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1. Introduction

Let us consider a distribution D of k-dimensional planes on an open set Ω ⊂ R
n

and recall that D is said to be completely integrable if for each x ∈ Ω there exists
an integral manifold of D (i.e. a k-dimensional submanifold M of Ω such that
the tangent plane to M at y coincides with D(y), for each y ∈ M) through x.
It is natural to ask under what assumptions on the defining structure, be it a
set of differential forms or a set of vector fields, the distribution D is completely
integrable. In the classical context in which it is assumed that D is of class C1

and the integral manifolds are of class C2, a well-known answer is provided by the
following celebrated Frobenius theorem: A distribution is completely integrable if
and only if it is involutive at every point of Ω (cf. theorems 2.11.9 and 2.11.11 in
[14]). In order to avoid technicalities as much as possible, in this introduction we
will not recall the definition of involutive distribution (cf. § 2.4), but this will not
prevent us from giving an idea of the content of this work.

To understand the sense of our main result, we must first point out the following
well-known fact, which obviously proves one of the two implications of Frobenius
theorem (the easier one): If D is of class C1 and M is an integral manifold of
D, then D is involutive at every point of M. This property can be generalized
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Involutivity of distributions at points of superdense tangency 509

through the notion of superdensity. To explain this point, let us consider any k-
dimensional C1 submanifold M of Ω and denote by τ(M, D) the tangency set of
M with respect to D, i.e. the set of all points y ∈ M such that the tangent plane to
M at y coincides with D(y). Furthermore, let Hk be the k-dimensional Hausdorff
measure in R

n and let BM(x, r) be the open metric ball of M centred at x ∈ M,
of radius r > 0 (cf. [4, § 1.6]). The following property holds (cf. [9, theorem 1.1]):
Let x ∈ M be a (k + 1)-superdensity point of τ(M, D) relative to M, i.e.

Hk(BM(x, r) \ τ(M,D)) = o(rk+1) (as t → 0+). (1.1)

Then x ∈ τ(M, D) and D is involutive at x. This property generalizes the ‘fact’
mentioned above. Indeed, if M is an integral manifold of D then τ(M, D) = M and
hence (1.1) is trivially satisfied. We observe that this generalization is equivalent
to the following structure result for the tangency set: If x ∈ M and D is not
involutive at x, then x is not a (k + 1)-superdensity point of τ(M, D) relative to
M. In particular, if D is nowhere involutive, then there are no (k + 1)-superdensity
points of τ(M, D) relative to M (whatever the choice of the k-dimensional C1

submanifold M). Despite this, τ(M, D) may be ordinarily dense, i.e. such that
Hk(BM(x, r) \ τ(M, D)) = o(rk), as r → 0+, for Hk-a.e. x ∈ τ(M, D). In fact, it
can be proved that, for every x ∈ Ω, there exists a k-dimensional C1 submanifold
M of Ω such that x ∈ M and Hk(τ(M, D)) > 0 (cf. [2]).

In the recent work [3] the extension of Frobenius theorem to integral and normal
currents is discussed for the first time. One of the main goals of this paper is to
prove corollary 4.2, i.e. a generalization of [9, theorem 1.1] in which, instead of
M, a normal k-current on Ω is considered. Unfortunately, however, its statement
(including the definition of normal k-current, cf. § 2.3 below) is too technical to be
used effectively in an introduction such as this, which aims to present the results
obtained in a simple and informal way. For the purposes of this presentation, it will
be sufficient to simply focus on the application of corollary 4.2 to integral k-currents
(which constitute a particularly interesting subfamily of normal k-currents). We
recall that an integral k-current T on Ω is a linear functional on the space Ek

of smooth and compactly supported differential k-forms on Ω, with the following
properties:

(i) It is rectifiable with positive integer multiplicity. This means that T is
representable by integration as follows:

〈T ;ω〉 =
∫

R

〈η;ω〉θ dHk (for all ω ∈ Ek),

where R is a k-rectifiable subset of Ω, θ is a positive integer-valued function
in L1(Hk�R) and η is a unit simple measurable k-vectorfield spanning the
approximate tangent k-plane to R at (Hk�R)-a.e. point of R.

(ii) The boundary of T , that is the (k − 1)-current ∂T on Ω defined by

〈∂T ;ω′〉 := 〈T ; dω′〉 (ω′ ∈ Ek−1),

is rectifiable with positive integer multiplicity too. Thus there exist a
(k − 1)-rectifiable subset R′ of Ω, a positive integer-valued function θ′ ∈
L1(Hk−1�R

′
) and a unit simple measurable (k − 1)-vectorfield η′ spanning
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the approximate tangent (k − 1)-plane to R′ at (Hk−1�R
′
)-a.e. point of R′

such that

〈∂T ;ω′〉 =
∫

R′
〈η′;ω′〉θ′ dHk (for all ω′ ∈ Ek−1).

