastic materials with different constitutive laws. Lac et al. (2004)
then undertook a numerical investigation into a spherical capsule in three-dimensional
Stokes flow. The numerical results obtained by the researchers were in agreement with
the prediction made by Barthes-Biesel et al. (2002), although the computation became
unstable in the case of large deformation. As demonstrated by Walter et al. (2010), the
development of a coupled finite element and boundary element method has enabled
the stabilisation of computations. This methodology has been employed successfully to
quantify the transition capillary numbers of different deformation regimes for various
constitutive laws.

Foessel et al. (2011) have also investigated the influence of the viscosity ratio of internal
to external fluids. Their findings indicate that the internal viscosity exerts a significant
effect on capsule deformation when the internal viscosity is smaller than that of the
external environment. Conversely, when the internal viscosity exceeds that of the external
environment, the internal motion’s decelerating effect on the capsule deformation is
diminished. Omori et al. (2012) conducted a numerical study of a non-spherical capsule
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in creeping shear flow, the results of which demonstrate that the orientation of a non-
spherical capsule is subject to variation under time reversal, and that this variation can
be controlled by adjusting the background flow strength or unsteadiness. Dupont et al.
(2015) conducted an investigation into the influence of the bending resistance of a spherical
capsule. The findings of the study indicate that the wrinkle wavenumber of the membrane
is contingent solely on the bending resistance, and that the bending resistance exerts
an influence on local buckling. However, its effect on shape and deformation can be
disregarded. Matsunaga et al. (2015) investigated capsule deformation under oscillating
shear flow, finding that deformation is larger under oscillation than under steady shear
flow, and that the overshoot is also larger when the capsule is softer. Matsunaga et al.
(2016) also conducted a numerical investigation of the capsule dynamics in their dense
suspensions. It was observed that as the volume fraction of the capsules increased, the
capsule deformation increased correspondingly; however, the angle of inclination of the
capsules with respect to the flow direction decreased.

However, as the deformation increases, the capsule will inevitably sustain damage
due to the substantial deformation that it undergoes. Consequently, research into
membrane damage due to mechanical stress has been undertaken both experimentally
and theoretically (Chang & Olbricht 1993; Walter, Rehage & Leonhard 2001; Husmann
et al. 2005; Koleva & Rehage 2012; Leopércio et al. 2021; Jambon-Puillet, Jones & Brun
2020). As demonstrated by Chang & Olbricht (1993), the insertion of a capsule into
Couette flow resulted in the observation of capsule deformation. Furthermore, capsule
break-up was observed when the deformation induced by the flow reached a sufficient
magnitude. Walter ef al. (2001) conducted experiments on a capsule within shear flow,
observing shape oscillation and membrane folding phenomena, which have the potential to
lead to fatigue mechanisms. Leopércio et al. (2021) conducted a microfluidic experiment
in which they observed the flow of microcapsules through constricted channels. The
rupture of microcapsules was found to be initiated by stress caused by deformation, which
in turn is influenced by capsule diameter and thickness. Jambon-Puillet er al. (2020)
conducted experiments on the impact of capsules against rigid walls. The impact velocity
of the capsules was found to have a significant effect on their deformation and rupture.
Furthermore, the viscosity of the surrounding fluid was found to influence the critical
velocity at which rupture occurs.

Moreover, Husmann et al. (2005) exposed a microcapsule to centrifugal forces, and
observed its destruction as a result of the substantial centrifugal force applied. The
rupture of the capsule was found to occur exclusively at the pole ends. As stated by
Koleva & Rehage (2012), the wrinkling and break-up of microcapsules in extreme large
deformation was observed through the introduction of microcapsules into shear flow.
Furthermore, Grandmaison, Brancherie & Salsac (2021) presented a numerical model
of capsule damage and rupture, considering damage behaviour within the framework of
continuum damage mechanics. The damage model employed was of the isotropic brittle
damage type, with the membrane damage state being dependent on the history of loading.

The flow applied to a capsule is not limited to background flows; it could also be the
flow created by external forces or microswimmers of the same size as the capsule. In their
study, Kree, Riickert & Zippelius (2021) examined the impact of diverse external forces
on the locomotion of a droplet, encompassing a single point force, a force dipole, and
even the forces generated by a biflagellate swimmer. In the context of microswimmers, the
squimer model developed by Lighthill (1952) has been seminal. This model, the basis of
the present study, propels itself by generating small deformations on the particle surface.
It was later expanded upon by Blake (1971) to create a more generalised microswimmer
model, corresponding to a microswimmer that propels itself by generating slip velocities
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on its surface (Ishikawa 2024a). This is the best-known self-propelled particle model
in microfluid dynamics. As demonstrated in the works of Reigh er al. (2017) and
Huang, Omori & Ishikawa (2020), the interaction between squirmers and droplets has
been the subject of numerous studies. In particular, Reigh et al. (2017) conducted a
numerical simulation of a squirmer enclosed within a droplet, thereby demonstrating
that the enclosed squirmer is capable of propelling the droplet through hydrodynamic
interactions. Furthermore, the co-swimming state exhibited by both the squirmer and the
droplet was found to be stable. As stated by Huang et al. (2020), a self-propelled droplet
model analogous to a squirmer has also been documented. This model demonstrates that
the collective swimming of squirmers within a drop engenders a flow on the drop’s
surface, which subsequently swims due to its slip velocity. The aforementioned models
operated under the assumption that the surface tension of the droplet is considerably
larger than the viscous stress of the flow. Consequently, the deformation or breakdown of
the droplet was not taken into consideration. In considering the deformation of droplets
due to a microswimmer’s swimming, Kawakami & Vlahovska (2025) conducted an
analytical study of an active particle confined within a spherical, deformable droplet. It
was established that an active particle offset from the centre of the drop can disrupt the
symmetry, resulting in shape changes and droplet displacement.

Additionally, there has been considerable research activity on the deformation of
capsules and vesicles due to the movement of microswimmers (Dias & Powers 2013;
Daddi-Moussa-Ider et al. 2019; Takatori & Sahu 2020; Vutukuri et al. 2020; Nagard et al.
2022; Fessler et al. 2024; Wu, Omori & Ishikawa 2024). Dias & Powers (2013) conducted
a study on the locomotion of an infinitely long swimmer in proximity to a deformable
boundary that separates the fluid into two distinct parts. The direction of fluid flow can be
controlled by manipulating the viscosity ratio on either side of the swimmer. Subsequently,
when microswimmers are located outside of capsules and vesicles, Daddi-Moussa-Ider
et al. (2019) developed a simple model to describe the interaction of a self-driven spherical
particle with a minimal membrane system, allowing for both penetration and trapping. It
has been demonstrated that the active particle may either become trapped in proximity to
the membrane or penetrate through it. In the latter case, the membrane may be permanently
destroyed or recover its initial shape by means of self-healing. Concurrently, Fessler
et al. (2024) investigated the interaction of Janus colloids with giant vesicles, leading
to the observation of endocytosis. The study indicated the pivotal function of far-field
hydrodynamic interaction, determining that puller-type swimmers possess the capacity to
target giant vesicles, deform their membranes, and achieve stable engulfment. In addition,
a numerical simulation of a squirmer swimming in a suspension of red blood cells was
conducted by Wu et al. (2024), which revealed that a squirmer can swim faster than a
passive swimmer by repelling red blood cells to the side of the squirmer. Furthermore,
the influence of microswimmers inside capsules and vesicles is also investigated. In their
research, Vutukuri et al. (2020) conducted numerical simulations, placing self-propelled
particles within giant unilamellar vesicles, and observing the resultant non-equilibrium
shapes and active membrane fluctuations induced by the particles. Similarly, Takatori &
Sahu (2020) conducted experiments but replaced the particles with bacteria and derived
an analytical solution. Subsequently, Nagard e al. (2022) encapsulated bacteria within
giant lipid vesicles, thereby forming a tube-like structure that can transform into an
effective helical flagellum and propel the vesicle. The development of a theoretical model
to estimate the propulsive force and efficiency is also reported.

