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Abstract. In this paper we study dynamics on the Fatou set of a rational function f 2 Qp�z�.
Using a notion of c̀omponents' of the Fatou set de¢ned by Benedetto, we state and prove an
analogue of Sullivan's NoWanderingDomainsTheorem for p-adic rational functions which have
no wild recurrent Julia critical points.
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0. Introduction

Let p 2 Z be a ¢xed prime number. Let Qp denote the ¢eld of p-adic rational
numbers,Qp its algebraic closure, andCp the metric completion ofQp, with absolute
value denoted by j � j. We consider the dynamics of a morphism f, de¢ned over Qp,
from the projective line P1�Cp� to itself; thus, f is a rational function with
coef¢cients in some ¢nite extension K of Qp. As in the complex theory of dynamical
systems, we de¢ne the Fatou setF of f to be the set of all points in the projective line
having a neighborhood on which the family of iterates ffng is equicontinuous (see,
for example, [6, 17]). Here, fn denotes the n-fold composition of f with itself.
The notions of neighborhood and equicontinuity are de¢ned by the spherical metric
on P1�Cp� determined by the non-Archimedean metric on Cp. The Fatou set is
clearly open; its complement, the Julia set J , is therefore closed. Both sets are pre-
served under the application of f.

The study of p-adic dynamical systems arises in Diophantine geometry in the
construction of canonical local heights, used for counting rational points on
algebraic varieties over a number ¢eld, as in [5]. Hsia ([10, 11]) has proven some
basic properties of non-Archimedean Julia sets and described their relation to weak
Nëron models. In addition, p-adic ¢elds have arisen in physics in the theory of
superstrings, prompting questions about their dynamics (see, for example, [1, 22,
24, 25]). Other studies of non-Archimedean dynamics in the neighborhood of a peri-
odic point and of the counting of periodic points over global ¢elds using local
(non-Archimedean) ¢elds appear in [9, 13^15, 18^21, 26].
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When studying a complex dynamical system, it is convenient to break the Fatou
set into its connected components and study the action off on the set of components.
Sullivan proved in [23] that there are no wandering components of a complex Fatou
set; in other words, every component eventually maps to a periodic component.
(A periodic component is one which maps to itself after ¢nitely many iterations.)
Thus, the study of dynamics on a component was effectively reduced to the study
of dynamics on a ¢xed component, since any periodic component of period n is
a ¢xed component of fn.

The D-components de¢ned in [2, 3] make a similar theory possible in the
non-Archimedean setting. In this paper, we prove a No Wandering Domains
Theorem for p-adic rational functions without wild recurrent critical points in
the Julia set. We also prove that such maps have only ¢nitely many periodic cycles
of components over any given ¢nite extension of Qp. The methods are comparable
to those of Man¬ ë ([16]) and others ([4 ,7], for instance) from the complex case;
however, while the complex methods must assume no recurrent Julia critical points
at all, our methods allow tame recurrent Julia critical points for p-adic maps.

1. Terminology and Theorems

We begin by recalling some basic terminology from the theory of dynamical systems.
Let X be a set, and let f be a function mapping X to itself. We say x 2 X is ¢xed if
f�x� � x; more generally, we say x is periodic (of period n) if fn�x� � x for some
nX 1. We say x is pre-periodic if fm�x� is periodic for some mX 0.

If X is a metric space, we say that a point x 2 X is recurrent if x is contained in the
closure of its (forward) orbit

ffn�x� : nX 1g:
Equivalently, a point x is recurrent if it is contained in o�x�, the o-limit set of the
sequence ffn�x�g. (Recall that the o-limit set of a sequence fang is the intersection,
over all NX 1, of the closures of the sets fangnXN .) We will often abuse language
and say that x accumulates at y if y 2 o�x�. Thus, we could de¢ne a recurrent point
to be a point that accumulates at itself.

Given a prime integer p, recall that the p-adic absolute value on Q is de¢ned by
setting j0j � 0, and

m
n
pe

��� ��� � 1
pe
;

wherem and n are nonzero relatively prime integers not divisible by p. Thus, numbers
with numerators divisible by p are `small', while numbers with denominators
divisible by p are `big'. The completion of Q with respect to this absolute value
is denoted Qp; it should be viewed as the p-adic analogue of R. The absolute value
j � j extends in unique fashion to Qp, all ¢nite extensions of Qp, and the ¢elds
Qp and Cp, de¢ned in the introduction. Unlike the extension C of R, the algebraic
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closure ofQp is an in¢nite extension ofQp. Furthermore,Qp and its ¢nite extensions
are locally compact, while Qp and Cp are not.

