
ON THE STRUCTURE OF SEMI-PRIME RINGS 
AND THEIR RINGS OF QUOTIENTS 

JOACHIM LAMBEK 

We are mainly interested in the study of prime and semi-prime rings and 
their rings of quotients. However, our argument proceeds largely in the 
category of modules (§ 1 to 4) and bimodules (§ 5 to 7). 

After a brief description of the generalized rings of quotients introduced 
recently by Johnson, Utumi, and Findlay and the present author, we study 
a closure operation on the lattice of submodules of a module. For the lattice 
of left ideals of a ring, the concept of closed submodules reduces to the If-ideals 
of Utumi. The lattice of closed submodules of a module is always a complete 
modular lattice. We are specially interested in the case when it is a comple­
mented lattice. This happens, in particular, when the singular submodule of 
Johnson and Wong vanishes. We consider the lattice of closed right ideals 
of a prime ring S and determine the maximal ring of right quotients of S in 
the case when this lattice has atoms. Our results for such prime rings are 
closely related to recent results by Goldie, Lesieur and Croisot, and Johnson. 

All proofs in § 2 and § 3, concerning the closure operation on the lattice 
of all submodules of a module, have been carefully designed to carry over to 
an essentially different situation in § 5. There we study a closure operation, 
called b-closure, on the lattice of all submodules of a bimodule. This does not 
reduce to the original closure operation, even when the bimodule is con­
verted into a right module. The connection between the two closure operations 
is rather exemplified by the following: Call a submodule dense (Jo-dense) if its 
closure (ô-closure) is the whole module. Then an ideal in a ring is è-dense 
if and only if it is dense both as a right ideal and as a left ideal. 

Each bimodule M possesses a b-completion, that is a largest bimodule in 
which M is 6-dense. The ^-completion of a ring 5 is also a ring and coincides 
with the so-called maximal ring of right and left quotients, first introduced 
in a special case by Utumi and defined in general by Johnson and Wong. The 
^-completion of a prime ring with non-zero socle is described symmetrically 
in terms of dual vector spaces. 

The ^-closed ideals of a semi-prime ring S are precisely its annihilator ideals. 
They form a complete Boolean algebra, which is isomorphic with the algebra 
of regular open sets in the prime ideal space of S. If S is also ^-complete, the 
^-closed ideals are precisely the direct summands of S. This fact is exploited 
to obtain a structure theorem: Every such ring 5 is the direct sum of two 
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rings C and C*, where C is the complete direct product of ^-complete prime 
rings and the lattice of annihilator ideals of C* has no atoms. 

The main results of § 5, § 6, and § 7 have been announced to the American 
Mathematical Society (Notices, 7 (I960), pp. 92 and 241). 

I wish to thank Dr. Utumi for his careful reading and helpful criticism of 
the manuscript. 

1. Survey of generalized rings of quotients. 

1.1. If S is any associative ring, a right 5-module Ms consists of an additive 
abelian group M and a mapping (m, s) —> ms of M X S into M satisfying the 
obvious distributive and associative laws. Left modules are defined dually. 
The ring 5 gives rise, in an obvious way, to the right module Ss and the left 
module SS. 

A right module Ms is called unitary if S has a unity element 1 and ml = w 
for all m Ç M. Every right module Ms can be converted into a unitary module 
Ms# as follows: 5# is the ring consisting of the additive group S © Z, Z the 
ring of integers, with multiplication defined by 

(s + z) (s' + z') = {ssf + szf + zs') + zz\ 

for Sy s' Ç 5 and z, z' Ç Z. One then puts 

m(s + z) = ms + mz, 

for m G M, s Ç S, and z Ç Z. 

1.2. Findlay and the present author (5) investigated a relation among 
three modules As, Bs, and Cs> They wrote A < B(CS) as an abbreviation 
for any of the following three equivalent statements: 

(1) i s is a submodule of Bs and, for any submodule Es of As — £#, 
Horn s (E, C) = 0. Here A — B is the difference (or quotient) module of A 
modulo B. 

(2) As is a submodule of Bs and, if 0 Ç Hom s(D, C), where Ds is any 
submodule of ^ ^ and i C ker 0, the kernel of 0, then the image im <j> = 0. 

(3) i s is a submodule of Bs and, for any b £ B and any 0 ^ c G C, there 
exists an s Ç vS and an integer s such that fo + #3 G A and cs -\- cz 9^ 0. If 
the modules in question are unitary, z can be taken to be 0. 

1.3. If A < B(BS), Bs was called a rational extension of i s . It was shown 
that any module Ms possesses a largest rational extension (rational com­
pletion) M si unique up to isomorphism over Ms. Ms is rationally complete in 
the following sense: If i < B(MS), then every 0 Ç H o m s ( i , M) can be 
extended to a (unique) </> G Horn 5 (5 , M). Two constructions of ikf 5 were given : 

(1) Let Ms1 be the minimal injective extension (4) of Ms, then Ms con­
sists of all those elements of MS

T which are annihilated by every endomor-
phism of MS

T which annihilates Ms-
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(2) The right ideals D of S$ such that D < S#(MS) form a directed set 
under inclusion, and the additive groups Hom s(D, M) form a direct system. 
Their direct limit is turned into an ^-module Ms in a natural way. If Ms 

is unitary, one may replace the S# of this construction by .S. 

1.4. Johnson and Wong (19) called a submodule Ls of Ms large if it has 
non-zero intersection with every non-zero submodule of Ms. They introduced 
the singular submodule J(MS) of a module Ms- It consists of all elements 
of M which annihilate a large right ideal of S. They showed that if J(MS) = 0, 
then also J (Ms) — 0 and M s is injective. Moreover, the ring of endomor-
phisms of Ms is regular (in the sense of von Neumann) and injective as a 
right module. 

1.5. If S is any associative ring, Qs the rational completion of Ss, then Q 
is actually a ring extending 5. Q coincides with the maximal ring of right 
quotients of S, previously defined by Johnson (10) and Utumi (17) in the 
following important cases. 

Johnson s case. The singular submodule of Ss is actually an ideal, call it 
the right singular ideal. Johnson assumed that this ideal vanishes. He showed 
that the right singular ideal of Q then also vanishes and that Q is regular 
and injective as a right Q-module. 