Furthermore, external magnetic fields and lasers have been utilised to regulate the
movement of the swimmers. For instance, as cited in Huang et al. (2016), the incorporation
of magnetic particles into a near-infrared responsive material has enabled the fabrication
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of a self-folding microrobot that is powered by magnetism. Lozano et al. (2016) conducted
experiments by subjecting a spherical active colloid exposed to an inhomogeneous laser
field. The outcomes of these studies demonstrate that the transportation of active colloids
can be directed towards lower laser intensity, and that the motion of active colloids can be
modulated by adjusting the laser field.

Notwithstanding the exhaustive research that has been carried out in this field, the
precise mechanisms by which microswimmers are confined within elastic capsules, and
the effects of the flow generated by them on the capsule membrane, remain to be
elucidated. The present study focuses on the hydrodynamic interaction between the
capsule membrane and the microswimmer. This is done with a view to determining the
effect on capsule membrane damage and rupture. Moreover, the objective of the present
study is to develop a damage control technique that utilises an external magnetic torque.
In §2, we present our numerical models of a capsule, the damage behaviour of the
capsule membrane and a microswimmer, together with the fundamental equations and
our numerical method. In § 3, we present the simulation results obtained under various
conditions, and provide a range of different capsule states. In § 4, an external magnetic
field is imposed in order to control the squirmer orientation and to investigate damage
control techniques using the external magnetic torque. The conclusions of this study are
outlined in § 5.

2. Governing equations and numerical method

Consider a capsule immersed in an unbounded incompressible Newtonian liquid with
viscosity p and density p. The capsule contains the same liquid as the exterior and a
spherical microswimmer with radius ag, as shown in figure 1(a). The reference shape
of the capsule is assumed to be a sphere with radius a.. Due to the small size of both
capsule and microswimmer, the Reynolds number is small enough that the flow field
can be considered as Stokes flow, where inertia can be neglected. The thickness of the
capsule membrane is sufficiently small compared to its size and curvature radius, thus
the membrane is considered as a two-dimensional hyperelastic material. To estimate the
damage to the capsule due to hydrodynamic interaction with the microswimmer, we
employ a continuum-based isotropic brittle damage model, as described previously by
Grandmaison et al. (2021).

The ensuing sections are to be perused with a view to acquiring an understanding
of the governing equations of fluid—solid interactions between the capsule and the
microswimmer.

2.1. Membrane mechanics

Assume that the membrane thickness is sufficiently small for the membrane to be
considered as a two-dimensional hyperelastic material. The membrane surface S is
determined by two surface curvilinear coordinates (&', £2). The membrane material points
in the reference and deformed states are given by X (¢!, £%) and x (X, 1), respectively. The
gradient of transformation, denoted by F, is given by (Pozrikidis 2010)

dx =F-dX. 2.1)

Then the local deformation of the membrane can be measured by the Green—Lagrange
strain tensor

E=1(F"-F-1), (2.2)
1013 A12-5
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Figure 1. Problem setting of the numerical simulation. (a) A spherical capsule of radius a. is immersed in an
infinite Newtonian liquid of density p and viscosity u (the centre of mass of the capsule corresponds to the
Cartesian origin). The inner liquid of the capsule is assumed to be the same as the external liquid. A squirmer
of radius ay is contained within the capsule, and the size ratio is fixed to a./as; = 4. The squirmer orientation
e is initially set to (1, 0, 0), and the initial centre of the squirmer is (0, y, 0) . The initial incidence angle 6 is
determined by adjusting the initial position y. (b—d) The flow created by the squirmer with different swimming
modes: (b) a pusher-type squirmer (8 = —3); (¢) a puller-type squirmer (8 = 3); and (d) a neutral-type squirmer
(B=0).

where Iis the identity tensor. And two invariants of the transformation are given by
L=8+5-2, L=233-1=J7-1, (2.3)

where A1, A> are the principal dilation ratios, and the Jacobian J; = 114> expresses the
ratio of the deformed to the undeformed surface areas. Assuming that the membrane is an
isotropic material, Cauchy tension tensor T can be related to a strain energy function per
unit area of undeformed membrane wy (11, I2) by the equation

1 dws  _r
=—F. -F".
Js oE

The behaviour of the capsule membrane is described by means of a neo-Hookean (NH)
law, the strain energy function of which is given by

G 1
oV =2 (11 —1+ ) : (2.5)

2.4)

2 L+1

where G is the surface elastic shear modulus.

In the case of an infinitely thin membrane, the inertia of the membrane can be considered
negligible. Consequently, the motion of the membrane is governed by local mechanical
equilibrium:
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g.+ Vs - T=0, (2.6)

where ¢q, is the surface load due to membrane in-plane stretch, and V; is the surface
divergence operator. By applying the virtual work principle, the equilibrium equation (2.6)
can be written in a weak form (Walter et al. 2010)

//ﬁ-qedS—//é(f)):TdSzo, 2.7)

where ¥ and €(9) = (1/2)(Vsd + V,d!) are the virtual displacement and virtual
deformation tensor, respectively.

The equilibrium equation under consideration pertains to in-plane deformation and does
not encompass the bending stiffness of the membrane. This renders the calculations highly
unstable for compressive deformations, thus necessitating the use of a weak bending
energy in this study. It is assumed that the in-plane deformation load and the bending
deformation load can be expressed as a linear sum due to the sufficiently small membrane
thickness, and Helfrich’s model (Helfrich 1973) is adopted for the bending energy:

Ep
wp = > / (2H —cp) dS, (2.8)

where Ep is the bending modulus, H is the mean curvature of the surface, and ¢y is
spontaneous curvature. Assume that the reference curvature is a flat shape, i.e. ¢ =0,
and the bending force density g, is expressed by the first variant of the bending energy
(Ou-Yang & Helfrich 1989):

q,=—2Ey[AsH +2H(H? — K))n, (2.9)

where Aj; is the Laplace-Beltrami operator on the surface, K is the Gaussian curvature,
and n is the normal vector on the surface to the outside. Thus the membrane load due to
the elastic deformation ¢, is determined by ¢q. =¢q, + q,. The findings of Dupont ef al.
(2015) demonstrate that the effect of bending resistance is negligible in comparison to the
effect of in-plane stretch. Consequently, the influence of bending resistance on the shape
and deformation can be disregarded.

2.2. Damage behaviour

The model proposed by Grandmaison et al. (2021) is employed to delineate the damage to
a two-dimensional membrane. The damage is modelled on the basis of continuum damage
mechanics, with the damage state being defined as an isotropic brittle damage model, and
the damage state determined by the history of loading.

We assume that the transformations of the capsule wall correspond to isothermal elastic
deformation and damage. The damage variable represents the irreversible growth of
microdefects in infinitesimal elements. Here, an overview of the work of Grandmaison
et al. (2021) will be provided, with the aim of elucidating the brittle damage model.