We recall that a non-Archimedean metric space X is a metric space satisfying the
ultrametric (strengthened) triangle inequality

d�x; z�W maxfd�x; y�; d�y; z�g for all x; y; z 2 X :

We will study dynamics of rational functions de¢ned over p-adic ¢elds (i.e., Qp and
its extensions), which are non-Archimedean. In particular, such functions act on the
p-adic projective line P1�Cp�. We will view Cp as a subset of P1�Cp� by considering
P1�Cp� to be the union P1�Cp� � Cp [ f1g:

Even though Qp and its extensions have characteristic zero, interesting phenom-
ena occur when the rami¢cation degree of a map at some point is divisible by p.
We therefore make the following de¢nition.

DEFINITION 1.1. Let f 2 Cp�z� be a rational function. We say a critical point
x 2 P1�Cp� of f is wild if the index of rami¢cation of f at x is divisible by p. If
x is not wild, we say x is tame.

For example, if f�z� � znp for some positive integer n, then 0 and1 are wild critical
points. However, if f�z� � zp � zp�1, then 0 is wild (since the lowest term in the
Taylor expansion there has exponent p, which is divisible by p), while 1 is tame
(since the critical point has index p� 1). Furthermore, there is another critical point
at ÿp=�p� 1�, with index 2; this point is wild if p � 2 and tame otherwise.

It should be pointed out that the above de¢nition abuses standard terminology
slightly. Usually, a critical point of a map (or rami¢ed place of an extension) is called
`wild' if the index of rami¢cation is divisible by the characteristic of the base ¢eld. In
our case, Qp and its extensions have characteristic zero. Nonetheless, our termin-
ology is not unjusti¢ed, because local power series may be `reduced' to maps over
¢elds of characteristic p, where the terms `wild' and `tame' are applicable. The details
of this reduction process are not relevant to our investigations, and we will not dis-
cuss them here.

If X is a metric space, x 2 X , and r > 0, we shall denote by Dr�x� and Dr�x�,
respectively, the open and closed disks of radius r centered at x. For the purposes
of this paper, we will not consider singletons or the null set to be disks; by this
convention, then, we are justi¢ed in requiring r to be positive. Note that if X is
non-Archimedean, then all disks are both open and closed as topological sets.
Furthermore, any point of a disk is a center, and if two disks intersect, then one
is contained in the other.

If Y1 and Y2 are two subsets of Cp, we will denote by dist�Y1;Y2� the distance
between Y1 and Y2; that is,

dist�Y1;Y2� � inffjy1 ÿ y2j : yi 2 Yig:
If one or both of the sets is a singleton fag or fbg, we may abuse notation and write
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dist�a;Y2�, dist�Y1; b�, or dist�a; b� when our meaning is clear. If D � Cp is a disk
(open or closed), we will denote by rad�D� the radius of D; the radius is always
a well-de¢ned positive real number. In fact,

rad�D� � supfjxÿ yj : x; y 2 Dg:

We will also be interested in `disks' in P1�Cp�, and so we recall the following
de¢nition from [3].

DEFINITION 1.2. A closedP1�Cp�-disk is a closed diskDr�x�, or the complement of
an open disk, P1�Cp� nDr�x�, for some x 2 Cp and r > 0. Similarly, an open
P1�Cp�-disk is an open disk Dr�x�, or the complement of a closed disk,
P1�Cp� nDr�x�, for some x 2 Cp and r > 0.

As noted in [8], the set ofP1�Cp�-disks coincides with the set of images of disks inCp

under automorphisms of P1�Cp�.
The topology on a non-Archimedean ¢eld is too strong for connected components

to be useful in dynamics; all components would be singletons. We therefore recall the
de¢nition of D-components from [3].

DEFINITION 1.3. Let X be a topological space with a set D of distinguished
subsets. Let U � X be an open subset, and let x be any point of U . We de¢ne
the D-component of U containing x to be the set of all y 2 U with the following
property: there exists a ¢nite sequence of distinguished subsets

D1; . . . ;Dn 2 D;

with x 2 D1 and y 2 Dn, such that for any i � 1; . . . ; nÿ 1,

Di \Di�1 6� ;:

If X is a metric space, we will choose D to be the set of all disks (of positive radius)
inX . By this de¢nition, it is easy to verify that the D-components of an open subsetU
of C are precisely the connected components of U (see [3]). On the other hand, if
X � Cp, then the D-component of an open subset U containing a given point
x 2 U is simply the largest disk Dr�x� or Dr�x� centered at x and contained in U .

However, we will usually consider X � P1�Cp�. In that case, we chooseD to be the
set of all P1�Cp�-disks; we recall the following simple result from [3].