Utumi s case. Utumi assumed that, for any non-zero element 5 of 5, 
55 5* 0. It is, in fact, easily seen that this is a necessary and sufficient con­
dition for Q to contain a unity element (5, 6.2). 

Among many other interesting applications, Utumi computed the maximal 
ring of left quotients of any primitive ring S with non-zero socle (17, 5.1). 
Thus, let V = eS be a minimal right ideal of such a ring, e an idempotent 
element of 5 (9, p. 57, Proposition 1). Then D = eSe is known to be a skew-
field, and F is a vector space DV. Utumi showed that Hom jD(F, V) is the 
maximal ring of left quotients of S. 

1.6. For an integral domain 5, the maximal ring Q of right quotients 
coincides with the classical field of quotients. If 5 is not an integral domain, 
there may also exist a "classical" ring of quotients. For example, if S is 
commutative, then this classical ring of quotients Qcl consists of all ratios 
s/sf, where s (z S and s' is any regular element of S, in the sense that s"s' 9e 0 
for any non-zero element s". However, Qcl may be smaller than Q. For 
instance (2), if 5 is any Boolean ring, then Qcl ~ 5, but Q is the Dedekind-
MacNeille completion of 5. 

1.7. The ternary relation A < B(CS) has a number of properties, which 
are easily derived from the definition. We state them here for later reference. 

P0. If B - A9ÉB' - A' and C ^ C , then A < B(CS) implies 
A' <B'(Ca'). 

PL If 0 < C(CS), then C = 0. 
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P2. If A < B(CS) and P s is a submodule of Cs, then A < 5 ( P S ) . 
P3. If Ds is a submodule of Bs containing the submodule As (that is, 

A CD CB), then 

A < B(CS)<^ both A < D(CS) and D < S(CS ) . 
P4. 4 <A(CS). 
P5. If ^ < B(C5) and C < JD(JDS), then 4 < B(DS). 

Actually, it was shown in (5) that the second condition of P5 can be 
replaced by the weaker assumption that Cs is a large submodule of Ds. This 
stronger result will not be used here. 

We mention also the following property, which has to do with change of 
rings (5, 5.5). 

(t) For any modules ATl BT, and CT, if 5 is a subring of T such that 
5 < T(Cs), then 

A < B(CT)^A < B(CS). 

2. The lattice associated with a module. All modules are understood 
to be right 5-modules. 

2.1. Let A be a submodule of M. There is a largest submodule Ac of M 
containing A such that A < AC(M). This may be constructed as follows: 

Ac = {m e M\ A < A + mS*{Ms)} 
= \m e M\ m~lA < S#(MS)}. 

The second formula is due to Findlay. Here 

m~lA = {x Ç »Ŝ | mx £ A}. 

2.2. The assignment c: A —> Ac is a closure operation on the lattice of all 
submodules of M. It has the following properties: 

CI. 0C = 0. 
C2. (A r\B)c = Acr\Bc. 
C3. If 0 6 Homs(M, M), then <j>(Ac) C (</>A)e> 

These correspond to Al, A2, and half of A3 of Johnson's "structures" on 
rings (11). 

Proof. 
(CI) Since 0 < 0C(M), therefore 0 < 0C(0C), by P2, hence 0C = 0, by PL 
(C2) Since c is a closure operation, (A C\ B)c C Ac C\ Bc. To show the 

converse, observe that A < AC(M). From this we deduce that A < Ac C\ 
{A + B)(M), by P3, that is A < A + (Ac C\ B)(M), by the modular law. 
Now 

(A + (Ac r\ B)) - A ^ (Ac H B) - (Ar\ B), 

by one of the isomorphism theorems of group theory. Therefore A C\ B < 
Ac r\B(M), by P0. Similarly we deduce from B < BC(M) that i c H 5 < 
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Ac r\Bc(M). In view of P3, both these results together imply that 
AC\B <Acr\Bc{M). 

(C3) Let <j> £ Homs(M, M), K = Ac C\ ker 0. Now A < AC(M), 
çj>Ac^Ac-K, <f>A^(A + K) - K, and </>Ac - <f>A ÊË Ac - (A + K). 
By P3 and PO, <j>A < <t>Ac(M), hence (j>Ac C (<M)C, as required. 

2.3. PROPOSITION. 7%e tofo'ce L(M) of closed submodules of M is a com­
plete modular lattice, with set-intersection as meet. 

Proof. That we have a complete lattice follows from the fact that we have 
a closure operation. The join of two or more submodules of M is defined by 

AV B = (A +B)C, V At= ( D At)
e. 

Finally, let A, B, and C be submodules of M and assume that B C. A. Then 

A n (BV C) = Acr\ (B + C)c 

= (Af\(B + C))c 

= (B + (An c)Y 
= BV (AnC), 

using C2 and the modular law for the lattice of all submodules of M. 

2.4. A submodule K of M will be called dense if Kc = M. One easily verifies 
that every dense submodule is large. 

LEMMA. If K is dense in M, A any submodule of K, then Ac C\K is the 
closure of A in K. 

Proof. Since A < Ac, we have A < Ac H K(K), by P2 and P3. Therefore 
Ac r\ K is contained in the closure Ad of A in K. 

Now A < Ad(K), hence A < Ad(M)y by P5. Therefore Ad C A\ and so 
Aa ç_AcC\K. 

Note. We should really write AC^M) for Ac and ^C(K) for Ad, but we have 
endeavoured not to make the notation too heavy. 

2.5. The following partly generalizes a result by Utumi (17, Theorem 2). 

PROPOSITION. If K is dense in M, then L(K) and L(M) are isomorphic 
lattices under the inverse correspondences 

A-*AC, B^Br\Ky 

where A € L(K) and B G L(M). 

Proof. Again let d denote the closure operation in K. We observe that 
clearly Ac G L(M) and that B C\ K Ç L(K), since 

{B r\K)d = Bd r\Kd = BC r\Kr\K = B r\Ky 

by C2 and the above lemma. 
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Next, we note that the two mappings are inverses. For Ac C\ K = Ad = A, 
by the lemma, and (B P K)c = Bc P Kc = B P M = B, by C2 and the 
fact that K is dense in M. 