Assume the presence of irreversible microdefects growing within the membrane in
response to large deformations. The deformation is assumed to be isothermal elastic
deformation, and the damage is defined by the irreversible growth of microdefects in
the infinitesimal element. It is also assumed that the growth of the microdefects in
the element is isotropic. Thus the microdefects have no preferential orientation, and
the damage variable can be expressed by a scalar function d, which is defined as d =
8Sp/8S=1—685/8S, where 85 is the total area of the infinitesimal element including the
microdefects, and §.Sp is the maximum intersection of microdefects in § 5. The function d
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https://doi.org/10.1017/jfm.2025.10238

https://doi.org/10.1017/jfm.2025.10238 Published online by Cambridge University Press

Z. Huang, T. Omori and T. Ishikawa

ranges from 0, for the local undamaged state, to 1, indicating the crack having the size of
the element.

By using the principle of strain equivalence (Grandmaison et al. 2021), tension in the
damaged state can be written as

~ 88
T= ﬁT= aA-a)T, (2.10)

where T is calculated from an undamaged material. According to classical continuum
damage mechanics, strain energy in the damaged state is assumed to be homogeneous,
and the strain energy function of a damaged neo-Hookean membrane can be written as

ws(I1, I, d) = (1 — d)o™ (11, I). (2.11)

By introducing the damage threshold function (Besson et al. 2010) and model for quasi-
brittle damage developed by (Marigo 1985), the damage variable d can be calculated by

d =t @), 2.12)
where ( )V is the Macaulay bracket defined by

n x 1ifx >0, )
= 13
x) {0 otherwise, ( )
and {(a)ﬁVHMAX) is given by
MAX MAX
(M) = (M 0 ) /7 .
(U;vHMAX(t)=m§1X a)é\’H(I), ( . )
Tt

where ¢ indicates the time, and Yp >0 and Y¢ > O represent damage threshold and
hardening modulus, respectively.

Grandmaison et al. (2021) showed the sheer increase of the damage variable d before
rupture, and it is classical in damage mechanics to relax the criterion for rupture to d = 0.9
or even d = 0.8. In this paper, we consider d = 0.9 as the criterion for membrane rupture.

In this context, a material is said to be in a damaged state if the strain energy w; attains
a value greater than the damage threshold Yp. Conversely, if the strain energy remains
below the damage threshold at all times, then the material is designated as undamaged.
The categorisation of the damage state is dependent on the final value of d in the results
of the simulation. The damage state is divided into three distinct regimes, namely (i) the
undamaged state (d = 0), (ii) the damaged state (0 <d < 0.9), and (iii) the rupture state
(d > 0.9). In addition, given that the damage variable d corresponds to the irreversible
growth of microdefects in the capsule, it can be concluded that the value of d will be
permanently recorded even when deformation of the capsule ceases.

2.3. Swimmer model

The microswimmer is modelled after the Lighthill-Blake squirmer (Lighthill 1952; Blake
1971), a model of a self-propelling sphere by its surface velocity u®. The squirmer
with the unit orientation vector e exhibits axisymmetric and steady surface squirming
velocities. The flow field surrounding the squirmer has been derived as an infinite series of
eigensolutions of the Stokes equation in axisymmetric spherical polar coordinates (r, V).
The origin of the coordinate system is located at the centre of the squirmer, with r denoting
the radial position, and v the angle from the unit orientation vector e, as illustrated
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in figure 1. We follow Ishikawa, Simmonds & Pedley (2006) and consider the tangential
velocities up to the second mode. The surface velocity is then given by

ur(r, ) =0, uy(r, )= B;siny + By siny cos ¥, (2.15)

where swimming speed Uy is then given by Uy = (2B1)/3. The swimming mode and the
stresslet strength of the squirmer are controlled by the squirmer parameter 8 = B/ Bj:
B < 0 corresponds to a pusher-type squirmer that has a propulsion apparatus behind the
body; B > 0 corresponds to a puller-type squirmer that has a propulsion apparatus in front
of the body; B = 0 corresponds to a neutral-type squirmer that has a propulsion apparatus
at the centre of the body (see figure 1b,c,d).

2.4. Flow due to the capsule deformation and the squirmer
In the context of viscous-dominant fluid flow, the flow field is governed by the Stokes
equation. The flow field is thus described by a boundary integral equation with the Green’s
function. The flow resulting from the deformation of the capsule and the squirmer can be
derived as

1
u(x)=—8—[ J(x,y)-qc(y)dSe(y)+/ Jx, y)-q,(y) dSs(y)], (2.16)
T Sy

Sc
where ¢ is the viscous load exerted on the squirmer, and the subscripts ¢ and s represent
the capsule and squirmer surfaces, respectively. The Green’s function of the Stokeslet J is
defined by

I 1
Jx, y) = S+ Sroer, (2.17)

where r =x — y, r = |r| and /s the identity tensor.

The determination of the viscous load on the capsule membrane, designated as ¢,
can be achieved through the application of membrane mechanics, as elucidated in §§ 2.1
and 2.2, while the load on the squirmer, denoted as ¢, is unknown. From the boundary
condition of the rigid motion of squirmer, the following equation holds: u =U + £ x
F 4+ u® when x € S5, where U is the translational velocity, £ is the angular velocity,
F =X — xg, and x, is the centre of the squirmer. In addition, the force-free and torque-free
conditions are given by

/ q,dS; =0 (2.18)
and
/qs x FdS; =0. (2.19)

We solve for the three unknowns ¢, U and £ by coupling (2.16), (2.18) and (2.19).
Detailed numerical methods are explained in the next subsection.

2.5. Numerical method

In order to compute the fluid—solid interactions, the finite element-boundary element
coupling method is employed for the capsule deformation (Walter et al. 2010), and a series
of linear equations is discretised by the boundary element method for the squirmer motion
(Huang et al. 2020). The capsule membrane is discretised into 20 480 triangular elements
with 10 242 nodes, while the squirmer surface is discretised into 1280 triangular elements
with 642 nodes.
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All material points are tracked in a Lagrangian manner, and the strain energy and
Cauchy tension can be calculated explicitly at any time. The equilibrium equation (2.7)
is solved with respect to ¢, by a finite element method (Walter et al. 2010). The bending
force density q,, is determined from the local mean and Gaussian curvatures according
to (2.9), and the load g, on the capsule membrane is calculated by summing ¢, and q,,.
Substituting g, into (2.16), the flow generated by the capsule deformation, i.e. the first
term of the equation, is computed by a Gaussian numerical integration scheme (Huang
et al. 2020). To find the surface load on the squirmer ¢, the following simultaneous linear
equations are formulated from the boundary integral equation at x € S; and the force and
torque balance (Huang et al. 2020):

J My My | | gs —u+u’
F o0 o [|lul=| o |, (2.20)
T 0 0 2 0

where the matrix component J is computed by the second term of (2.16), F and T are
given by (2.18) and (2.19), M and M, are the mobility matrices given by the boundary
condition, and the velocity u€ is the flow generated by the capsule deformation. The total
matrix size is (3N + 6) x (3N + 6), and the dense matrix system is solved by a lower
and upper factorisation technique (Huang et al. 2020), where N = 642 is the number of
computational points. After solving (2.20), the translational U and rotational §2 velocities
of the squirmer are obtained, and each nodal point on the squirmer surface is updated by
the second-order Runge—Kutta method. The flow field is also updated by substituting g
into (2.16), and new positions of the capsule membrane are given in the same way with the
no-slip boundary condition dx /df = u.

When the squirmer comes too close to the capsule surface, the solution becomes less
accurate and numerical instabilities may arise. To avoid this, we add short-range repulsive
forces between the capsule and the squirmer, i.e. providing a force dipole against the
nearest neighbour surface of the capsule and the squirmer.