PROPOSITION 1.1. Let U be an open subset of P1�Cp�, and let x 2 U. If
U � P1�Cp�, or if U is the complement of a single point of P1�Cp�, then the
D-component of U containing x is U. Otherwise, the D-component is the largest
P1�Cp�-disk containing x and contained in U (i.e., it is the union of all such
P1�Cp�-disks, and that union is itself a P1�Cp�-disk).
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Given a rational function f 2 Cp�z�with Fatou setF � P1�Cp�, the image f�U� of
any D-component U of F is contained in another D-component of F . In particular,
f induces an action F on the set of D-components of F , by

F�U� � the D-component containing f�U�:

Thus, we may classify D-components as periodic, pre-periodic, or wandering under
this action.

We note that there are other viable notions of components in the p-adic setting.
For instance, we could invoke rigid analysis and de¢ne the `analytic component'
of U containing a given point x to be the union of all connected af¢noids containing
x and contained in U . However, analytic components are always at least as large as
D-components, and so No Wandering Domains statements are weaker for analytic
components. On the other hand, as shown in [2], all but ¢nitely many iterates of
a wandering analytic component must be disks. A similar statement is true for peri-
odic components containing points in a given ¢nite extension of Qp. Thus, results
like the theorems below are equivalent to their analogues for analytic components.
We will therefore restrict our attention to D-components, and we leave the subject
of analytic components for a future paper. The interested reader may refer to
the author's thesis ([2]) for more information on both analytic and D-components.

We are now prepared to state our main theorems.

THEOREM 1.2 (No Wandering Domains). Let K be a ¢nite extension ofQp, and let
f 2 K�z� have no recurrent wild critical points in its Julia set. Then the Fatou set of f
has no wandering D-components.

THEOREM 1.3. Let K be a ¢nite extension ofQp, and let f 2 K�z� have no recurrent
wild critical points in its Julia set. Then the Fatou set of f has only ¢nitely many
periodic D-components which contain points of K.

The result of Theorem 1.3 cannot be extended to in¢nite extensions like K � Cp.
For example, if p is an odd prime, and

f�z� � z3 � �1� p�z2
z� 1

� z2 � pz2

z� 1
;

then f has in¢nitely many periodic D-components (and in fact, in¢nitely many
analytic components), even though all of its critical points are contained in the Fatou
set. (See [2] for a detailed analysis of this function.) However, over any given ¢nite
extension of Qp, there are only ¢nitely many periodic D-components, as dictated
by the theorem.

Sullivan's proof of the complex No Wandering Domains Theorem (see [23]) is
completely general; it uses the theory of quasi-conformal maps to generate too many
functions in the moduli space of all rational maps of a given degree. Such a theory is
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not currently available in the p-adic setting; however, it still seems likely that the
p-adic No Wandering Domains Theorem should hold in full generality:

CONJECTURE. Let K be a ¢nite extension of Qp, and let f 2 K�z� be a rational
function. Then f has no wandering D-components. Furthermore, the Fatou set of
f has only ¢nitely many periodic D-components containing points of K.

While Theorem 1.2 is not as strong as the Conjecture, it is very strong in its own
right. Generically, one would expect a critical point to lie in the Fatou set; after
all, a map contracts very strongly in a small neighborhood of a critical point, making
it more likely to produce equicontinuity. Of course, one can force a critical point to
be in the Julia set by mapping it to a repelling periodic point. As an example,
for any prime p, the map

f�z� � 1
p
�z3 ÿ z2� � 1

takes the critical point 0 to the repelling ¢xed point 1; thus, 0 lies in the Julia set.
There can even be wandering critical points in the Julia set. If we choose p � 2, then
the map

f�z� � 31
4
�z3 ÿ z2� � 1

has a critical point at 2=3 which can be shown to be both wandering and Julia (see [2])
in C2. However, in both of these examples, the critical points are not recurrent.

In fact, it is not currently known whether there exist maps with recurrent wild
critical points in the Julia set. Many complex maps have recurrent Julia critical
points; for example, any complex rational function with a Siegel disk has such a
point. Although the arguments which prove the existence of complex recurrent criti-
cal points break down in the p-adic setting, we expect that maps with such points do
exist. For instance, with p � 2, the map

c�z� � 1
2
�z3 � z2� ÿ 33

may have a recurrent wild Julia critical point at 0. If v2��� denotes the 2-adic valuation
on Cp (where v2�2� � 1), then calculations made using PARI/GP show that, for
instance:

v2 c39�0�ÿ � � 9; v2 c2204�0�ÿ � � 12;

v2 c2836�0�ÿ � � 13; v2 c24210�0�ÿ � � 16:

Thus, it seems plausible that 0 could be a recurrent critical point; since its
rami¢cation index is 2, that would make it a recurrent wild Julia critical point.
However, it is unclear how one might prove such a statement.
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Even if maps with no recurrent wild Julia critical points do not make up all p-adic
rational functions, they form a larger set than p-adic hyperbolic maps ([3]), which are
p-adic maps without Julia critical points. For example, if p > 2, the set of p-adic
rational functions of a given degree d without recurrent wild Julia critical points
is dense in the moduli space of all p-adic rational functions of degree d. This state-
ment is true for the simple reason that if p > 2, wild critical points have high
multiplicity, and therefore some small perturbation of the function breaks any wild
critical point into several critical points of lower multiplicity. Such a density state-
ment is not currently known for hyperbolic p-adic maps. It is not even known
for hyperbolic complex maps. Thus, Theorems 1.2 and 1.3 apply to a very large
and generic class of p-adic maps, even if they may fail to be completely general.