We now consider a k-distribution D of class C1 on Ω, an integral k-current T on
Ω and adopt the notation introduced in (i) and (ii) above. Let us denote by Γ(η, D)
the set of points x ∈ R at which the approximate tangent k-plane to R exists and
is equal to D(x). Moreover, let Γ(η′, D) be the set of points x ∈ R′ at which the
approximate tangent (k − 1)-plane to R′ exists and is contained in D(x). Then we
have the following result (cf. corollary 4.4):

Theorem. If J denotes the set of all x ∈ Ω such that

lim
r→0+

∫
Br(x)∩(R\Γ(η,D))

θ dHk

rk+1
= lim

r→0+

∫
Br(x)∩(R′\Γ(η′,D))

θ′ dHk−1

rk
= 0,

then D is involutive at (Hk�R)-a.e. x ∈ J .

2. Basic notation and notions, preliminary results

Throughout this paper Ω denotes an open subset of R
n (with n � 2). The stan-

dard basis of R
n and its dual will be denoted by e1, . . . , en and dx1, . . . , dxn,

respectively. If k is any positive integer not exceeding n, then I(n, k) is the family
of integer multi-indices i = (i1, . . . , ik) such that 1 � i1 < · · · < ik � n. For every
i = (i1, . . . , ik) ∈ I(n, k), we set

ei := ei1 ∧ · · · ∧ eik
, dxi := dxi1 ∧ · · · ∧ dxik

.

The linear space of k-vectors (resp. k-covectors) is denoted by ∧k(Rn) (resp.
∧k(Rn)). We recall that {ei | i ∈ I(n, k)} (resp. {dxi | i ∈ I(n, k)}) is the standard
basis of ∧k(Rn) (resp. ∧k(Rn)). Multivectors and multicovectors are in duality.
More precisely, the duality between ∧k(Rn) and ∧k(Rn) is defined by

〈ζ;α〉 :=
∑

i∈I(n,k)

ζiαi, for all ζ ∈ ∧k(Rn) and α ∈ ∧k(Rn),

where ζi (resp. αi) is the i-th coefficient in the representation of ζ (resp. α) with
respect to the standard basis of ∧k(Rn) (resp. ∧k(Rn)), that is ζ =

∑
i∈I(n,k) ζiei

(resp. α =
∑

i∈I(n,k) αi dxi). If h � k, ζ ∈ ∧k(Rn) and α ∈ ∧h(Rn), then the interior
multiplication ζ�α is the (k − h)-vector defined by

〈ζ�α;β〉 = 〈ζ;α ∧ β〉, for all β ∈ ∧k−h(Rn),

cf. [10, § 1.5.1].
The open ball of radius r centred at x ∈ R

n is denoted by Br(x). The Lebesgue
measure and the h-dimensional Hausdorff measure on R

n are denoted by Ln and
Hh, respectively. A subset of R

n is said to be h-rectifiable if it can be covered,

https://doi.org/10.1017/prm.2023.22 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.22


Involutivity of distributions at points of superdense tangency 511

except for an Hh-negligible subset, by countably many h-dimensional C1 surfaces.
Recall that if R is a h-rectifiable subset of R

n, then for Hh-a.e. x ∈ R there is the
approximate tangent h-plane to R at x (cf. [13, theorem 15.19]).

All measures we will consider below (except for Ln and Hh) will be real-valued
and defined on B(Ω), that is the σ-algebra of Borel subsets of Ω. The restriction of
a measure μ to E ∈ B(Ω) is defined by

(μ�E)(B) := μ(E ∩ B), for all B ∈ B(Ω).

Recall that the upper s-density and the lower s-density of μ at x ∈ Ω (with 0 �
s < +∞) are defined by

Θs
∗(μ, x) := lim inf

r→0+

μ(Br(x))
(2r)s

, Θ∗s(μ, x) := lim sup
r→0+

μ(Br(x))
(2r)s

,

respectively (cf. [13, definition 6.8]). Let us also recall the definition of upper
derivative of another locally finite Borel measure λ on Ω with respect to μ at
x ∈ Ω:

D(λ, μ, x) := lim sup
r→0+

λ(Br(x))
μ(Br(x))

,

cf. [13, definition 2.9]. We have the following result (the proof of which is trivial).

Proposition 2.1. Let λ and μ be two locally finite positive Borel measures on Ω.
Moreover let x ∈ Ω and s ∈ [0, +∞) be such that

Θs
∗(μ, x) > 0, Θ∗s(μ, x) < +∞.

Then the following inequality holds:

Θs
∗(μ, x)D(λ, μ, x) � Θ∗s(λ, x) � Θ∗s(μ, x)D(λ, μ, x).