Finally, we observe that the two mappings are meet-isomorphisms, hence 
lattice isomorphisms. For B P B' P K = B Pi K Pi B! P K and {A C\ A')c 

= AC p Afc. 

2.6. PROPOSITION. If K is a closed submodule of M, then any closed sub-
module of K is closed in M. 

Proof. Let A be a closed submodule of K, then A < AC(M), hence 
A <Acr\ K(K), by P2 and P3. Thus, ACC\KCA, which is closed in K. 
But A CAcandA C K, hence A = Ac P K = Ac P Kc = (A P K)c = A\ 
in view of C2. 

2.7. Examples of closed submodules are the following submodules K of M: 

(1) K is maximal such that K P L = 0, for some submodule Z, of M. 
(2) X = {m G Af| / % = 0}, for some subset F of Hom5(M, ikf). 
(3) X is a direct summand of M. 
(4) K is rationally complete. 
Indeed, (1) follows easily from the known fact that every dense submodule 

is large, (2) follows immediately from C3, and (3) is a special case of (2). 
Finally, assume that K is rationally complete, Kc its closure in M. Then Kc 

is a rational extension of K and therefore coincides with K, and so K is 
closed in M. 

2.8. By the socle of a complete lattice we shall understand the join of all 
its atoms, that is its minimal non-zero elements. 

PROPOSITION. The socle of L(M) is contained in every large closed submodule 
of M. It is mapped into itself by every endomorphism of M. 

Proof. Let A be an atom of L(M), L a large closed submodule of M. Since 
A T^ 0, we have A P L 3̂  0. Since A said L are closed, so is A P L. Since 
A is an atom, A P L = A, that is A C L. Thus L contains all atoms, hence 
their join. 

Let 0 e Homs(M, M) and let {Ai}UI be the set of all atoms of L(M). 
By C3, 

4>(Z At)
ccUi: Ai)cc(T, (MiY)e. 

\ iel / \ iel / \ iel / 

The result will follow if we show that the (4>A t)
c are all 0 or atoms. 

Let A = At be any atom of L(M). Any submodule of <j>A has the form 
(j>B, where K C B Q A, K being the kernel of <£. Assume B ^ 0, then 
<f>A - <t>B^ÉA - B. Now B < A(M), hence 0 5 < <M(ilf), by P0. There­
fore <t>A C {<t>B)c, a n d so (<t>A)c C (<t>B)c. 

Now let C be any closed submodule of M such that 0 ^ C C (<M)C. Since 
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§A is a large submodule of (<i>A)c, C C\<j>A is a non-zero submodule of <t>A, 
hence has the form 4>B, where B ^ 0. By the above and C2, 

(<M)cc {cn$Ay = ccr\ (< )̂c = c. 
Thus (<t>A)c is an atom, as remained to be shown. 

2.9. PROPOSITION. / / M is any module, the socle of L(M) is the closure of 
the discrete direct sum of some of its atoms. If L(M) is a distributive lattice, 
then its socle is even the closure of the discrete direct sum of all the atoms. 

Proof. The argument for the first result is standard, for example, (9, p. 61). 
Indeed, let {At}i€l be the set of all atoms of L{M). By Zorn's lemma, one 
finds a maximal subset J oi I such that, for all i £ / , 

Atn V Aj = 0. 

Now, for any i Ç / , At C\ V jeJ Aj = 0 or = At. By maximality of J , it is 
easily shown to be not 0, hence At C V jej Aj. The first result now follows. 

Next, assume that L(M) is a distributive lattice. We will show that 

AiH Z Aj = 0, 

for any i G / . Thus, suppose that m belongs to the set denoted by the left 
side of this equation. Then there is a finite subset F oi I — {i} such that 

m e AtnJ2 AjCV (AiHAj), 
jeF jeF 

by the distributive law. Since i([ F, At and A j are distinct atoms, hence 
At r\ Aj = 0 for all j Ç F. Therefore m = 0, as required. 

3. Complemented lattices. Unless otherwise stated, all modules are 
still assumed to be right 5-modules. 

3.1. Of special interest is the case where the lattice of closed submodules 
of a module is complemented. 

LEMMA L(M) is complemented if and only if every large submodule of M is 
dense. 

We recall that a large submodule is one that has non-zero intersection 
with every non-zero submodule. 

Proof. Assume L(M) is complemented. This means that for every closed 
submodule A there is a closed submodule B such that A C\ B = 0 and 
A V B = M. Let L be any large submodule of M, then Lc will have a com­
plement K = Kc. But then K Pi L = 0 and so K = 0. Hence Lc = Lc V K 
= M. 

Conversely, assume the condition and let A be any closed submodule of 
M. Using Zorn's lemma, we find a maximal B such that A C\ B = 0. By 2.7(1), 
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B is closed. A well-known argument (10) now shows that A + B is a large 
submodule of M. By assumption, A + B is dense, hence its closure A V B = M. 
Thus i? is a complement of ^4. 

Our proof is now complete. Incidentally, we have shown: 
If L(M) is complemented and A £ L(M), then any maximal submodule 

B of M such that A C\ B = 0 is a complement of ^4. 

3.2. PROPOSITION. 7/ /Ae lattice L{M) associated with a module M is com­
plemented then so is the corresponding lattice of any submodule and of any 
rational extension of M. 

Proof. Let L(M) be complemented. If A" is a rational extension of M, then 
L(M) =L(N), by 2.5, hence L(N) is also complemented. 

Now let A be any submodule of M. Since A is dense in Ac, L(A) and 
L(AC) are isomorphic, by 2.5. Thus it suffices to show that L(K) is com­
plemented, for any closed submodule K. 

Let B Ç L{K) C L(Af), by 2.6. Hence there exists C £ L(M) such that 
£ H C = 0 and B V C = M. We claim that (C H 2£)d is a complement of 
£ in L(K), where d is the closure operation for submodules of K. 

Indeed, C H X i s a large submodule of (C H i£)<*, hence B C\ (C C\ K)d = 0. 
Moreover, by the modular law and C2, 

(5 + (cr\K))c = {{B + c)r\K)c = (B + cyr\Kc = MC\K = K. 
Therefore, in view of 2.6, 

K = (B + (cnx))cc «s + (crMC)yy 
= (B + (c n K))d c (s + (c r\ Kyy, 

hence the right side = K, as required. 