2. Mapping Properties

In [3], a weaker version of Theorem 1.2 was proven using mapping properties of
p-adic power series away from critical points. In this section we will state and prove
certain mapping properties of p-adic power series, both away from and near critical
points. Most of the results of this section can be proven using Newton polygons
to determine information about roots of power series; for more information on
Newton polygons and p-adic functions in general, we refer the reader to [12].

In particular, we will use the following statement, which is easy to verify via
Newton polygons. Let a 2 Cp, and let f 2 Cp��zÿ a�� be a power series convergent
on an open (resp., closed) disk V of radius r centered at a. If we write
f �z� �P1i�0 ci�zÿ a�i; with ci 2 Cp, and if maxiX 1 jcijri <1; then the image
f �V � is an open (resp., closed) disk of radius s � maxiX 1 jcijri:

PROPOSITION 2.1. Let V � Dr�a� be a closed disk in Cp, and let

f �z� �
X1
i�0

ci�zÿ a�i; ci 2 Cp

be convergent on V. Then f is one-to-one on V if and only if for all i > 1, jcijri < jc1jr.
In this case, jf 0�z�j � jc1j for all z 2 V, and rad�f �V �� � jc1jr; furthermore, for any
x; y 2 V,

jf �x� ÿ f �y�j � jc1jjxÿ yj:

We omit the proof of Proposition 2.1, which is a straightforward exercise in
non-Archimedean power series and Newton polygons.

The reader should be cautioned that a power series may lack critical points on a
disk but fail to be one-to-one; this situation is in sharp contrast with the complex
setting, where an onto analytic function from a disk to a disk with no critical points
is automatically one-to-one. Proposition 2.2 will help us understand the action
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of p-adic power series on disks near critical points; such disks are often mapped
multiply-to-one without containing critical points themselves.

PROPOSITION 2.2. Let V � Dr�a� be a closed disk in Cp, and let

f �z� � c0 �
X1
i�d

ci�zÿ a�i; ci 2 Cp

be convergent on V, with dX 1 and cd 6� 0. Suppose that for all i > d, jcijri < jd!cd jrd .
Let b 2 V, s � jbÿ aj, and 0 < rW s. Then

rad f Dr�b�
ÿ �ÿ � � jdcd jsd max

e�0;...;v�d�
pÿe
�� �� r

s

� �pe� �
:

Proposition 2.2 may be proven by re-centering the power series at b and then
carefully computing the absolute values of the resulting coef¢cients. The condition
jcijri < jd!cd jrd is needed to ensure that those absolute values may be computed
precisely, using ultrametricity. (Note that this condition may be guaranteed for
any given convergent power series by choosing r small enough.) The full proof (which
may be found in [2]) is straightforward but somewhat lengthy, and we omit it.

The statement of Proposition 2.2 is perhaps a little too complicated for easy
application. The next two corollaries, which follow immediately from the
proposition, will prove more useful for our purposes.

COROLLARY 2.3. Let V, f , d, b, r, and s be as in Proposition 2.2, and suppose p does
not divide d. Then

rad f Dr�b�
ÿ �ÿ � � jcd jrsdÿ1:

It should be noted that, for a map satisfying the hypotheses of Corollary 2.3, the
radius of the image of the larger disk is

rad f Ds�b�
ÿ �ÿ � � jcd jsd ;

and so the ratio of the radii of the two image disks is the same as the original ratio of
radii, r=s. In spite of the fact that the map is not one-to-one, then, the relative sizes of
the two disks are not changed by the map.

COROLLARY 2.4. Let V, f , d, b, r, and s be as in Proposition 2.2, and let a 2 R be
the value a � jpj�pÿ1�ÿ1 < 1. Suppose r=sW a. Then

rad f Dr�b�
ÿ �ÿ � � jdcd jrsdÿ1:

Furthermore, if r=s < a, then f is one-to-one on Dr�b�.

288 ROBERT L. BENEDETTO

https://doi.org/10.1023/A:1002067315057 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002067315057


Corollary 2.4 will be used in much the same way as Corollary 2.3, except that it can
be used at points a where Corollary 2.3 may not apply. In this case, the radius of the
image of the larger disk is

rad f Ds�b�
ÿ �ÿ � � jcd jsd ;

and so the ratio of the radii of the two image disks isjdj�r=s�:While this ratio may be
smaller than the original ratio of radii, we have at least some control over it.