The repulsive force is given by the following equation as an exponentially decaying
function, as in previous studies (Brady & Bossis 1985; Ishikawa ef al. 2006):

o exp(—aor)

- exp(—aar) 2.21)

Frpp=a
where r is the vector connecting two nodes, r = |r|, and o1, ao are the magnitude of the
repulsive force and a parameter related to distance between two nodes. The stress acting
on node i is computed by F,,,/A;, where A; is the area of the Voronoi cell of node i.

In this study, we choose o; = 1000 and oo = 50, corresponding to an effective working
distance of the repulsive force of the order of /a; = 0.2. This value is nearly equal to the
mesh size Ax/ag ~ 0.1 and can be seen to work only when the swimmer and the capsule
are sufficiently close together. When a repulsive force is acting, the force balance of (2.18)
changes as follows:

/ q,dS, = F,,p. (2.22)

Another parameter, the capillary number, is defined as Ca =wUy/ Gy, expressing
the ratio of viscous force and elastic force. In our simulations, all equations are non-
dimensionalised by the free-swimming velocity Uy, the radius of microswimmer a,
the viscosity u, and the elastic modulus Gg. The dimensionless bending rigidity is set
to Ep/ Gsas2 =0.01, and the size ratio between capsule and squirmer is a./a; =4.0
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Figure 2. Swimming trajectory of a squirmer with different swimming modes in the undamaged regime;
each snapshot indicates the time sequence. The incidence angle is set to & =30° for all cases. (a) A pusher-
type squirmer (8 = —3) case with Ca=0.1. (b) A neutral-type squirmer (8 =0) case with Ca =0.07.
(c) A puller-type squirmer (8 =3) case with Ca=0.09. A pusher-type squirmer circles stably near the
capsule membrane, while a neutral-type or puller-type squirmer swims perpendicularly towards the membrane,
reaching equilibrium at tUp/ay > 15. Blue arrows corresponds to the orientation vector e.
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throughout the study. As for damage behaviour of the capsule, we set Yp/G; =0.2,
Yc /Gy =2.0. A dimensionless time step At Up/a; is set to At Ug/as = 5.0 x 1074,

3. Damage to the membrane caused by an internal squirmer
3.1. Elastic deformation without damage to membranes

First, the capsule deformation is considered in the low capillary number regime. The
swimming mode of the squirmer is set to 8 = —3, corresponding to a pusher-type
squirmer. The orientation of the squirmer is set to e = (1, 0, 0), and the initial swimming
direction is aligned with its orientation. The initial position of the squirmer is set to
(x/as, y/as, z/as) = (0, 2, 0), which corresponds to the initial incidence angle 6 = 30°
as shown in figure 1(a). The mass centre of the capsule is initially placed at (0, 0, 0), and
the capillary number is set as Ca =0.1.

As illustrated in figure 2(a), the temporal development of the swimmer’s trajectory is
demonstrated.

Subsequent to the initiation of the calculation, the swimming direction of the squirmer
is modified by hydrodynamic interactions with the membrane, resulting in the adoption
of a circular trajectory along the capsule membrane. In the low Ca regime, the strain
energy does not reach the threshold for brittle damage due to the small deformation of
the membrane. Consequently, deformation of the membrane invariably occurs within the
elastic region, without compromising the integrity of the membrane.
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The same tendency can be observed for the puller-type and neutral-type squirmers,
but their swimming trajectories are different from those of the pusher-type squirmer
(cf. figure 2b,c). In the cases of neutral-type and puller-type squirmers (8 =0, 3),
the squirmer swims towards the membrane and finally comes to rest in a position of
equilibrium.

As demonstrated in figure 2(c), a dimple is also visible at the upper part of the
capsule. The observed asymmetric distribution can be attributed to the initial conditions.
Specifically, the initial position of the swimmer is near the top of the capsule, and
the dimple manifests at the top of the capsule. Conversely, if the swimmer is initially
positioned at the bottom, then the dimple will also appear at the bottom.

The underlying reason for these trajectory differences is elucidated in Ishikawa (2019) by
lubrication theory, where a pusher-type squirmer tends to escape from a free surface, while
a puller-type squirmer tends to be trapped by a free surface. It is important to note that the
findings of the present study demonstrate discrepancies with those of previous research.
For instance, while the literature suggests that a neutral-type squirmer will typically escape
from a free surface, our study demonstrates that it swims towards the capsule membrane.
This deviation can be attributed to the deformation of the capsule membrane, which, upon
being deformed around the squirmer, cancels out the rotational torque generated on the
opposite side. Consequently, the torque generated in front of the squirmer is insufficient
to alter its direction, resulting in the neutral-type squirmer swimming towards the capsule
surface.

3.2. Effect of capillary number; three different states of membrane damage

The subsequent investigation focuses on the effect of capillary number. A pusher-type
squirmer (8 = —3) is confined within the capsule, and the initial conditions are the same as
in figure 2; we observed three distinct states of membrane damage, which varied according
to the capillary number.

For low Ca, e.g. Ca = 0.1, the deformation of the capsule is small, thereby preserving
the membrane’s undamaged state. Consequently, the maximum damage variable on the
surface dy,,, remains at zero, and the squirmer swims along the membrane surface
(cf. figure 3a,b).

With an augmented capillary number, Ca = 0.11, deformation of the capsule increases,
and the strain energy reaches the threshold for the onset of brittle damage. The damage
variable d,,, then gradually increases but reaches a stable state, while the squirmer creates
a ring-like damage area on the membrane surface (cf. figure 3¢). And this state is defined
as the damaged state.

With an even larger capillary number, Ca =0.12, the membrane damage no longer
remains in the stable regime, but increases, eventually leading to membrane rupture
forming a scratch-like rupture area diagonally ahead of its swimming direction
(cf. figure 3d). Accordingly, the damage variable d,,, increases quickly and reaches its
maximum in a short time, as shown in figure 3(a).

3.3. Membrane rupture in different swimming modes

The squirmer with different § is placed inside the capsule, and it is found find that the
critical capillary number for membrane rupture depends on S.

In the case of a pusher-type squirmer (8 = —3), the critical capillary number for
membrane rupture, Cag, is in the range 0.11 < Cag < 0.12 when the initial incidence
angle is & =30°. As previously outlined, the pusher-type squirmer swims along the
membrane, and membrane rupture occurs near the oblique front of the swimming direction
(cf. figures 3(d) and 4(a), and supplementary movie 1).
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Figure 3. Different states of the capsule confining a pusher-type squirmer (8 = —3): ruptured state (Ca =
0.12), damaged state (Ca = 0.11) and undamaged state (Ca =0.1). () Damage evolution of the capsule with
different Ca. When Ca = 0.12, the capsule is ruptured at t Ug /a; = 32.5, whereas the damage to the membrane
remains small below Ca < 0.11. Snapshots of (b) an undamaged state (Ca = 0.1, tUp/as = 50), (¢) a damaged
state (Ca =0.11, tUp/as = 150), and (d) a ruptured state (Ca =0.12, tUp/as = 32.5). The initial incidence
angle is set to & = 30°, and the colour band indicates the damage variable on the membrane.

In the case of a puller-type squirmer (8 =3) and a neutral-type squirmer (8 = 0),
the damage area is similar in appearance, forming a small damage patch in front of the
squirmer, and breaking the membrane from the centre of the patch (see figure 4(b,c) and
supplementary movies 2 and 3). The time to membrane rupture for the puller-type and
neutral-type squirmers is tUp/as; =~ 10, which is faster than for the pusher-type squirmer
(tUg/ag = 32.5). Despite the similarity in the motions of the squirmer and the formations
of membrane damage for the puller-type and neutral-type squirmers, their critical capillary
numbers Cag are different, estimated to be 0.12 < Cag < 0.13 for a puller-type squirmer,
and 0.1 < Cap < 0.11 for a neutral-type squirmer.