2.1. Vectorfields and differential forms

A map v : Ω → ∧k(Rn) is said to be a k-vectorfield. Analogously, a map ω : Ω →
∧k(Rn) is said to be a k-covectorfield or (more commonly) a differential k-form.
Obviously, a k-vectorfield v (resp. differential k-form ω) can be written in terms of
the standard basis of ∧k(Rn) (resp. ∧k(Rn)), that is,

v(x) =
∑

i∈I(n,k)

vi(x)ei

⎛
⎝resp. ω(x) =

∑
i∈I(n,k)

ωi(x) dxi

⎞
⎠ .

The regularity of v (resp. ω) is defined by that of its coefficients vi (resp. ωi). For
example, we will say that v (resp. ω) is class C1 if vi ∈ C1(Ω) (resp. ωi ∈ C1(Ω))
for all i ∈ I(n, k).
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2.2. Span of a k-vector

For v ∈ ∧k(Rn) we define

span(v) := {v�α |α ∈ ∧k−1(Rn)}.

The span has the following properties (cf. [1, proposition 5.9]):

(1) if v = 0 then span(v) = {0};

(2) if v 
= 0 then dim span(v) � k;

(3) if v1, . . . , vk are linearly independent vectors of R
n and v = v1 ∧ · · · ∧ vk, then

span(v) is the k-plane generated by v1, . . . , vk. In particular, dim span(v) = k;

(4) conversely, if dim span(v) = k, then v is simple and v 
= 0;

(5) span(v) is the smallest of all linear subspaces W of R
n such that v ∈ ∧k(W ).

We will also need this additional simple property, for which we provide a proof
(since we do not have a reference for it).

Proposition 2.2. Let v ∈ ∧h(Rn) \ {0} be simple and let β ∈ ∧p(Rn), with 1 �
p � h � n. Assume v�β = 0, that is

〈v� ; β〉 = 0, for all α ∈ ∧h−p(Rn). (2.1)

Then β|(span(v))p = 0.

Proof. Consider an orthonormal basis ε1, . . . , εn of R
n such that ε1, . . . , εh

generates span(v). If θ1, . . . , θn is the dual basis of ε1, . . . , εn and define

I∗(n, p) := {i = (i1, . . . , ip) ∈ I(n, p) | ip � h + 1},

then we have 〈εi ; β〉 for all i ∈ I(n, p) \ I∗(n, p), by (2.1). Then

β =
∑

i∈I∗(n,p)

〈εi ; β〉 θi,

hence the conclusion follows. �

Remark 2.3. The property established in proposition 2.2 does not hold, in general,
if v is not simple. For example, let n = 5, h = 3, p = 2, v := e1 ∧ e2 ∧ e3 + e1 ∧ e4 ∧
e5 and β := dx2 ∧ dx4. Then one can easily prove that condition (2.1) is verified and
that span(v) = R

5. Since in this case we have β|(span(v))p = dx2 ∧ dx4, the above
property cannot be validated.
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Consider a Borel map τ : Ω → ∧h(Rn), a Borel differential l-form ω on an open
set U ⊂ Ω (with 1 � l � h − 1) and define the Borel set

K(τ, ω) := {y ∈ U | 〈τ(y�α;ωy〉 = 0 for all α ∈ ∧h−l(Rn)}.

We observe that in the special case l = 1, i.e. if ω is a Borel differential 1-form, then
we have

K(τ, ω) = {y ∈ U | span(τ(y)) ⊂ ker ωy}.

2.3. Currents

An h-current on Ω is a continuous linear functional T on the space Eh of smooth
and compactly supported differential h-forms on Ω. The boundary of T is an (h − 1)-
current on Ω denoted with ∂T and defined by 〈∂T ;ω〉 := 〈T ; dω〉 for every ω ∈ Eh−1.
The mass of T is defined as

M(T ) := sup{〈T ;ω〉 |ω ∈ Eh, |ω(x)| � 1 for every x ∈ Ω}.

Given an h-current T on Ω, the following properties are equivalent (by Riesz
theorem):

(1) M(T ) < +∞;

(2) There exist a finite positive measure μ on Ω and a Borel h-vectorfield τ in
L1(μ) such that T = τμ, i.e.

〈T ;ω〉 =
∫

Ω

〈τ ;ω〉dμ (ω ∈ Eh).

Recall from [11, Ch. 1, Sect. 1.4] that if μ and τ are as in (ii), then the total
variation of T = τμ equals |τ |μ, namely

|τμ| = |τ |μ, (2.2)

hence also

|τμ|(Ω) =
∫

Ω

|τ |dμ = M(T ).

In particular |τμ| is radon.

Remark 2.4. Obviously, the representation T = τμ is not unique. In particular,
we also have T = τμ�Sτ , with Sτ := {x ∈ Ω | τ(x) 
= 0}. For this reason, it is not
restrictive to assume that

τ(x) 
= 0, for μ − a.e. x ∈ Ω, (2.3)

hence also spt(T ) = spt(μ).