3. Main Lemma

The statement and proof of our main lemma will be somewhat technical; we there-
fore propose the following two de¢nitions for ease of language.

DEFINITION 3.1. Let f 2 Cp�z� be a rational function. We sayf is normalized if1
is a non-repelling ¢xed point of f, and f�P1�Cp� nD1�0�� � P1�Cp� nD1�0�.

By [3], any f 2 Cp�z� has a nonrepelling ¢xed point. By a change of coordinates,
we can move this point to1. Then, by another change of the form z 7! cz, the second
condition of the above de¢nition will also hold. Therefore, any rational function is
conjugate to a normalized function; and if the original function was de¢ned over
Qp, we can guarantee that the normalized version is as well.

DEFINITION 3.2. Let f 2 Cp�z� be a rational map with Fatou setF and Julia set J ,
and let F denote the action of f on D-components of F . Let x 2 J with x 6� 1. Let
K � Cp be a complete extension of Qp. Given a real number E > 0, we say that
x has property P�E;K� if there exist positive real numbers M; r > 0 (which depend
on f, K , and E) such that the following condition holds:

For any D-component U of F with U � Dr�x�,U \ K 6� ;, and
rad(U)

dist�U; x� X E;

there is a nonnegative integer k such that rad Fk�U�ÿ �
XM:

For the purpose of the above de¢nition, we will consider the radius of a
D-component containing 1 to be in¢nite.

The idea of De¢nition 3.2 is that if a D-component containing a K-point is large
relative to its distance from a Julia point with property P, then some iterate of
the D-component is large in a global sense. Thus, if we can prove that points of
the Julia set have property P, and if we can prove that there are D-components
which are large relative to their distance from such Julia points, then we automati-
cally produce a large D-component. This idea will be crucial in the proof of our
main lemma, which we are now prepared to state.
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MAIN LEMMA. Let K be a ¢nite extension ofQp, and let f 2 K�z� be a normalized
rational map with Fatou set F and Julia set J . Assume that J contains no recurrent
wild critical points of f. Let F denote the action of f on the set of D-components
of F . Then there exists a positive constant M > 0 (depending only on f and K) with
the following property:

If U is a D-component of F with U \ K 6� ;, then there is some integer kX 0 such
that rad Fk�U�ÿ �

XM:

As in De¢nition 3.2, we will consider the D-component containing 1 to have
in¢nite radius.

The proof of the Main Lemma requires a series of technical lemmas. In these
lemmas, we prove that successively more points of the Julia set have property
P. The proofs of these lemmas are somewhat involved, and the reader may prefer
to skip to Section 4 to see their use in proving the Main Lemma.

LEMMA 3.1. Let K be a ¢nite extension ofQp, let f 2 K�z� be a normalized rational
function with Julia setJ , and let x 2 J . Suppose there is some integer NX 0 such that
for any E > 0, fN �x� has property P�E;K�. Then for any E > 0, x has property P�E;K�.

Proof. Expand fN as a power series

fN �z� � c0 �
X1
i�d

ci�zÿ x�i

centered at x, with cd 6� 0. Pick s > 0 so that the series converges on Ds�x�, and
jcijsi < jd!cd jsd for any i > d. By hypothesis, given E > 0, fN�x� has property
P�jdjE;K�. Let r be the radius around fN �x� in De¢nition 3.2, and let M be the cor-
responding lower bound. Decrease s if necessary so that fN�Ds�x�� � Dr�fN�x��.

Let F be the Fatou set of f, and let UK be the set of all D-components of F
containing points of K . By Proposition 2.2, it follows that if U 2 UK such that
U � Ds�x�, then

rad FN�U�ÿ �
X rad fN�U�ÿ �

X jdcd jdist�U; x�dÿ1rad�U�;

and

dist FN�U�;fN �x�ÿ � � jcd jdist�U; x�d :
Therefore, if

rad(U)
dist�U; x� X E;

then

rad�FN�U��
dist FN�U�;fN �x�ÿ � X jdj rad(U)

dist�U; x� � jdjE:
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Since fN �x� has property P�jdjE;K� with lower boundM, it follows that some iterate
of FN �U� has radius at least M, and we are done. &

Before stating the next lemma, we need the following notation. Given f 2 Cp�z�
with Julia set J , de¢ne

CJ � fy 2 J : f0�y� � 0g
to be the set of all Julia critical points, and let S0 � ; and T0 � CJ . Then, de¢ne Si

and Ti inductively for iX 1 by

Si � CJ points not accumulating at any wild Tiÿ1 points
� 	

;

Ti � CJ n Si:

LEMMA 3.2. Let K be a ¢nite extension of Qp, and let f 2 K�z� be normalized. Let
x 2 Si for some iX 0. Then for any E > 0, x has property P�E;K�.