Here, we compare the present results with the study by Grandmaison et al. (2021), who
investigated capsule rupture in simple shear flow.

Previous studies have defined the capillary number as Cap,. = wyac/ Gy, where y cor-
responds to the shear rate. However, due to the difference in capsule radius (a./al”* = 4),
it is necessary to divide Ca,,. by 4, converting to the one based on the capsule radius for
a meaningful comparison with our Cag. When they used Yp/Gy =0.2 and Y /Gy =2.0,
the capsule is damaged with Cap,./4~ 0.1, and broken with Ca,./4~0.18. On the
other hand, when we choose the same Yp and Y¢ in the present setting, the capsule can be
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Figure 4. Rupture of the capsule by squirmers with different swimming modes: (a) a pusher-type squirmer
(B = —3), (b) a neutral-type squirmer (8 =0), and (c) a puller-type squirmer (8 = 3). The time of the rupture
is indicated by the broken line in the graph; tUp/as, = 32.5 with a pusher-type squirmer, tUp/a; = 9.6 with
a neutral-type squirmer, and tUp/a; = 9.1 with a puller-type squirmer. The upper panels are viewed from the
(x, y)-plane, while the middle panels are viewed from the (y, z)-plane. The initial incidence angle is set to
0 =30°.

damaged with Cag = 0.1, and broken with Cag ~ 0.13. These results indicate that capsules
can be broken more easily when subjected to the action of an internal swimmer than when
subjected to a simple shear flow.

3.4. Phase diagram of membrane damage

The effect of capillary number Ca and swimming mode 8 on the membrane damage is
summarised in figure 5. The initial angle of incidence is set to & = 30° for all cases, and
the effect of 6 is explained in the next subsection.

When Ca is less than 0.05, the membrane deformation is sufficiently small that the
strain energy does not reach the threshold for onset of brittle damage for all 8. In regimes
where Ca is greater than 0.05, the damage state depends on the swimming mode §. In
the case of a strong pusher-type squirmer, i.e. in the § < —2 regime, the squirmer tends
to swim along with the membrane surface, and the undamaged regime expands with
|B|. In this regime, the critical capillary number for membrane rupture Cag is close to
the Ca value at which brittle damage begins, and the undamaged and rupture states are
close together. However, in the case of a weak pusher-type squirmer (=2 < g < —1), the
squirmer tends to swim towards the membrane surface, and the membrane is susceptible
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Figure 5. Phase diagram of damage development in 8 and Ca space. The initial incidence angle is set to
0 =30°.

to damage from the recirculating flow in front of the squirmer (cf. figure 1b), with
Cagp reaching a minimum value at 8§ = —2, where the swimming direction undergoes a
transition from being aligned with the surface to being oriented against it. In regimes
where 8 > —1, in particular where 8 > 1, the undamaged regime tends to widen as f8
increases. In the —1 < 8 <1 regime, the flow generated by the squirmer is relatively
smooth and weak, and all squirmers in this regime tend to swim towards the membrane
surface, thus the critical capillary numbers become the same. Conversely, in the 8 > 1
regime, the flow in front of the squirmer tends to draw the capsule membrane close to
the squirmer, thereby cancelling out a part of the deformation towards outside, and thus
expanding the undamaged region as 8 increases.

3.5. Effect of incidence angle

In the following investigation, the influence of the incidence angle 6 is examined by
varying the initial position of the squirmer y (see figure la). The swimming mode g is
set to B = —3, 0, 3, and the results are shown in figure 6.

When 8 = —3, the critical capillary number increases with the incidence angle (see
figure 6a), indicating that the capsule becomes harder to damage. When the angle of
incidence is large, the initial swimming direction of the squirmer is almost tangential to
the capsule surface, and it swims stably along the surface (see supplementary movie 5).
Conversely, when the angle of incidence is small, the initial swimming direction is almost
perpendicular to the capsule surface, resulting in severe deformation of the capsule (see
supplementary movie 4). This makes the capsule more susceptible to damage.

When =0 and 3, the critical capillary number is found to be unaffected by
the incidence angle (figure 1b,c), indicating that the occurrence of brittle damage is
independent of the initial condition. In the case of a puller-type squirmer or a neutral-type
squirmer, the squirmer tends to swim perpendicular to the capsule surface. Therefore,
in the present study, the direction of swimming near the membrane is determined
regardless of the initial conditions, and as a result, & dependence cannot be observed (see
supplementary movies 6 and 7).
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Figure 6. Effect of the initial incidence angle 0: capsule enclosing (a) a pusher-type squirmer (8 = —3),

(b) a neutral-type squirmer (8 = 0), and (c) a puller-type squirmer (8 = 3).

4. Rupture control by external magnetic torque

Then comes the question, can we manipulate the damage of a capsule? Here, we consider
using an external magnetic field to manipulate damage by controlling the swimming
direction of the squirmer. We assume that the artificial squirmer is composed of a magnetic
material with uniform magnetisation M, and the density of the magnetic field is considered
as B. The magnetic torque exerted on the squirmer is then defined in the equation (Abbott,
Diller & Petruska 2020)

T,=V.M x B, 4.1)

where V; corresponds to the volume of the squirmer. We also assume that the orientation
vector e of the squirmer is the same as the magnetisation, and the magnetic field B is in the
same plane as the swimming direction. Thus the magnetic torque exerted on the squirmer
can be written as

4.2)

T, =A,exb,
b=B/|B|,

where A,, is the amplitude of the magnetic torque, and b is the unit vector of the magnetic
field B.
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Figure 7. Rupture of the capsule with a pusher-type squirmer inside controlled (8 = —3) by a constant external

magnetic torque. The normalised magnetic field vector is set to b = (+/3, 1, 0)/2, and the initial incidence angle
is set to 6 = 30°. (a) Effect of the amplitude of external magnetic torque A,,. (b) Behaviour of the pusher-type
squirmer until the membrane becomes ruptured. Magnetic torque is applied at tUgp/as = 15 (indicated by the
cross) to control the swimming direction of the squirmer. By applying the magnetic torque with amplitude
Ap/ uajz Up = 30, the stable circular swimming of the inside squirmer changes to a one-directional swimming,
which allows the squirmer to break the capsule (Ca is set to 0.07).

4.1. Breaking a harder capsule with a static magnetic field

First, drug release is assumed, then an external magnetic field is applied to rupture the
elastically deforming capsule membrane. A pusher-type squirmer (8 = —3) is used, and a
static magnetic field is considered for the external magnetic field, b = (+/3, 1, 0)/2.

The capillary number is set to Ca = 0.07 to correspond to a brittle damage-free regime
with stable elastic deformation except for initial defects with initial incidence angle less
than 10°.

The magnetic torque activates at the dimensionless time tUp/as =15.0, and its
amplitude is set to A,,/pa2Uy = 30. Before the activation of the magnetic torque, the
squirmer swims along with the surface. However, after the activation of the magnetic field,
the squirmer’s movement is directed towards the direction of the magnetic field b due to
the magnetic torque, as shown in figure 7 and supplementary movie 8. The second incident
angle is smaller, and is accompanied by deformation of the rupture regime. This results in
the eventual rupture of the membrane.

We then investigate the effect of A, on the critical capillary number. As demonstrated
in figure 7(a), the critical capillary number undergoes a substantial decrease due to the
influence of the external magnetic torque A,,. The findings suggest that the rupture of the
membrane can be controlled by the squirmer through the application of a sufficiently large
external torque.