3.3. THEOREM. If M is rationally complete and L(M) is complemented, then 
the following conclusions hold: 

(a) Every closed submodule of M is a direct summand. 
(b) For any submodule D of M, any <j> £ Homs(D, M) may be extended to an 

endomorphism of M. 
(c) F = Homs(M, M) is a regular ring. 
(d) The lattice L(M) is isomorphic with the lattice of principal right ideals 

ofF. 
(e) F is injective as a right F-module. 

Proof. 
(a) Let A be a closed submodule of M. By assumption, it has a comple­

ment B so that A H B = 0 and A V B = M. Consider the map <j> £ Horn s 
{A + B, M) defined by <j>(a + b) = a. By rational completeness, this may 
be extended to ^ € Hom5(ikT, M). We have 

*M = iK4 + B)c C (rp(A + B))c = Ac = A, 

by C3. Thus, for any m £ M, 
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\J/2m = yptym) = <j>{i/m) = ^m, 

and so ^ is a decomposition operator. 
(b) Let D C M, <j> £ Homs(D, ikf). By rational completeness of M, </> may 

be extended to 4>f Ç Homs(Z)c, M). By (a), I}c is a direct summand of M, 
hence <j>' may be extended further to an element of Homs(M, M). 

(c) Let / G F = Horn5(If, I f ) . We observe that X = ker / is closed by 
2.7(2). By (a), K is a direct summand, hence M = K + H and K H\ H = 0. 
Thus jf induces an isomorphism g: H —>fH. By (b), g~1:fH—^H may be 
extended to / ' Ç T7. For any k £ K, h £ H, we thus have 

//'/(* + h) = ff'O + fr'gh =fk+fh= f(k + h). 

Therefore / / ' / = / . 
(d) This is proved like Johnson's theorem (12, II, 7.5), by showing that, 

for any idempotent e Ç F, the principal right ideal eF of F determines the 
direct summand eM of M and vice versa. Thus eM = (eF)M and eF = {/£ F\ 
fM CeM}. 

(e) This is proved like (19, Theorem 5). 

3.4. Looking at the above proof, we find that the conditions of the theorem 
can be somewhat relaxed. Instead of rational completeness, it surfaces to 
assume this: 

For any submodule D of M, every 0 Ç Homs(D, M) can be extended to 
some (necessarily unique) <£' Ç Homs(D

c, M). 
It is easily seen that this condition is equivalent to the following: 
M is mapped into itself by every endomorphism of the rational completion 

M of M. 

3.5. Examples. The lattice L(M) will be complemented if the singular sub-
module J(M) = 0. Johnson and Wong proved (c) and (e) for this important 
case. However this is not the only example. 

The ring S = Zp oi integers modulo the prime p may be regarded as a 
right Z-module. As such, its singular submodule J(SZ) = Zp ^ 0. Now, L(SZ) 
has only two elements, hence is trivially complemented. It can also be shown 
that Sz is rationally complete. 

Johnson and Wong (19, Theorem 5) have also shown that M is infective 
when J(M) = 0. This result cannot be generalized to the case when L{M) 
is complemented. For Zv, regarded as a Z-module, is not divisible. 

3.6. We may ask when the lattice associated with a module consists of 
only two elements, that is, every non-zero submodule is dense. Goldie (5) 
has called a non-zero module uniform if every non-zero submodule is large. 
Thus, by 3.1, L(M) has exactly two elements if and only if M is uniform and 
L(M) is complemented. 

Of special interest is the case when S = Z, the ring of integers. 
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PROPOSITION. / / M is an additive abelian group (Z-module), then L(M) has 
exactly two elements if and only if M is cyclic of prime order or a subgroup 
of the additive group of rationals. 

We shall omit the proof, which depends on standard theorems in the theory 
of abelian groups. 

3.7. A lattice is called atomic if every non-zero element contains ( > ) an 
atom, or minimal non-zero element. 

PROPOSITION. / / the lattice L(M) is complemented and atomic, then its socle 
is M. If the socle of L (M) is M, then L (M) is complemented. 

Proof. Assume that L(M) is atomic and complemented. Let C be its socle, 
D a complement of C. Since C C\ D = 0, D contains no atoms, hence D = 0. 
Therefore M = (C + D)c = Cc = C. 

Conversely, suppose that C = M. By 2.8, every large, closed submodule 
of M coincides with M. By 3.1, L(M) is complemented. 

4. On prime rings. 

4.1. An associative ring 5 is called prime if it has any one of the following 
equivalent properties: 

(1) For any non-zero ideals A and B of S, AB 9^ 0. 
(2) For any non-zero elements s, sf of 5, sSsf 9e 0. 
(3) For any non-zero ideal A of S, Ar = 0. 
(4) For any non-zero ideal B of S, Bl = 0. Here 

Ar = {s e S\ As = 0}, Bl = {s e S\ sB = 0} 

are the right and left annihilators of A and B respectively. 
If S is a ring for which Sl = 0, it is well known (5, 6.4) and easily shown 

that an ideal A of S is dense as a submodule of Ss if and only if A l = 0. 
It follows that every two-sided ideal in a prime ring is dense. 

LEMMA. If S is a prime ring, the socle of L(SS) is either 0 or S. 

Proof. Suppose the socle of L(SS) is not 0. By 2.8, it is an ideal, hence 
dense. But, by definition, the socle is closed, hence it coincides with S. 

4.2. If S is a prime ring, Q any ring of right quotients of S, then Q is also 
a prime ring. (It suffices to assume that Ss be a large submodule of Qs.) 

Indeed, let A and B be non-zero ideals of Q. Then A r\ S and B Pi 5 are 
non-zero ideals of 5, hence (A r\S)(B r\S) 5* 0, and so AB j* 0. 

4.3. The following theorem owes its present form to a discussion with 
R. E. Johnson. (An independent proof of it was also found by Utumi.) 