Proof. We will proceed by induction on i. The statement is vacuous for i � 0; for
positive i, assume that it is known for i ÿ 1, and we will prove it for i.

Pick x 2 Si. Pick NX 0 such that there are no critical points in the set
ffn�x� : nXNg. Such an N must exist; otherwise, since there are only ¢nitely many
critical points, some iterate of x would be a periodic critical point and hence Fatou.
By Lemma 3.1, it suf¢ces to show that fN �x� has property P�E;K� for any positive
E. Thus, we may assume that x has no critical points in its forward orbit.

Pick E > 0; we can assume that E 2 jK�j and E < 1. LetF be the Fatou set and J the
Julia set of f. Let a � jpj�pÿ1�ÿ1 < 1. Let Ct � CJ denote the set of tame Julia critical
points. Extend K if necessary to contain CJ , and also so that a 2 jK�j. Let p be a
uniformizer of K . Note that x 2 K . Let UK denote the set of all D-components
of F which contain points of K .

We will now cover J \ K with a ¢nite set of disks. For any z0 2 J \ K , there is
some s > 0 such that f�z�jDs�z0� is of the form c0 �

P1
i�d ci�zÿ z0�i; where dX 1,

cd 6� 0, and jcijsiÿd < jd!cd j for all i > d. Cover J \ K by such disks and take a ¢nite
subcover. Let R be the minimum radius of the disks in the subcover; we may assume
that RW 1. Let W be the union of all closed disks of radius R centered at points of
J \ K .

Pick r > 0 such that for any critical point a at which x does not accumulate,

fn�x� ÿ a
�� �� > r

a
�1�

for all nX 0. (Note that inequality (1) implies that all accumulation points of xmust
also be at least distance r=a from such critical points.) Decrease r if necessary so that
r < R. Let M be the minimum of the lower bounds required in the de¢nition of
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property P�aE;K� for each of the (¢nitely many) points in Siÿ1. DecreaseM if necess-
ary so that 0 <MW rE.

Pick U 2 UK with U � Dr�x� and
rad(U)

dist�U; x� X E:

Pick b 2 U \ K . Let r0 be the largest value in jK�j such that Dr0 �b� � U , and let
s0 � dist�U; x�. Note that s0 � jbÿ xj 2 jK�j. For kX 1, de¢ne rk and sk
inductively, as follows. Given rkÿ1, let

rk � rad f Drkÿ1 fkÿ1�b�ÿ �ÿ �ÿ �
W rad�Fk�U��:

Given skÿ1, if dist�fkÿ1�b�;Ct�X skÿ1, let

sk � rad f Dskÿ1 fkÿ1�b�ÿ �ÿ �ÿ �
:

Otherwise, if y 2 Ct with jfkÿ1�b� ÿ yj � dist�fkÿ1�b�;Ct� < skÿ1, let

s0kÿ1 � jfkÿ1�b� ÿ yj
and

sk � rad f Ds0kÿ1 fkÿ1�b�ÿ �� �� �
:

Note that for any kX 0, Dsk �fk�b�� contains a point of J \ K . This is because
Ds0�b� contains such a point (namely x), and therefore all of its forward iterates
do as well. In addition, when we shrink sk to s0k, we do so becauseDs0k �fk�b�� contains
y 2 J \ K ; hence, the new disk and all its iterates contain J \ K points.

Let ek denote the ratio rk=sk. By our choice of U , note that EW e0 < 1. Also note
that rk; sk; ek 2 jK�j. We will now apply the following claim inductively.

CLAIM 3.1. If sk W r and Siÿ1 \Dsk=a�fk�b�� � ;, then

(1) if dist�fk�b�;Ct�X sk, then ek�1 � ek.
(2) otherwise, ek�1 X jpÿ1jek.

Assume the claim is true for a moment. Ds0�b� intersects the Julia set (at x), so its
iterates have arbitrarily large radii. Using the claim repeatedly, we see that
at some step k, one of three obstacles arises: sk X r, or there is some
x0 2 Siÿ1 \Dsk=a�fk�b��, or some y 2 Ct is close to fk�b�. In the ¢rst case,
rk X rEXM (since ek X E), and so Fk�U� has radius at least M, and we are done.
In the second case, Fk�U� satis¢es

rad Fk�U�ÿ �
dist Fk�U�; x0ÿ � X aE;

292 ROBERT L. BENEDETTO

https://doi.org/10.1023/A:1002067315057 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002067315057


(again, because ek X E), and by the inductive hypothesis, some iterate of Fk�U� has
radius at least M. In the third case, we note that ek�1 > ek, and that Ds0k �f

k�b��
intersects the Julia set (at y); therefore, its iterates must eventually have large radii.
Thus, we can start our process again by iterating Ds0k�fk�b��.