An h-current T on Ω is said to be:

(i) Normal if M(T ) and M(∂T ) are both finite.
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(ii) Rectifiable if T = ηθHh and the following properties hold:
• θ ∈ L1(Hh);

• R := {x ∈ Ω | θ(x) 
= 0} is k-rectifiable;

• η is a unit simple h-vectorfield such that span(η(x)) is the approximate
tangent h-plane to R at x, for Hh-a.e. x ∈ R.

In this case T is also denoted by [[R, η, θ]].

(iii) Integral if T is rectifiable and (with the notation above):
• θ|R is positive and integer-valued;

• M(∂T ) < +∞ (hence ∂T ).

Recall that if T is integral then ∂T is also integral, cf. [15, theorem 30.3].

2.4. Distributions

A k-distribution on Ω (with 1 � k � n) is a map D that to each x ∈ Ω associates
a k-dimensional plane D(x) ⊂ R

n. We say that a k-distribution D on Ω is of class
Cp (with p ∈ N) if for every x ∈ Ω the following property holds: there exist a neigh-
bourhood U ⊂ Ω of x and a family ω(1), . . . , ω(n−k) of Cp differential 1-forms on
U such that

D(y) = ker ω(1)
y ∩ · · · ∩ ker ω(n−k)

y

for all y ∈ U . The forms ω(1), . . . , ω(n−k) are called defining forms (for D) in U .
Given an h-current with finite mass T = τμ and a k-distribution D on Ω, with

1 � h � k � n, the tangency set of T with respect to D is defined as

Γ(τ,D) := {x ∈ Ω | span(τ(x)) ⊂ D(x)}.

If D is a k-distribution of class C0 on Ω and ω(1), . . . , ω(n−k) are defining forms
(for D) in U ⊂ Ω, then

Γ(τ,D) ∩ U =
n−k⋂
j=1

{x ∈ U | span(τ(x)) ⊂ ker ω(j)
x },

that is

Γ(τ,D) ∩ U =
n−k⋂
j=1

K(τ, ω(j)). (2.4)

Remark 2.5. Let T = τμ be a k-current with finite mass in Ω, let D be a k-
distribution of class C0 on Ω and observe that (cf. § 2.2) the following property
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holds: If x ∈ Γ(τ, D) and τ(x) 
= 0, then dim span(τ(x)) = k. Hence,

Γ(τ,D) = Z ∪ Γ∗(τ,D),

where

Z := {x ∈ Ω | τ(x) = 0}, Γ∗(τ,D) := {x ∈ Ω | span(τ(x)) = D(x)}.

Observe that

|τμ|(Z) =
∫

Z

|τ |dμ = 0 (2.5)

by (2.2). Moreover, for all x ∈ Γ∗(τ, D) the k-vector τ(x) has to be simple (cf. §
2.2). If we assume the non-restrictive condition (2.3), then (2.5) becomes equivalent
to μ(Z) = 0.

Recall that a k-distribution D of class C1 is said to be involutive at x ∈ Ω if there
exists a family ω(1), . . . , ω(n−k) of defining forms in a neighbourhood of x such that

(dω(j))x|D(x)×D(x) = 0, for all j = 1, . . . , n − k. (2.6)

One can easily verify that property (2.6) does not depend on the choice of the family
of defining forms. The distribution D is called involutive (in Ω) if it is involutive at
every x ∈ Ω.

Also recall that, if p � 1 and D is of class Cp, then a non-empty Cp imbedded
submanifold M of Ω such that TxM = D(x) for all x ∈ M is called a Cp integral
manifold of D. As a celebrated theorem established by Frobenius, the involutivity
of D is a necessary and sufficient condition for the existence of an integral manifold
of D through every point of Ω. This topic is extensively covered in many books of
differential geometry, for example in [5, § 3.2], [12, Ch. 19], [14, § 2.11].

2.5. Superdensity

The following definition generalizes the notion of m-density point with respect
to Ln (cf. [6–8]).

Definition 2.6. Let h ∈ [0, +∞) and E ∈ B(Ω). Then x ∈ Ω is said to be an
h-superdensity point of E with respect to a Borel measure λ if λ(Br(x) \ E) =
λ(Br(x)) o(rh), as r → 0+. The set of all h-superdensity points of E with respect
to λ is denoted by Eλ,h.

Remark 2.7. Let λ be a Borel measure, h ∈ [0, +∞) and E, F ∈ B(Ω). The
following facts hold:

(1) If λ = Ln then the set of all h-superdensity points of E with respect to λ
coincides with the set of all (n + h)-density points of E, i.e. ELn,h = E(n+h).

(2) Eλ,h2 ⊂ Eλ,h1 , whenever 0 � h1 � h2 < +∞.

(3) (E ∩ F )λ,h = Eλ,h ∩ Fλ,h.
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(4) λ(E \ Eλ,0) = λ(Eλ,0 \ E) = 0 (cf. [13, corollary 2.14]).