THEOREM. If S is a prime ring such that the lattice L(SS) has non-zero socle> 
then its maximal ring of right quotients is a complete ring of linear transforma­
tions of a right vector space. 
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Proof. We are given that S is a prime ring such that L(SS) has non-zero 
socle. Let Q be its maximal ring of right quotients, this is also prime, by 
4.2. Moreover L(QS) = L(SS), by 2.5. We shall verify below that the closed 
submodules of Qs are actually closed right ideals of Q, hence L(QQ) = L(QS). 
Therefore, L(QQ) also has non-zero socle, which must coincide with Q, by 
4.1. Now, by 3.7, L(Q) is complemented. Since Sl = 0, Q contains a unity 
element (see, for example (5, 6.2)). Therefore Q = HomQ((2, Q), and this is 
a regular ring, by 3.3. Thus every principal right ideal of Q is a direct sum-
mand, hence a closed right ideal. Therefore, every atom of L(QQ) is a minimal 
right ideal. Thus Q has non-zero socle. (The usual socle of Q is the socle of 
the lattice of all right ideals of Q.) Moreover QQ is rationally complete. By 
Utumi's theorem, mentioned in 1.5, Q ~ Hom D (F ' , V')y where D is a skew-
field and V'D is a right vector space. 

4.4. The proof given above depended on the following lemma, which is 
implicit in the work of Utumi. 

LEMMA. / / Q is the maximal ring of right quotients of S then any closed sub-
module of Qs is a closed right ideal of Q. 

Proof. Let A be a closed submodule of QSJ and let a G A. Take any q' G Q 
and 0 9^ q G Q. Since 5 < Q(Qs), we can find x G S# such that q'x G S and 
qx ^ 0. Now take any a' G A, then {a' + aq')x G A and qx ^ 0. Thus 
A < A + aQ(Qs), and so 4 + a<2 C Ac = A, hence a<2 C A. Therefore A 
is a right ideal. To see that it is closed, assume A < B(QQ). Then also 
A < B(QS), by 1.7 (f), hence 5 C i c = i , as required. 

4.5. As has also been observed by Johnson, Theorem 4.3 partly generalizes 
a recent result of Goldie (8). Goldie obtained the conclusion of Theorem 4.3 
(even using the classical ring of quotients) for prime rings satisfying the 
following ascending chain conditions as well as their symmetric duals: 

(lr) Every direct sum of non-zero right ideals of 5 has a finite number of 
terms. 

(2/) The ascending chain condition holds for the annihilator left ideals of 5. 
It is not difficult to show that the assumption of Theorem 4.3 for a prime 

ring 5 is implied by (lr) and (2/), or even by (lr) and (2r), the symmetric 
dual of (2/) (15, Propriété 12). In this connection we shall only establish 
one lemma. 

4.6. A ring without non-zero, nilpotent ideals is called semi-prime. Clearly, 
every prime ring is semi-prime. 

LEMMA. / / S is any semi-prime ring satisfying (21), then J(SS) = 0 . 

Proof. Let {Li\ i G /} be the set of all closed large right ideals of 5 and 
consider 

/ = E U. 
iel 
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We have 

\ iel / \ ieF / 

for a finite subset F of I, by (2/). Therefore 

\ ieF / ieF 

since A —> Alr is also a closure operation on the lattice of r ight ideals of S, 
and the intersection of "closed" right ideals is "closed." Now a finite inter­
section of large right ideals is large, hence L = Jr is a large right ideal. T h u s 
( / C\ L)2 C JL = 0. Since 5 is semi-prime, / C\ L = 0, hence / = 0. 

T h u s Li1 = 0, for all closed, large right ideals Lt of 5 . This easily implies 
t h a t Lri = 0, for any large right ideal L' of 5 , as was to be shown. 

5. Rational completions of bimodules. 
5.1. If R and 5 are associative rings, a bimodule RMS consists of a r ight 

module Ms and a left module RM with the same addit ive group such t h a t 

{rm)s = r(ms) (r G R, m G ilf, 5 G S) . 

By a s tandard trick, RMS may be regarded as a right module, even a un i ta ry 
right module ik/"r. T h u s let Rf be anti-isomorphic with R, then we pu t 
T = S* ®ZR'* and write 

m(x ® y') = ymx (m G M, x G 5^, 3> G i ^ ) . 

In view of this identification it is clear tha t , for R- 5-bimodules A, B, and 
C, A < B(RCS) must mean t h a t #^4 s is a submodule of # £ # and Hom f i t i S (E , 
C) = 0, for every submodule RES of RBS— RAS. We can also speak of the 
rat ional completion RMs of RMS, meaning t ha t MT is the rational com­
pletion of MT. 

5.2. T H E O R E M . Let RMS be any bimodule, RMS its rational completion. Then 

the rational completions of Ms and RM are also bimodules RMS and RMS re­
spectively. They are isomorphic over RMS to unique submodules of RMs and 
will be identified with these. Their intersection RMS in RMs is the largest extension 
of RMS satisfying M < M(MS) and M < M{RM). RMS is ub-complete" in 
the following sense: 

If RA S and RB s are any bimodules such that A < B(MS) and A < B(RM), 
then any element of Horn R f S (A , M) can be extended to a unique element of 
H o m ^ C B , M). 

Proof. Every r G R determines an element of Hom(S(ikf, M), namely the 

map m —> rm, m G M. Since Ms is dense in Ms, this map may be extended 

to a unique element of Homs(M, M), by 1.3. We may as well write this 

map n —> m, n G M. T h u s M is also an R- 5-bimodule. 

https://doi.org/10.4153/CJM-1961-033-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-033-1


404 JOACHIM LAMBEK 

- 4 - 4 - 4 - > 

Now M < M(MS), a fortiori M < M(RMS). By 1.3, the injection of M 

into M can be extended to a unique element of HomRtS(M, M), and this is 
easily seen to be a monomorphism. 

We may identify M with its isomorphic image in M. Similarly M may be 
-* *~ -» -» 

regarded as a submodule of M. Put M = M P If. From M < Af (Af #) we 
immediately deduce that M < M($s). By symmetry, we have also 
M < Af (#Af)- We defer the proof that Af is the largest extension of M with 
these two properties. 