4.2. Preserving a capsule by a rotational magnetic field

Next, the potential of a rotating magnetic field in preventing the rupture of a softer capsule
is explored. A pusher-type squirmer (8 = —3) is employed as the internal swimmer. Under
these conditions, the capsule remains in the ruptured regime in the absence of magnetic
torque. The rotating magnetic field is defined as b = (cos wy,f, — sin w;, ¢, 0), where ¢ is
time. The magnitude of the torque is set to A,/ ptas2 Up = 40, and the angular velocity w,,
is parametrised (see figure 8).
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Figure 8. Rupture of the capsule with a pusher-type squirmer inside controlled by a rotating magnetic field;
B =-3,Ca=0.15 and 6 =30° for all cases. (a) Phase diagram in A,, and w,, space. (b—g) Effects of the
angular velocity on the swimming of the squirmer: w,,as/Ug = 0.2, 1.0, 2.0, 2.2, 5.0, 50.0, respectively, while
the amplitude is set to A,,/ p,asz Up =40 for all cases. The black line indicates the swimming trajectory of the
squirmer, and the blue and the red arrows correspond to the swimming direction e and the normalised magnetic
field vector b, respectively.

When the angular velocity is sufficiently small, e.g. w;,as/Ug = 0.2 in figure 8(b), the
magnetic field changes too slowly to make the swimmer move away from the membrane.
This condition is analogous to the absence of a magnetic field, and the capsule reaches
a rupture state (see supplementary movie 9). When the angular velocity of the magnetic
field is comparable to the swimming speed (0.2 < wyas/ Uy < 1.5), the squirmer traces
a circular orbit of its radius, and the interaction with the membrane also becomes
weak. Therefore, the capsule membrane is preserved (cf. figure 8(c) and supplementary
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movie 10). However, when the angular velocity is approximately 1.5 < w; a5/ Up < 2, the
swimming path becomes unstable, and the increased frequency of near-field interactions
between the capsule and the squirmer tends to increase the susceptibility to rupture
(cf. figure 8(d) and supplementary movie 11). Then in the regime with larger w,, (2 <
wmas /Uy < 10), the angular velocity of the magnetic field gradually becomes dominant
in relation to the angular velocity of swimming (w,, > |$2|), and the swimming trajectory
again approaches a smooth circular path (cf. figure 8(e,f ) and supplementary movies
12 and 13). However, with extremely large angular velocities, e.g. wpas/Up =150 in
figure 8(g), the magnetic field undergoes such rapid changes that the swimmer is unable
to maintain its course. Consequently, the motion of the squirmer reverts to a state of
sufficiently small angular velocity, resulting in the membrane reaching a rupture state (see
supplementary movie 14).

The phase diagram of the membrane damage due to torque magnitude A,, and angular
velocity w; is summarised in figure 8(a). Evidence suggests that there is indeed a damage-
free region, indicating the potential for utilising the rotating magnetic field as a soft capsule
transport technique.

5. Conclusion

In this study, we proposed a capsule enclosing a microswimmer, and focused on the
damage behaviour of the capsule membrane. In the present simulation, three distinct
capsule states were obtained: namely, the undamaged state, the damaged state, and the
rupture state.

It is important to note that the repulsive force determines the minimum distance
between the squirmer and the capsule membrane, thus it has the capacity to affect the
result quantitatively. In this study, the minimum repulsive force required for a mesh-size
separation between the squirmer and the capsule membrane was determined. However,
for repulsive forces below this level, the calculations become unstable due to a lack of
resolution in expressing the lubrication flow.

In the context of the fixed swimming mode, an increase in Ca has been observed
to result in capsules undergoing greater deformation, attributable to hydrodynamic
interaction. A comparison of these findings with those of a previous study (Grandmaison
et al. 2021) reveals a parallel in the damage development process of the capsules.
Specifically, the damage variable exhibits a steady increase below d ~0.2, and
subsequently experiences a steep rise until reaching d = 1. Meanwhile, we find that our
capsule can be damaged more easily (with a smaller Cagp). The underlying cause of these
discrepancies can be attributed to the hydrodynamic interaction. Grandmaison et al. (2021)
made their capsule deformed by simple shear flow, a moderate interaction affecting the
whole capsule, while we use an inside microswimmer, generating a strong interaction near
the microswimmer. Also, comparing our results with Leopércio et al. (2021), we find the
same trend of damage: a capsule with a larger capillary number Ca and larger deformation
can be damaged more easily.

When Ca is held constant, the difference in the swimming mode 8 can be categorised
into two distinct behaviours of the inside squirmer: sliding along the capsule surface
(B < —2), and swimming towards the capsule surface (8 > —2). According to previous
research (Ishikawa 2019), a pusher-type squirmer (8 < 0) tends to turn away from the
free surface, while a neutral-type squirmer (8 =0) or a puller-type squirmer (8 > 0)
tends to swim towards the free surface. In our results, a strong pusher-type squirmer
(B < —2), a neutral-type squirmer (8 =0) and a puller-type squirmer (8 > 0) have the
same motion with Ishikawa (2019), while a weak pusher-type squirmer (—2 < 8 < 0) also
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swims towards the capsule surface. The reason for this phenomenon is attributed to the soft
capsule surface. When a weak pusher-type squirmer first encounters the capsule surface,
the torque received is not strong enough to make it completely turn away from the capsule
surface, and it is then surrounded by the capsule membrane because of deformation. Also,
in the results of Ishikawa (2019), a pusher-type squirmer receives larger rotational torque
when swimming parallel to the free surface than when swimming towards the surface.
In our results, therefore, a weak pusher-type squirmer receives larger torque from its side
than from its front, and becomes no longer able to turn away from the capsule surface.
In terms of damage of the capsule, in the situation 8 < —2, a squirmer with smaller
B receives a larger rotational torque to make itself turn away from the capsule surface.
This results in a weaker hydrodynamic interaction with the capsule, and an increased
threshold Ca. But in the situation § > —2, all kinds of squirmers swim towards the capsule
surface. As B increases, the deformation at the capsule surface is gradually annulled by
the hydrodynamic interaction, and the threshold Ca also increases. In terms of damage
manipulation, it has been found that the application of a static magnetic torque to the
microswimmer results in the rupture state being attained at a lower Ca = 0.07 as compared
to the value Ca =0.12 observed in the absence of a static torque. Conversely, when a
rotational magnetic torque is applied to the microswimmer, it is observed that the capsule
can be maintained in an undamaged state at a high capillary number (Ca = 0.15) if the
appropriate rotational magnetic field is applied (cf. figure 8).

When considering a real microswimmer, a Janus particle constitutes a viable candidate.
A Janus particle is composed of two distinct materials, and can be propelled by a
concentration difference, electrical or thermal conductivity of the surrounding fluid.
For instance, a metal rod made of platinum and gold can be propelled by its self-
electrophoresis (Moran & Posner 2017). When such a metal rod is immersed in
hydrogen peroxide, peroxide oxidation occurs at the platinum end, and peroxide reduction
occurs at the gold end. The oxidation reaction produces protons, while the reduction
reaction consumes them, thereby establishing a proton concentration gradient via the
electrochemical reactions occurring on the nanomotor surface. The ions drag fluid in the
same direction, leading to relative motion between the particle and the fluid such that
the motor moves with the platinum end directed forwards. In the mathematical analysis
of phoretic microswimmers, the fluid domain is commonly divided into two regions: the
bulk region, and the interfacial region surrounding the particle (Moran & Posner 2017).
Assuming that phoretic effects are confined to the thin interfacial region, such effects
can be represented as surface slip velocities. Therefore, a phoretic microswimmer can
be modelled as a squirmer. Control of such microswimmers can be achieved through
magnetism by substituting one metal with a magnetic metal, such as Janus particles of
a gold—nickel alloy, as demonstrated in the study by Wang et al. (2006).