(5) Let E be open. Then E ⊂ Eλ,h, where the inclusion can be strict (e.g. for
λ = Ln and E = Br(x) \ {x} one has Eλ,h = Br(x)). The equality E = Eλ,h

occurs instead in the case that all connected components of E are simply
connected.

(6) If x ∈ Ω and λ(Br(x)) = 0 for some r > 0, then x ∈ Eλ,k for all k ∈ [0, +∞).

(7) Eλ�E,k = Ω for all k ∈ [0, +∞).

3. The main result

Let h, n be integers satisfying 1 � h � n and Ω be an open subset of R
n. Moreover,

let T be a normal h-current on Ω. Then T = τμ and ∂T = τ ′μ′, where μ, μ′ are
two finite positive measures on Ω and

τ : Ω → ∧h(Rn), τ ′ : Ω → ∧h−1(Rn)

are two Borel maps such that τ ∈ L1(μ), τ ′ ∈ L1(μ′), cf. § 2.3. Recall that

|τμ| = |τ |μ, |τ ′μ′| = |τ ′|μ′, (3.1)

by (2.2). In particular, |τμ| and |τ ′μ′| are Radon.

Remark 3.1. By [13, corollary 2.14] there exists N ⊂ Ω such that μ(N) = 0 and

|τ(x)| < +∞, lim
r→0+

∫
Br(x)

τ dμ

μ(Br(x))
= τ(x), lim

r→0+

∫
Br(x)

|τ |dμ

μ(Br(x))
= |τ(x)| (3.2)

for all x ∈ Ω \ N .

We also consider a continuous differential l-form ω on an open set U ⊂ Ω with
1 � l � h − 1 and set for simplicity

K := K(τ, ω), K ′ := K(τ ′, ω).

Remark 3.2. We can easily prove that

K |τμ|,0 \ N ⊂ K. (3.3)

Indeed, let x ∈ K |τμ|,0 \ N and α ∈ ∧h−l(Rn). Then, denoting by θ the constant
differential (h − l)-form on Ω such that θy = α for all y ∈ Ω, we have∣∣∣∣∣

∫
Br(x)

〈τ ; θ ∧ ω〉dμ

∣∣∣∣∣ =
∣∣∣∣∣
∫

Br(x)\K

〈τ ; θ ∧ ω〉dμ

∣∣∣∣∣
� C

∫
Br(x)\K

|τ |dμ

=

(∫
Br(x)

|τ |dμ

)
o(r0) (as r → 0+),
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by (3.1). Hence,

〈τ(x)�α;ωx〉 = lim
r→0+

∫
Br(x)

〈τ ; θ ∧ ω〉dμ

μ(Br(x))
= 0,

by (3.2). Finally, (3.3) follows from the arbitrariness of x ∈ K |τμ|,0 \ N and α ∈
∧h−l(Rn).

Theorem 3.3. Let T = τμ, ∂T = τ ′μ′, ω, K, K ′ and N be as above with the
additional assumption that ω is of class C1. Moreover, let x ∈ K |τμ|,1 \ N and
s ∈ [0, +∞) be such that

Θs
∗(μ, x) > 0, Θ∗s(μ, x) < +∞.

Finally, let α be arbitrarily chosen in ∧h−l−1(Rn). Then

|〈τ(x)�α; (dω)x〉| � C

(
1 − Θs

∗(μ, x)
Θ∗s(μ, x)

)
+ C lim sup

r→0+

|τ ′μ′|(Br(x) \ K ′)
rs

. (3.4)

Proof. Let ρ ∈ (0, 1) and consider g ∈ C1
c (B1(0)) such that 0 � g � 1, g|Bρ(0) ≡ 1

and

|Dig| � 2
1 − ρ

(i = 1, . . . , n).

For every real number r such that 0 < r < dist(x, R
n \ U), we define gr ∈

C1
c (Br(x)) as

gr(y) := g

(
y − x

r

)
, y ∈ Br(x)

and observe that (for all y ∈ Br(x) and i = 1, . . . , n)

|Digr(y)| =
1
r

∣∣∣∣Dig

(
y − x

r

)∣∣∣∣ � 2
r(1 − ρ)

. (3.5)

If θ denotes the constant differential (h − l − 1)-form on Ω such that θy = α, for all
y ∈ Ω, then

d(gr ω ∧ θ) = dgr ∧ ω ∧ θ + gr dω ∧ θ,

hence

〈∂T ; gr ω ∧ θ〉 = 〈T ; dgr ∧ ω ∧ θ + gr dω ∧ θ〉,
that is ∫

Ω

gr 〈τ ′;ω ∧ θ〉dμ′ =
∫

Ω

〈τ ; dgr ∧ ω ∧ θ〉dμ +
∫

Ω

gr 〈τ ; dω ∧ θ〉dμ.