Now let A < B(MS), A < B(Rtâ), and 0 6 H o m 5 i S ( i , Af). 4̂ fortiori, 

<£ Ç Horn # (̂ 4, Af), hence it may be extended to a unique 0 Ç Hom^(^, Af). 
- 4 - 4 - 4 

Take any r £ R and compare r<£ with </>r Ç H o m s ( 5 , M). These two maps 
- 4 

coincide on A, hence on B, since A KB(MS). (This last statement follows 

from 4̂ < B(US) and Af < Af(M5) by P5, where the second statement 

follows from M < i f (AQ by P3.) 
-4 -> 

Thus 0 G HornRtS(B, Af). In the same way, we extend <t> to a unique 
4 - 4 - - > 4 -

</> Ç HornR>S(B, Af). Now both <f> and 0 may be regarded as elements of 
HomRjS(B, Af). They agree on ^4, hence on B, since 4̂ < B(RMS). (This 
last statement follows by P5 from 4̂ < B(RMS), which is a trivial consequence 
of A < B(MS), and Û < M(RM8), an immediate consequence of M < 
Jt f (Â) . ) 

- > - ^ 4 - 4 -

Now the image of <j> lies in Af, the image of cj> in Af, hence their common 
- 4 <r-

image lies in M P M = Af, and so we obtain an element of HomRfS(B, Af). 
Finally, assume that M < N(N8) and M < N(RN). It follows by a 

standard argument that N may be regarded as a unique submodule of Af. 
(Indeed, since N < ilf (Af*), P5 yields AT < N(Û8), and similarly AT < N(RÛ). 
In view of the completeness property just proved, the injection of M into Af 
may be extended to a unique element of Homi2>(S(7V, Af), and this is easily 
seen to be a monomorphism.) Thus M is, up to isomorphism, the largest 
bimodule N with the prescribed properties. 

5.3. THEOREM. Let S be a ring, s&s its rational completion as a bimodule. 
- 4 <r-

The maximal rings S and S of right and left quotients of S, regarded as S-S-bi-
modules, are isomorphic to unique submodules of SSS, and will be identified with 
these. Their intersection S is a subring of both. It is the largest ring extension 
of S which is both a right and a left ring of quotients of S. 

S is the maximal ring of right and left quotients of 5 of Johnson and Wong 
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(19, 8). A special case had previously been studied by Utumi (17, 5.3). The 
present construction is more symmetrical than these earlier ones. 

Proof. All of this follows immediately from 5.2, with the exception of the 

fact that the operations of multiplication in the rings 5 and 5 coincide on 
their intersection S. 

As was shown in (5), 5 is a ring with multiplication * (say) such that 

q * s = qs> for all q Ç 5 and s £ S. By symmetry, S is a ring with multiplica-
<-

tion o (say), such that s o p = sp, for all ^ G 5 and p Ç S. We wish to show 
that poq = p*q(zS, for all p and q in S. 

Let us write 

Y = {y e S*\ qy 6 5}, X = {% e S*\ xp e S\. 

A simple calculation show sthat 

x(p o q)y = (xp)(qy) = x(p * q)y {x Ç X, y G F), 

and so X(£ o q — p * q)Y = 0. Since 

S# - F ^ (gS# + 5) - 5, 

we deduce from P3 that F < 5#(55), and similarly that X < S#(SS). The 
result now follows if, for any m £ S, XmY = 0 implies m = 0. In view of 
the representation of bimodules as unitary right modules (see 5.1), this may 
be inferred from the following lemma. 

5.4. LEMMA. If MR, Ns> AR, Bs and CR®S o,re right modules such that 
A < M(CR) and B < N(CS) then [A ® B] < M ® N(CR®S). 

Here [A ® B] is the set of all 

k 

E a, ® bi e M® N 
1 = 1 

with at £ A and bt Ç 5 . 

Proof. Let Z) be any i£ ® S-submodule of I f ® TV and consider <f> Ç Hom^gjs 
(Z>, C) such that [4 ® B] C ker 0. We wish to show that im </> = 0. 

Take a fe-tuple (#i, . . . , ak) of elements of A. Let Z>' be the set of all 
^-tuples (wi, . . . , nk) of elements of A" such that 

X) a* ® Wi G P . 
i = i 

Clearly, D' is an 5-submodule oî kN = N ® . . . ® N. Let 

0'(wi, . . . , % ) = <̂( X 0i ® wi ) , 
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then <t>' Ç Homs(Z>', C) and kB C ker <j>'. Now, B < N(CS), hence 
0 < N - 5 (C 5 ) , and therefore 0 < k(N - B)(CS). But k{N - B)^kN 
- kB, hence kB < kN(Cs). Therefore im <j>' = 0, and so [4 ® TV] C ker <t>. 
Repeating the whole argument on the other side, we finally obtain 
M ® N C ker <£, as required. 

5.5. Let D be a skew-field, D F and F '^ left and right Z>-modules (vector 
spaces) respectively. Put 

B = HomD,D(V®z V',D); 

this is clearly an additive group. We may regard B as the module of bilinear 
forms from V X V into D. There is a canonical isomorphism 

B ^ Hom D (F, H o m ^ n £>)). 

Thus, for any b £ B and y G F, we may regard vb as an element of Homf l ( V, D) 
such that 

(»&y = vbv' W e V). 

(We write vbv1 in place of b(v ® v').) 
An element b0 of 5 is called non-degenerate if 

^ 0 = 0 =* y = 0 and 00«>' = 0 =» v' = 0 (t; 6 V, v' £ V). 

lî B contains a non-degenerate element bo, V and V are called dwa/ nectar 
spaces (9, p. 69). 

Put 5 = V ®D V. This is turned into a ring with an obvious multiplication, 
as illustrated by 

(v[ ® Vi) (v2 ® V2) = Vi ® (ViboV2)V2. 

Moreover, one obtains in a natural way the bimodules DVS, SV'D, and SBs. 
If VD and DV are dual vector spaces, the mapping v^vbo is a mono-

morphism of DV into Hom jD(F /, D), and this induces a monomorphism of 
Homz>(F, V) into 5 , its image being {b £ B\ Vb QVbo}. We also have an 
isomorphic embedding of s^s into SBs- Indeed, the element 

n 

s = X v\ ® Vi 
1 = 1 

of 5 gives rise to the bilinear form (s) where 
n 

v(s)v' = 23 (vbov'i)(Vibov'). 
i=i 

THEOREM. Let VD and DV be dual vector spaces with a non-degenerate bilinear 
form bo, and let S be the ring V ®D V. Then the bimodule SB s of bilinear forms 
from V X V into D is a rational extension of SSS, and the maximal rings of 
right quotients, left quotients, and right and left quotients of S may be realized 
thus: 
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S = {b e B\ bV ChV'}, 

S = {b G B\ VbC Vbo}, 

S = {b Ç B\ bV C b0V
f and Vb C Vb0}. 