Provided the radii stay smaller than r and the iterates stay away from Siÿ1 points,
we can continue this process inde¢nitely. At each stage, we either produce an iterate
of U with radius at least M (and the process stops), or we increase ek. However,
ek < 1, since the disk of radius sk contains Julia points, and the disk of radius
rk does not. Furthermore, when ek increases, it increases by a factor of at least
jpÿ1j; thus, it can only increase a bounded number of times. Thus, at some stage,
we must produce an iterate of U with radius at least M. To prove the lemma, then,
it suf¢ces to prove the claim.

Fix kX 0, and suppose sk W r and Siÿ1 \Dsk=a�fk�b�� � ;. Let

Vs � Dsk �fk�b�� and Vr � Drk �fk�b��:

As we saw above, Vs contains some point z of J \ K ; because sk W r < R, we have
Vs � DR�z�. By our choice of R, we know that DR�z� contains at most one critical
point; and if there is a critical point, it must be in J \ K .

If there is no critical point in DR�z�, then by Proposition 2.1, our choice of R
guarantees that f is one-to-one on DR�z� and hence on Vs; thus, the ratio of radii
of f�Vs� to f�Vr� is the same as that of Vs to Vr, and we are done.

If there is a wild critical point a 2 DR�z�, then it must be outside Dsk=a�fk�b��. This
is because x does not accumulate at any wild points besides those in Siÿ1; and by our
de¢nition of r, the ratio of sk to the distance between b and a is less than a. The reader
may object that, by our choices of fsjg, we cannot assume that some iterate of x lies in
Dsk=a�fk�b��. However, if at some point we decreased si to s0i, the resulting disk con-
tained a critical point y 2 Ct which was within r of an iterate of x. By our choice
of r, ymust be an accumulation point of the iterates of x, and therefore some iterate
of x must be nearby.

Thus, in the case of a wild critical point a 2 DR�z�, we can apply Corollary 2.4 to
the power series expansion of f about a. We then see that f is one-to-one on
Vs and therefore preserves the ratio of the radii of Vs andVr. By Corollary 2.3,
the ratio is also preserved if there is a tame critical point in DR�z� which is not
in Vs.

The only case that remains to be considered is that Vs contains a tame critical
point y. As before, y must in fact be an accumulation point of x.

If dist�fk�b�; y� � sk, then applying f to Vs and Vr, we see by Corollary 2.3, that

ek�1 � rk�1
sk�1
� rad f Drk fk�b�ÿ �ÿ �ÿ �

rad f Dsk fk�b�ÿ �ÿ �ÿ � � rk
sk
� ek:

On the other hand, if s0k � dist�fk�b�; y� < sk, we can apply Corollary 2.3 to
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Ds0k fk�b�ÿ �
to show that

ek�1 � rk�1
sk�1
� rad f Drk fk�b�ÿ �ÿ �ÿ �

rad f Ds0k fk�b�ÿ �� �� � � rk
s0k
>

rk
sk
� ek:

Furthermore, ek; ek�1 2 jK�j, so if ek�1 > ek, then ek�1 X jpÿ1jek. The proof of the
claim is complete, and the lemma follows. &

LEMMA 3.3. Let K be a ¢nite extension of Qp, and let f 2 K�z� have no recurrent
wild critical points in its Julia set. Then there exists some mX 0 such that Tm � ;.

Proof. Note that T0 � CJ , and

Ti�1 � CJ points accumulating at wild Ti points
� 	

:

Therefore, we can write

Ti � a0 2 CJ
9a1; . . . ; ai 2 CJ wild, and
8j � 0; . . . ; i; aj accumulates at aj�1

������ �
:

Let mÿ 1 be the number of wild Julia critical points. If Tm were nonempty, then
there would be wild Julia critical points a1; . . . ; am with aj accumulating at aj�1. Thus,
there must be j and k with j < k and aj � ak. Thus, aj accumulates at ak � aj; it
follows that aj is a recurrent wild critical point in the Julia set, contradicting the
hypotheses of the lemma. So Tm � ;. &

4. Proofs of Main Lemma and Theorems

We are now prepared to prove our Main Lemma.

Proof of Main Lemma. Let CJ denote the set of Julia critical points, and let
a � jpj�pÿ1�ÿ1 ; extend K to contain CJ and so that a 2 jK j. Let p be a uniformizer
of K. De¢ne the radius R as in the proof of Lemma 3.2. Let UK denote the set
of all D-components of F which contain points of K .

By Lemmas 3.2 and 3.3, we know that all Julia critical points have property
P�jpja;K�. Let M be the minimum of the lower bounds required in De¢nition
3.2 for each of the (¢nitely many) Julia critical points, and let R0 be the minimum
of the corresponding radii. Decrease R if necessary so that RWR0 and R 2 jK�j.
Let W be the union of all closed disks of radius R centered at points of J \ K .