In the context of the capsule, previous research focused on the vesicle membrane, as
evidenced by the work of Nagard et al. (2022), who put several inside giant unilamellar
vesicles. The vesicle membrane deformed enormously due to bacterial movement, yet it
remained intact, suggesting that the lipid molecules that make up the vesicle membrane
may flow in response to deformation, thereby preventing rupture. However, the fluidity
of vesicle membranes poses challenges in terms of control over membrane breakdown.
In contrast, a capsule does not fluidise because it has an elastic membrane, and brittle
fracture occurs when local deformation exceeds a threshold value. We therefore focus on
the control of substance release by an elastic capsule membrane rather than by a vesicle
membrane.

In a previous study, for instance, a capsule was fabricated using polysiloxane, which
possesses elastic modulus approximately Gy ~ 5 x 107> N m~! (Feinberg, Funderburgh
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& Simko 2015). Another example can be a capsule made by a ghost cell of a red blood
cell membrane, whose elastic modulus is G5~ 107® N m~!, as cited in Omori et al.
(2012). Examples of squirmers include Janus particles and swimming microorganisms.
Recent studies have revealed that gold—platinum type Janus particles exhibit swimming
velocity 25 pm s~ (Moran & Posner 2017), while bacteria E. coli have been documented
to swim at velocity 1 wm s~! (Ishikawa 2024b). Additionally, microalgae Volvox have been
recorded to swim at velocity 250 pwm s~ ! (Drescher et al. 2009), and ciliate Paramecium
have been recorded to swim at velocity 1 mm s~! (Ishikawa 2024b). Assuming the
surrounding fluid to be oleic acid, whose viscosity is approximately L ~5 x 1072 Pas
(Sagdeev et al. 2019), the critical speed that can break the polysiloxane capsule is
U ~ 100 um s~ '. However, if the capsule is composed of a ghost cell derived from a
red blood cell membrane, then the critical speed required for capsule rupture decreases
to approximately U ~2 pwm s~ !. It is then considered that both Janus swimmers and
microorganisms can disrupt these capsules from the inside.

The findings of this study demonstrate that the impairment of the capsule membrane
can be regulated by modifying its capillary number, as well as the swimming mode
and incidence angle of the inside microswimmer. Furthermore, the implementation of a
magnetic field enables the modulation of the internal microswimmer’s trajectory, thereby
affecting the integrity of the capsule membrane. It is imperative to comprehend the
interplay between the damage to the capsule membrane and the motion of the internal
microswimmer, as evidenced by these findings. Furthermore, they establish the basis for
potential applications, including controlled drug release.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10238.

Acknowledgements. This work was supported by JST SPRING (grant no. JPMJISP2114), JST PRESTO
(grant no. J210002385) and JSPS KAKENHI (grant nos 24H01458, 21H04999 and 21H05308).

Declaration of interests. The authors report no conflict of interest.

REFERENCES

ABBOTT, J.J., DILLER, E. & PETRUSKA, A.J. 2020 Magnetic methods in robotics. Annu. Rev. Control Robot.
Auton. Syst. 3 (1), 57-90.

BARTHES-BIESEL, D. 1980 Motion of a spherical microcapsule freely suspended in a linear shear flow.
J. Fluid Mech. 100 (4), 831-853.

BARTHES-BIESEL, D., DiIAZ, A. & DHENIN, E. 2002 Effect of constitutive laws for two-dimensional
membranes on flow-induced capsule deformation. J. Fluid Mech. 100, 211-222.

BESSON, J., CAILLETAUD, G., CHABOCHE, J.L. & FOREST, S. 2010 Non-Linear Mechanics of Materials.
Springer.

BHUJBAL, S.V., DE Vos, P. & NicLoU, S.P. 2014 Drug and cell encapsulation: alternative delivery options
for the treatment of malignant brain tumors. Adv. Drug Deliv. Rev. 67-68, 142-153.

BLAKE, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199-208.

BRADY, J.F. & Bossis, G. 1985 The rheology of concentrated suspensions of spheres in simple shear flow by
numerical simulation. J. Fluid Mech. 155, 105-129.

CHANG, K.S. & OLBRICHT, W.L. 1993 Experimental studies of the deformation and breakup of a synthetic
capsule in steady and unsteady simple shear flow. J. Fluid Mech. 250, 609-633.

DADDI-MOUSSA-IDER, A., GoH, S., LIEBCHEN, B., HOELL, C., MATHISSEN, A.J.TM,,
GUZMAN-LASTRA, F., ScHOLZ, C., MENZEL, A.M. & LOWEN, H. 2019 Membrane penetration
and trapping of an active particle. J. Chem. Phys. 150 (6), 064906.

Dias, M.A. & POWERS, T.R. 2013 Swimming near deformable membranes at low Reynolds number. Phys.
Fluids. 25 (10), 101901.

DRESCHER, K., LEPTOS, K.C., TUVAL, ., ISHIKAWA, T., PEDLEY, T.J. & GOLDSTEIN, R.E. 2009 Dancing
Volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102 (16), 168101.

1013 A12-21


https://doi.org/10.1017/jfm.2025.10238
https://doi.org/10.1017/jfm.2025.10238

https://doi.org/10.1017/jfm.2025.10238 Published online by Cambridge University Press

Z. Huang, T. Omori and T. Ishikawa

DUPONT, C., TALLEC, P.LE, BARTHES-BIESEL, D., VIDRASCU, M. & SALSAC, A.-V. 2015 Dynamics of a
spherical capsule in a planar hyperbolic flow: influence of bending resistance. Proc. IUTAM 16, 70-79.
FEINBERG, A.W., FUNDERBURGH, J.L. & SIMKO, R. 2015 Polysiloxane substrates with highly-tunable elastic

modulus. United States Patent Application Publication US2015/0010919A1.

FESSLER, F., WITTMANN, M., SIMMCHEN, J. & STOoCCO, A. 2024 Autonomous engulfment of active
colloids by giant lipid vesicles. Soft Matt. 20 (30), 5904-5914.

FOESSEL, E,, WALTER, J., SALSAC, A.-V. & BARTHES-BIESEL, D. 2011 Influence of internal viscosity on
the large deformation and buckling of a spherical capsule in a simple shear flow. J. Fluid Mech. 672,
477-486.

FRIEDMAN, S.P. & MUALEM, Y. 1994 Diffusion of fertilizers from controlled-release sources uniformly
distributed in soil. Fertil. Res. 39 (1), 19-30.

GRANDMAISON, N., BRANCHERIE, D. & SALSAC, A.V. 2021 Modelling of damage of a liquid-core
microcapsule in simple shear flow until rupture. J. Fluid Mech. 914, A2S.

HELFRICH, W. 1973 A spherical envelope approach to ciliary propulsion. Z. Naturforsch. C 28 (11-12),
693-703.

HUANG, H.W., SAKAR, M..S., PETRUSKA, A.J., PANE, S. & NELSON, B.J. 2016 Soft micromachines with
programmable motility and morphology. Nat. Commun. 7 (1), 12263.

HUANG, Z., OMORI, T. & ISHIKAWA, T. 2020 Active droplet driven by a collective motion of enclosed
microswimmers. Phys. Rev. E 102 (2), 022603.

HUSMANN, M., REHAGE, H., DHENIN, E. & BARTHES-BIESEL, D. 2005 Deformation and bursting of
nonspherical polysiloxane microcapsules in a spinning-drop apparatus. J. Colloid. Interface Sci. 282 (1),
109-119.