We omit the proof of this theorem, which is another formulation of Utumi's 
results (17, 5.1, 5.3), in the hope of improving it at a later time in two 
directions : to identify the rational completion of sSs and to extend the result 
to projective modules over prime rings. 

5.6. The preceding theorem may be applied to obtain 5 for any prime ring 
5 with non-zero socle. As is well known (16), such a ring is a primitive ring, 

hence we may apply Utumi's result (see 1.5). Thus 5 = HomD(F, V), where 
D = eSe is a skew-field and V = eS is a left Z)-module. Dually, also 

5 := Hom jD(F /, V), where V = Se is a right Z>-module. Utumi also computed 
5 (17, 5.3), but a more symmetric form of S may be obtained by 5.5. 

Indeed, it is well known (9, page 77) that DV and V'D are dual vector 
spaces. One easily verifies that S is a ring of right and left quotients of SeS, 
the latter being isomorphic to V %D V = So, say. Thus S = So, and this is 
determined by 5.5. 

6. On semi-prime rings. 

6.1. With any bimodule RMS we may associate the lattices L(RMs), L(RM), 
and L(Ms). In addition, we shall be interested in the lattice Lb{RMs), which 
consists of all b-closed submodules of RMS, where b is a closure operation 
defined on the lattice of all submodules of RMS as follows: 

Let RAs be any submodule of RMS then RAb
s is the largest submodule 

RBS of RMs such that 

(Ï) A<B(MS) and A < B{RM). 

We will show that RAb
s is in fact the intersection of the closure of A s in 

M s with the closure of RA in RM. 
Indeed, let the closure operation for submodules of Ms be denoted by 

c. Take any element r of R, then 

r(Ac) C (rA)c C Ac, 

by C3 and the fact that A is a left i^-module. Thus we have a bimodule 
RAC

s. In the same way, if the closure operation for submodules of RM is 
denoted by d, we obtain a bimodule RAd

s. Put B = Ac C\ Ad, then B is a 
bimodule and (J) holds. 

On the other hand, assume that RBS is any submodule of RMS satisfying 
(J). Then B C Ac and B C Ad, hence B C Ac H Ad, as was to be shown. 

Henceforth we write Ab = Ac C\Ad. 
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6.2. We now make the blanket assertion: 
All results obtained for L(MS) in § 2 and § 3 remain valid for Lb(RMs), 

mutatis mutandis. 
Indeed, the results in § 2 and § 3 were based only on these facts: the existence 

of a closure operation, the existence of a rational completion, and properties 
PO to P5 for the ternary relation A < B(CS) among right modules. 

Since we have already established the existence of a 6-closure and a b-
completion, it remains to verify properties PO to P5 for the ternary relation 

A < B(Cs) and A < B(RC) 

among bimodules. This is a routine verification. For example, P5 asserts for 
bimodules that 

[A < B(CS) and A < B(RC) and C < D(DS) and C < D(RD)] 

=>[A <B(DS) and A < B(BD)]. 

This implication clearly follows from the separate implications for left modules 
and right modules. 

From the above blanket assertion we must except the special construction 
in 2.1. 

In translating results from one situation to the other, we must make the 
following replacements : 

c by b, 
L(M) by L"(M), 
closed by b-closed, 
dense by b-dense, 

rationally complete by b-complete, 
rational extension by right and left rational extension. 

Here a submodule RAS of RMS is called b-dense if Ab = M. 
In future, the analogue of (let us say) 2.5 for 6-closure will be denoted 

by 2.5». 

6.3. If S is a ring, we are particularly interested in Lb(sSs), which we 
shall denote more briefly by Lb(S). 

PROPOSITION. For an associative ring S, Lb (S) has at most two elements if and 
only if either S is a prime ring or S2 = 0 and the additive group of S is cyclic 
of prime order or a subgroup of the additive group of rationals. 

Proof. We proceed in three steps. 
(1) If 5 is a non-zero prime ring, then Lb(S) has exactly two elements. 
Indeed, let A be any non-zero ideal, then A l = 0. From this one easily 

deduces that ^4^ is dense in 5 5 . See, for example (5, 6.4). Similarly SA is dense 
in SS, hence A is 6-dense in S. 

(2) If Lb(S) has at most two elements and S2 9e 0, then 5 is a prime ring. 
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Indeed, assume that every non-zero ideal is 6-dense and 52 9e 0. Suppose 
S1 9e 0, then sS = 0, for some s 9e 0. Then S#s is a non-zero ideal, hence it 
is ô-dense in 5. But S$sS = 0, hence 55 = 0, contrary to assumption. Thus 
Sl = 0, and similarly 5 r = 0. 

Now suppose sSs' = 0, s' 9e 0. Since 5 r = 0, Ss' ^ 0. Since, 5Z = 0, 
Ss'S 9* 0. Thus Ss'S is £-dense in 5. But s5s'5 = 0, hence s5 = 0. Since Sl = 0, 
we have 5 = 0. Therefore 5 is a prime ring. 

(3) If 5 2 = 0, then Lb(S) = Lb(zSz) = L(S), where Z is the ring of integers. 
The result now follows from 3.6. 

6.4. We may also ask when Lb(S) is a complemented lattice. Essentially, 
this implies that 5 is a semi-prime ring and that Lb(S) is a Boolean algebra, 
as we shall see. 

PORPOSITION. If S is a ring for which Lb(S) is complemented, then Lb(S) = 
Lb(S), where S is the maximal ring of right and left quotients of 5. If further­
more Sl = 0, then S is semi-prime. 

Proof. Clearly, ^ is &-dense in SSS. Hence, by 2.5», Lb(S) ^ Lb(sSs). We 
claim that the latter is actually Lb(èSè) = Lb(S). Indeed, this will follow 
from the lemma below, which asserts that all ^-closed submodules of sSs are 
6-closed ideals in 5. 