From now on, for simplicity, we will denote Br(x) by Br and Bρr(x) by Bρr.
Recalling the definition of K and K ′, we obtain∫

Br\K′
gr 〈τ ′;ω ∧ θ〉dμ′ =

∫
Br\K

〈τ ; dgr ∧ ω ∧ θ〉dμ +
∫

Br

gr 〈τ ; dω ∧ θ〉dμ
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and then, by (3.5),∣∣∣∣
∫

Br

gr 〈τ ; dω ∧ θ〉dμ

∣∣∣∣ � C

r(1 − ρ)

∫
Br\K

|τ |dμ + C

∫
Br\K′

|τ ′|dμ′. (3.6)

On the other hand, we have∣∣∣∣
∫

Br

gr〈τ ; dω ∧ θ〉dμ

∣∣∣∣ �
∣∣∣∣∣
∫

Bρr

gr〈τ ; dω ∧ θ〉dμ

∣∣∣∣∣−
∣∣∣∣∣
∫

Br\Bρr

gr〈τ ; dω ∧ θ〉dμ

∣∣∣∣∣
=

∣∣∣∣∣
∫

Bρr

〈τ ; dω ∧ θ〉dμ

∣∣∣∣∣−
∣∣∣∣∣
∫

Br\Bρr

gr 〈τ ; dω ∧ θ〉dμ

∣∣∣∣∣ . (3.7)

From (3.6), (3.7) and (3.5) it follows that∣∣∣∣∣
∫

Bρr

〈τ ; dω ∧ θ〉dμ

∣∣∣∣∣ � C

∫
Br\Bρr

|τ |dμ +
C

r(1 − ρ)

∫
Br\K

|τ |dμ

+ C

∫
Br\K′

|τ ′|dμ′,

hence (also recalling (3.1))

μ(Bρr)
(2ρr)s

· 1
μ(Bρr)

∣∣∣∣∣
∫

Bρr

〈τ ; dω ∧ θ〉dμ

∣∣∣∣∣
� C

(
μ(Br)
(2ρr)s

·
∫

Br
|τ |dμ

μ(Br)
− μ(Bρr)

(2ρr)s
·
∫

Bρr
|τ |dμ

μ(Bρr)

)

+
C

1 − ρ
· μ(Br)
(2ρr)s

·
∫

Br
|τ |dμ

μ(Br)
· |τμ|(Br \ K)

r|τμ|(Br)

+ C
|τ ′μ′|(Br \ K ′)

(2ρr)s
.

Observe that the constant C above is independent from r and ρ. Recalling (3.2)
and that x ∈ K |τμ|,1, we obtain (letting r → 0+)

Θ∗s(μ, x) |〈τ(x), (dω)x ∧ α〉| = lim sup
r→0+

μ(Bρr)
(2ρr)s

· 1
μ(Bρr)

∣∣∣∣∣
∫

Bρr

〈τ ; dω ∧ θ〉dμ

∣∣∣∣∣
� C

(
ρ−s Θ∗s(μ, x)|τ(x)| − Θs

∗(μ, x)|τ(x)|
)

+ C (2ρ)−s lim sup
r→0+

|τ ′μ′|(Br \ K ′)
rs

.

Thus

|〈τ(x), (dω)x ∧ α〉| � C

(
ρ−s − Θs

∗(μ, x)
Θ∗s(μ, x)

)
+ C (2ρ)−s lim sup

r→0+

|τ ′μ′|(Br \ K ′)
rs

,

for all ρ ∈ (0, 1). The conclusion follows by letting ρ → 1−. �
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Remark 3.4. Using proposition 2.1 with λ = |τ ′μ′|�(Ω \ K ′), it is easy to verify
that (3.4) is equivalent to the following inequality:

|〈τ(x)�α; (dω)x〉| � C

(
1 − Θs

∗(μ, x)
Θ∗s(μ, x)

)
+ C lim sup

r→0+

|τ ′μ′|(Br(x) \ K ′)
μ(Br(x))

.

4. Application to the context of distributions

Proposition 4.1. Let T = τμ be a k-current with finite mass in Ω and let D be a
k-distribution of class C0 on Ω. Then there exists N ⊂ Ω such that

μ(N) = 0, Γ(τ,D)|τμ|,0 \ N ⊂ Γ(τ,D).

Proof. We can find a countable family B1, B2, . . . of open balls of R
n such that:

(i) ∪iBi = Ω;

(ii) for each i = 1, 2, . . . there exists a family ω(i,1), . . . , ω(i,n−k) of defining forms
for D in Bi (recall from § 2.4 that the ω(i,j) are C0 differential 1-forms on
Bi).