We claim that there are only ¢nitely manyD-componentsU 2 UK not contained in
W . For suppose there were in¢nitely many. Choose a sequence fUig � UK and
ai 2 Ui \ K . The sequence faig must have an accumulation point in K \D1�0�, since
f is normalized and K is locally compact. This accumulation point cannot be Fatou,
or else in¢nitely many of the faig would be in its D-component. But it cannot be Julia
either, since Ui 6�W . Our claim follows from the contradiction. We can therefore
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de¢neM0 > 0 to be the minimum radius of the U 2 UK outside of W . DecreaseM if
necessary so that MW maxfR;M0g.

CLAIM 4.1. For any U 2 UK, there exists kX 0 such that

(1) Fk�U� 6�W , or
(2) rad�Fk�U��XR, or
(3) there is y 2 CJ with

rad Fk�U�ÿ �
dist Fk�U�; yÿ � X jpja:

The key observation used in the proof of the claim is that for any diskV �W with
rad�V � < R and

rad�V �
dist�V ;CJ � < a;

f must be one-to-one on V . To see this, pick a 2 V , and consider the disk
DR�a� � DR�x� for some x 2 J \ K. If DR�x� contains no critical points, then by
Proposition 2.1 and our choice of R, f is one-to-one on DR�x� and hence on V .
On the other hand, if DR�x� does contain critical points, then it contains exactly
one, which lies in J \ K ; we can assume that x is this critical point. By Corollary
2.4, f is one-to-one on V , because the radius of V is less than a factor of a times
the distance of V to x.

We prove the claim by contradiction. Pick U 2 UK for which the claim fails. Pick
b 2 U \ K . Let r � rad�U�, and let s 2 jK�j be the smallest value in jK�j which is
strictly larger than r. By de¢nition of D-components, Ds�b� contains Julia points.

Since the claim fails for k � 0, we see that r < R and

r
dist�U;CJ � < jpja:

Because jpja;R; dist�U;CJ � 2 jK�j, it follows that sWR and

s
dist�U;CJ � W jpja < a:

As we saw above, f must be one-to-one on Ds�b�, and so, by Proposition 2.1,

rad f�U�� �
rad f Ds�b�

ÿ �ÿ � � r
s
:

Similarly, by choosing k � 1, it follows that

rad f2�U�ÿ �
rad f2 Ds�b�

ÿ �ÿ � � r
s
;
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and, continuing the process, for any kX 0,

rad fk�U�ÿ �
rad fk Ds�b�

ÿ �ÿ � � r
s
:

In particular, every fk Ds�b�
ÿ �

has radius at most Rjpjÿ1 and is therefore contained in
Djpÿ1j�0�. Hsia's Theorem (see [11]) states that if a family of analytic functions from a
disk toP1�Cp� omits at least two points ofP1�Cp�, then the family is equicontinuous.
Since the family ffng on Ds�b� omits in¢nitely many points, it is equicontinuous, and
soDs�b� is contained in the Fatou set. But we saw before that it contains Julia points.
We have a contradiction, and so the claim follows.

The claim tells us that given any U as in the statement of the Main Lemma, some
iterate Fk�U� either has radius at least maxfR;M0g, or there is y 2 CJ with

rad Fk�U�ÿ �
dist Fk�U�; yÿ � X jpja: �2�

In the former case, we have an iterate of radius at least M, as desired. In the latter
case, because y has property P�jpja;K� with lower bound M, we know that some
later iterate of U has radius M. Either way, the proof is complete.

Our theorems now follow relatively easily from the Main Lemma.

Proof of Theorem 1.2. Given f 2 K�z� with no recurrent wild critical points in its
Julia set, we can assume that f is normalized. We do so by conjugating the original
f by some element of PGL�2;Qp�; the resulting normalized function is de¢ned over
a ¢nite extension of K , so we replace K by this ¢nite extension.

SupposeU is a wandering D-component. ThenU must contain some point b 2 Qp.
Extend K to contain b; thus, U and all its iterates contain points of K .

Select M > 0 according to the Main Lemma. Then there must be some iterate
Fk0 �U� of radius at least M. Applying the Main Lemma to Fk0�1�U�, there is some
further iterate Fk0�k1 �U� of radius at least M. We can continue this process to pro-
duce an in¢nite sequence of iterates of U , all of radius at least M, all containing
points of K , and, because U is wandering, all distinct. Since they are all full
D-components, they cannot even intersect.

However, none of the iterates ofU can be the D-component at1 (which is ¢xed),
and therefore they are all contained in D1�0�. Thus, we have in¢nitely many
non-intersecting disks of radius M > 0 centered at points of K \D1�0�. Because
K is locally compact, this is impossible; we have the desired contradiction. &

The proof of Theorem 1.3 is similar, and we omit it.
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