ISHIKAWA, T. 2019 Swimming of ciliates under geometric constraints. J. Appl. Phys. 125 (20), 200901.

ISHIKAWA, T. 2024a Fluid dynamics of squirmers and ciliated microorganisms. Annu. Rev. Fluid Mech.
56 (1), 119-145.

ISHIKAWA, T. 2024b Fluid dynamics of squirmers and ciliated microorganisms. Annu. Rev. Fluid Mech.
56 (1), 119-145.

ISHIKAWA, T., SIMMONDS, M.P. & PEDLEY, T.J. 2006 Hydrodynamic interaction of two swimming model
micro-organisms. J. Fluid Mech. 568, 119-160.

JAMBON-PUILLET, E., JONES, T.J. & BRUN, P.T. 2020 Deformation and bursting of elastic capsules
impacting a rigid wall. Nat. Phys. 16 (5), 585-589.

KAMAT, A., PALIN, D., LUBELLI, B. & SCHLANGEN, E. 2024 Capsule controlled release of crystallisation
inhibitors in mortars. Mater. Des. 244, 113156.

KAWAKAMI, S. & VLAHOVSKA, P.M. 2025 Migration and deformation of a droplet enclosing an active
particle. J. Fluid Mech. 1007, A41.

KOLEVA, 1. & REHAGE, H. 2012 Deformation and orientation dynamics of polysiloxane microcapsules in
linear shear flow. Soft Matt. 13 (13), 3681-3693.

KREE, R., RUCKERT, L. & ZIPPELIUS, A. 2021 Dynamics of a droplet driven by an internal active device.
Phys. Rev. Fluids 6 (3), 034201.

LAC, E., BARTHES-BIESEL, D., PELEKASIS, N.A. & TSAMOPOULOS, J. 2004 Spherical capsules in three-
dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling.
J. Fluid Mech. 516, 303-334.

LEOPERCIO, B.C., MICHELON, M. & CARVALHO, M.S. 2021 Deformation and rupture of microcapsules
flowing through constricted capillary. Sci. Rep. 11 (1), 7707.

LIGHTHILL, M.J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very
small Reynolds numbers. Commun. Pure Appl. Maths 5 (2), 109-118.

LozaNo, C., HAGEN, B.T., LOWEN, H. & BECHINGER, C. 2016 Phototaxis of synthetic microswimmers in
optical landscapes. Nat. Commun. 7 (1), 12828.

MARIGO, J.J. 1985 Modelling of brittle and fatigue damage for elastic material by growth of microvoids.
Engng Fract. Mech. 21 (4), 861-874.

MATSUNAGA, D., IMAIL, Y., YAMAGUCHI, T. & ISHIKAWA, T. 2015 Deformation of a spherical capsule under
oscillating shear flow. J. Fluid Mech. 762, 288-301.

MATSUNAGA, D., IMAL Y., YAMAGUCHI, T. & ISHIKAWA, T. 2016 Rheology of a dense suspension of
spherical capsules under simple shear flow. J. Fluid Mech. 786, 110-127.

MORAN, J.L. & POSNER, J.D. 2017 Phoretic self-propulsion. Annu. Rev. Fluid Mech. 49 (1), 511-540.

LE NAGARD, L., BROWN, A.T., DAWSON, A., MARTINEZ, V.A., POON, W.C.K. & STAYKOVA, M. 2022
Encapsulated bacteria deform lipid vesicles into flagellated swimmers. Proc. Natl Acad. Sci. USA 119 (34),
€2206096119.

OMORI, T., IMAL, Y., YAMAGUCHI, T. & ISHIKAWA, T. 2012 Reorientation of a nonspherical capsule in
creeping shear flow. Phys. Rev. Lett. 108 (13), 138102.

1013 A12-22


https://doi.org/10.1017/jfm.2025.10238

https://doi.org/10.1017/jfm.2025.10238 Published online by Cambridge University Press

Journal of Fluid Mechanics

OU-YANG, Z. & HELFRICH, W. 1989 Bending energy of vesicle membranes: general expressions for the first,
second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39
(10), 5280-5288.

PoZRIKIDIS, C. 2010 Computational Hydrodynamics of Capsules and Biological Cells. CRC Press.

REIGH, S.Y., ZHU, L., GALLAIRE, F. & LAUGA, E. 2017 Swimming with a cage: low-Reynolds-number
locomotion inside a droplet. Soft Matt. 13 (17), 3161-3173.

SAGDEEV, D., GABITOV, I., IsYANOV, C., KHAIRUTDINOV, V., FARAKHOV, M., ZARIPOV, Z. &
ABDULAGATOV, 1. 2019 Densities and viscosities of oleic acid at atmospheric pressure. J. Am. Oil Chem.
Soc. 96 (6), 647-662.

SHI, X. & TAN, T. 2002 Preparation of chitosan/ethylcellulose complex microcapsule and its application in
controlled release of vitamin d,. Biomaterials 23, 4469-4473.

SKIRTACH, A.G., KARAGEORGIEV, P., BEDARD, M.F., SUKHORUKOV, G.B. & MOHWALD, H. 2008
Reversibly permeable nanomembranes of polymeric microcapsules. J. Am. Chem. Soc. 130 (35),
11572-11573.

TAKATORI, S.C. & SAHU, A. 2020 Active contact forces drive nonequilibrium fluctuations in membrane
vesicles. Phys. Rev. Lett. 124 (15), 158102.

VUTUKURI, H.R., HOORE, M., ABAURREA-VELASCO, C., VAN BUREN, L., DuTtTO, A., AUTH, T.,
FEDOSOV, D.A., GOMPPER, G. & VERMANT, J. 2020 Active particles induce large shape deformations
in giant lipid vesicles. Nature 586 (7827), 52—69.

WALTER, A., REHAGE, H. & LEONHARD, H. 2001 Shear induced deformation of microcapsules: shape
oscillations and membrane folding. Colloid Surf. A: Physicochem. Engng Aspects 183, 123-132.

WALTER, J., SALSAC, A.V., BARTHES-BIESEL, D. & TALLEC, P.L. 2010 Coupling of finite element and
boundary integral methods for a capsule in a Stokes flow. Intl J. Numer. Meth. Engng 83 (7), 829-850.

WANG, Y., HERNANDEZ, R.M. JrR, BARTLETT, D.J., BINGHAM, J.M., KLINE, T.R., SEN, A. &
MALLOUK, T.E. 2006 Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in
hydrogen peroxide solutions. Langmuir 22 (25), 10451-10456.

Wu, C., OMORI, T. & ISHIKAWA, T. 2024 Surface-active microrobots can propel through blood faster than
inert microrobots. PNAS Nexus 3 (10), 463.

1013 A12-23


https://doi.org/10.1017/jfm.2025.10238

	1. Introduction
	2. Governing equations and numerical method
	2.1. Membrane mechanics
	2.2. Damage behaviour
	2.3. Swimmer model
	2.4. Flow due to the capsule deformation and the squirmer
	2.5. Numerical method

	3. Damage to the membrane caused by an internal squirmer
	3.1. Elastic deformation without damage to membranes
	3.2. Effect of capillary number; three different states of membrane damage
	3.3. Membrane rupture in different swimming modes
	3.4. Phase diagram of membrane damage
	3.5. Effect of incidence angle

	4. Rupture control by external magnetic torque
	4.1. Breaking a harder capsule with a static magnetic field
	4.2. Preserving a capsule by a rotational magnetic field

	5. Conclusion
	References