For all i = 1, 2, . . . and j = 1, . . . , n − k, we define

Ki,j := K(τ, ω(i,j)) = {x ∈ Bi | span(τ(x)) ⊂ ker ω(i,j)
x }

and recall from (2.4), remarks 3.1 and 3.2 that the following facts hold:

(1) Γ(τ, D) ∩ Bi = ∩n−k
j=1 Ki,j ;

(2) Ni,j ⊂ Ω has to exist such that

μ(Ni,j) = 0, K
|τμ|,0
i,j \ Ni,j ⊂ Ki,j .

Hence, if we define

N :=
⋃
i,j

Ni,j ,

we obtain μ(N) = 0 and, for all i = 1, 2, . . . (by also recalling the properties listed
in remark 2.7),

(Γ(τ,D)|τμ|,0 \ N) ∩ Bi = Γ(τ,D)|τμ|,0 ∩ Bi \ N

= Γ(τ,D)|τμ|,0 ∩ B
|τμ|,0
i \ N
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= (Γ(τ,D) ∩ Bi)|τμ|,0 \ N

=

⎛
⎝n−k⋂

j=1

Ki,j

⎞
⎠

|τμ|,0

\ N

=
n−k⋂
j=1

K
|τμ|,0
i,j \ N

⊂
n−k⋂
j=1

(K |τμ|,0
i,j \ Ni,j)

⊂
n−k⋂
j=1

Ki,j

= Γ(τ,D) ∩ Bi.

The conclusion follows by recalling that the balls Bi cover Ω. �

Corollary 4.2. Let T be a normal k-current in Ω, so we have the usual represen-
tations T = τμ and ∂T = τ ′μ′ (cf. § 3). Moreover, consider a k-distribution D of
class C1 on Ω and let Υ denote the set of all points x ∈ Ω such that:

(i) τ(x) 
= 0;

(ii) There exists s(x) ∈ [0, +∞) such that Θs(x)
∗ (μ, x) = Θ∗s(x)(μ, x) ∈ (0, +∞);

(iii) x ∈ Γ(τ, D)|τμ|,1 (note that Γ(τ, D)|τμ|,1 = Γ∗(τ, D)|τμ|,1, by remark 2.5);

(iv) |τ ′μ′|(Br(x) \ Γ(τ ′, D)) = o(rs(x)), as r → 0+.

If N is the μ-null set defined in proposition 4.1 and x ∈ Υ \ N , then the following
properties hold:

(1) The k-vector τ(x) is simple and span(τ(x)) = D(x);

(2) The distribution D is involutive at x.

Proof.

(1) We have Γ(τ, D)|τμ|,1 ⊂ Γ(τ, D)|τμ|,0, by property (2) in remark 2.7. Hence,
x ∈ span(τ(x)) ⊂ D(x), by proposition 4.1. Since τ(x) 
= 0, the conclusion
follows from properties (2) and (4) in § 2.2.

(2) Let {Bi}, {ω(i,j)}, {Ki,j} and {Ni,j} be the families defined in the proof of
proposition 4.1 (here we can obviously assume that the ω(i,j) are of class C1).
Without loss of generality we can suppose that x ∈ B1. Then, by recalling
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assumption (iii), properties (3) and (5) in remark 2.7 and (2.4), we obtain

x ∈ Υ ∩ B1 \ N ⊂ Γ(τ,D)|τμ|,1 ∩ B1 \ N

= Γ(τ,D)|τμ|,1 ∩ B
|τμ|,1
1 \ N

= (Γ(τ,D) ∩ B1)
|τμ|,1 \ N

=

⎛
⎝n−k⋂

j=1

K1,j

⎞
⎠

|τμ|,1

\ N

=
n−k⋂
j=1

K
|τμ|,1
1,j \ N

⊂
n−k⋂
j=1

(
K

|τμ|,1
1,j \ N1,j

)
. (4.1)

Moreover, (by (2.4))

Γ(τ ′,D) ∩ B1 =
n−k⋂
j=1

K ′
1,j ,

where

K ′
1,j := K(τ ′, ω(1,j)) (j = 1, . . . , n − k).

Hence,

Br(x) \ K ′
1,j ⊂ Br(x) \ Γ(τ ′,D) (j = 1, . . . , n − k),

provided r is small enough. Recalling also (iv), we obtain

|τ ′μ′|(Br(x) \ K ′
1,j) = o(rs(x)) (j = 1, . . . , n − k) (4.2)

as r → 0+. Now (ii), (4.1), (4.2) and theorem 3.3 yield

〈τ(x)�α; (dω(1,j))x〉 = 0 (j = 1, . . . , n − k)

for all α ∈ ∧k−2(Rn). From proposition 2.2 we obtain

(dω(1,j))x|span(τ(x))×span(τ(x)) = 0 (j = 1, . . . , n − k).

Now the conclusion follows from statement (1).

�

Remark 4.3. Let M be a closed k-dimensional C1 submanifold of Ω with C1

boundary such that Hk(M) and Hk−1(∂M) are finite. Let τM and τ ′
M be, respec-

tively, a continuous unit simple k-vectorfield orienting M and a continuous unit
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simple (k − 1)-vectorfield orienting ∂M such that the Stoke’s identity∫
M

〈τM ; dω〉dHk =
∫

∂M

〈τ ′
M;ω〉dHk−1

holds for all C1 differential (k − 1)-forms with compact support in Ω. Then we
consider the maps τ : Ω → ∧k(Rn) and τ ′ : Ω → ∧k−1(Rn) extending τM and τ ′

M,
respectively, such that τ |Ω\M ≡ 0 and τ ′|Ω\∂M ≡ 0. We observe that:

(1) T := τ Hk�M is a normal k-current, with ∂T = τ ′ Hk−1�∂M.

(2) The equations (3.2) hold for all x ∈ M, hence we can assume that the set N
introduced in § 3 coincides with Ω \M.

Now set for simplicity

{span(τM) = D} := {y ∈ M| span(τM(y)) = D(y)} = Γ(τ,D) ∩M,

{span(τ ′
M) ⊂ D} := {y ∈ ∂M| span(τ ′

M(y)) ⊂ D(y)} = Γ(τ ′,D) ∩ ∂M

and let us consider

x ∈ {span(τM) = D}Hk�M,1 ∩ {span(τ ′
M) ⊂ D}Hk−1�∂M,1 ∩M.

We observe that

{span(τM) = D}Hk�M,1 = Γ(τ,D)H
k�M,1 ∩MHk�M,1 = Γ(τ,D)H

k�M,1

by (3) and (7) in remark 2.7. Analogously,

{span(τ ′
M) ⊂ D}Hk−1�∂M,1 = Γ(τ ′,D)H

k−1�∂M,1 ∩ ∂MHk−1�∂M,1

= Γ(τ ′,D)H
k−1�∂M,1.

Hence, we easily obtain

x ∈ Υ ∩M = Υ \ N.

Now, by applying corollary 4.2, we conclude that span(τM(x)) = D(x) and D is
involutive at x.

The following corollary generalizes the property established in remark 4.3 for the
smooth case.

Corollary 4.4. Let D and T be, respectively, a k-distribution of class C1 in Ω
and an integral k-current in Ω. Moreover, if T = [[R, η, θ]] and ∂T = [[R′, η′, θ′]]
(cf. § 2.3 for the notation), let J be the set of all x ∈ Ω such that

lim
r→0+

∫
Br(x)∩(R\Γ(η,D))

θ dHk

rk+1
= lim

r→0+

∫
Br(x)∩(R′\Γ(η′,D))

θ′ dHk−1

rk
= 0. (4.3)

Then D is involutive at (Hk�R)-a.e. x ∈ J .
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Proof. Let us define

μ := Hk�R, τ := θη, μ′ := Hk−1�R′, τ ′ := θ′η′

so that

T = τμ, ∂T = τ ′μ′.

From [13, corollary 2.14] and [13, theorem 17.6] it follows that the following
equalities hold at μ-a.e. x ∈ Ω:

lim
r→0+

∫
Br(x)

θ dμ

μ(Br(x))
= θ(x), lim

r→0+

μ(Br(x))
(2r)k

= 1, (4.4)

hence also

lim
r→0+

∫
Br(x)

θ dμ

rk
= 2kθ(x). (4.5)

We shall prove the thesis by applying corollary 4.2. To this end, it will suffice
to prove that conditions (i–iv) of corollary 4.2 are verified at μ-a.e. x ∈ J (i.e.
μ(J \ Υ) = 0), which we do below:

• Assumption (i) is verified at μ-a.e. x ∈ Ω, since T is rectifiable (cf. § 2.3).

• Assumption (ii) is verified at μ-a.e. x ∈ Ω (with s(x) = k), by the second
equality of (4.4).

• Since Γ∗(τ, D) = Γ(η, D), we have

|τ μ|(Br(x) \ Γ∗(τ,D))
|τ μ|(Br(x))

=

∫
Br(x)∩(R\Γ(η,D))

θ dHk∫
Br(x)

θ dμ

=

∫
Br(x)∩(R\Γ(η,D))

θ dHk

rk+1
·
(∫

Br(x)
θ dμ

rk

)−1

r.

Hence, recalling also (4.3) and (4.5), we find that assumption (iii) is verified at
μ-a.e. x ∈ J .

• If we define Z ′ := {x ∈ Ω | τ ′(x) = 0}, then we have

Γ(τ ′,D) = Z ′⋃Γ(η′,D), |τ ′μ′|(Z ′) = 0.

Thus,

|τ ′μ′|(Br(x) \ Γ(τ ′,D)) = |τ ′μ′|(Br(x) \ Γ(η′,D))

=
∫

Br(x)∩(R′\Γ(η′,D))

θ′ dHk−1.

From this equality and (4.3) it follows that assumption (iv) is verified at every
x ∈ J . �
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