If Sl = 0 then Sl Pi 5 = 0, hence, also Sl = 0, since 5 < S(SS). For the 
remainder of the proof we may as well assume that S = S and S1 = 0. Suppose 
that A is a non-zero, nilpotent ideal of 5, say Ak = 0 and A10"1 9^ 0, for 
k > 2. Let 5 = A*-1 and consider its ^-closure Bb. Now 5 < B f t(5s), 
BBb C 5, and £ 2 = 0, hence BBb = 0. Applying 3.3&, we obtain 5 = Bb 0 C, 
where C is another ideal of 5. Therefore BC C. BbC = 0, hence BS = 
Ui?& + 5 C = 0. Since Sl = 0, we deduce B = 0, a contradiction. Thus 5 
contains no non-zero, nilpotent ideal, and so is semi-prime. 

6.5. LEMMA. If S is a ring such that Lb(S) is complemented, 5 its maximal 
ring of right and left quotients, then any b-closed submodule of sSs is a b-closed 
ideal of 5. 

Proof. Let A 6 Lb(sSs). By 3.3&, S = A + B, A r\ B = 0. Now A r\ S 
and B P\ 5 are ideals of 5, and 

(A r^s)(B ns) c A nB = o. 
By 2.56, the ^-closure of A H 5 in 5 3 s is 4 and that of B H 5 is B. 

Take any element a of 4̂ P\ 5, then aB (Z S, a(B r\ S) = 0 and B r\ S K 
B(SS), hence aJ3 = 0. Thus (/I C\S)B = 0. Arguing similarly on the other 
side, we obtain ^45 = 0. By symmetry also BA = 0, and so A and B are 
ideals of 5. 

Let ,4' be the ^-closure of A in i^ i , then A < .4 '(5i) . But 5 < 5(5 5 ) , 
hence -4 < A'($s), by 1.7(f). Similarly A < A'(s$), and so .4' is contained 
in the 6-closure of A in sSs, which is just A. Thus A' — A, as required. 
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6.6. Johnson has shown in (12, II)—among many other interesting results 
—that the annihilator ideals of a semi-prime ring form a complete Boolean 
algebra. This is also contained in the following: 

THEOREM. If S is a semi-prime ring, then Lb(S) is a complete Boolean algebra, 
whose elements are the annihilator ideals of S. If S is the maximal ring of right 
and left quotients of S, then S is also semi-prime, Lb(S) = Lb(S), and the elements 
of Lb(S) are the direct summands of S. 

Proof. Let S be semi-prime. We first verify the following condition: 
(*) For each ideal A of S there exists an ideal A* such that, for any ideal 

B of M, A H B = 0 if and only if B C A*. 
Indeed, let Ar be the right annihilator of A in S, then (A C\ Ar)2 C AAr = 0, 

and so A C\ Ar = 0, since 5* is semi-prime. If B is any ideal such that 
A r\B = 0, then AB = 0, hence B C Ar. Thus the condition holds with 
A* = Ar. 

The following consequences of (*) are immediate: 

(1) A* is uniquely determined. 
(2) A C A**, ,4*** CA*, A CB=*B* C A*. 
(3) A —>^4** is a closure operation. 
(3) A** is the largest ideal of S in which A is a large S-S-subrnodule. 
(5) For any collection {Ai}UI of ideals of S, 

(Z AtY-nAl 
\ iel / iel 

(6) The ideals A of 5 such that ^4** = A form a complete Boolean algebra 
with set intersection as meet and * as complementation. The join of a family 
{Ai} UI of elements of this Boolean algebra is given by 

v ^ = ( z Aty = (nA*y. 
iel \ iel / \iel / 

We omit the straightforward derivations of (1) to (6) from (*). Since we 
could also have taken A* = A1, the left annihilator of A in S, it follows from 
(1) that A* = Ar = A1. Thus the right annihilator ideals of 5 are the same 
as the left annihilator ideals. 

Next, we shall show that 

(**) A <A**(SS). 

Take x G ^4**, 0 j* s Ç S, we seek y £ 5^ such that sy ?* 0 and xy G A. In 
fact, we shall find y in S. We have apparently three cases: 

Case 1. sA 9* 0. Take y 6 A such that sy 9* 0. Then xy G SA C A. 

Case 2. sA* 9+ 0. Take y G ^ * such that sy 9+ 0. Then;ry G A** A* = 0 C A. 

Case 3. sA = 0 and 5.4* = 0. Then s (A + A*) = 0, hence s £ (A + A*)* 
= A* P\ ^4** = 0. Since 5 ^ 0 , this case does not really arise. 
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Now ^4** is a closed submodule of S8, by 2.7 (1). Hence, by (**), it is 
the closure of A in Ss. By symmetry, it is also the closure of A in SS, hence 
it is the 6-closure of A in SSS. Thus the annihilator ideals coincide with the 
6-closed ideals, and so Lb(S) is a complete Boolean algebra, by (6) above. 

It follows from 6.4 that Lb(S) ^Lb(S) and that S is semi-prime. Hence 
the annihilator ideals of 5 are also the 6-closed ideals of 5, and these are the 
direct summands of S, in view of 3.36. The proof is now complete. 

6.7. The Dedekind-MacNeille completion of a partially ordered set 5 is a 
complete lattice, whose elements are the subsets of 5* of the form (see (1, p. 
58, Theorem 12)): the set of all lower bounds of the set of all upper bounds 
of a non-empty subset K of S. The following corollary to Theorem 6.6 contains 
a new proof of the main result of (2) for Boolean rings with 1. 

COROLLARY. The Dedekind-MacN eille completion of a Boolean ring with 1 
is given by 

L\S) ^L\S) 9ÉS = S. 

Proof. Let K be any non-empty subset of 5, then the set of its upper 
bounds is 

Kf = {s G 5| Vk<K sk = k] ={seS\l-se X*}, 

and the set of all lower bounds of Kf is 

{t e s\ VseK> st = t\ = {te s\ K*t = o} = x**. 
Thus the Dedekind-MacNeille completion of 5 consists precisely of the anni­
hilator ideals of S, hence coincides with Lb(S) ~ Lb(S), by Theorem 6.6. Now 

it is easily verified that S = S is a Boolean ring (see (2, Corollary 2)). There­
fore Lb(S) =S, by the last part of Theorem 6.6. 

6.8. We have called a ring semi-prime if it has no non-zero, nilpotent ideals. 
It is known (see, for example (9, p. 196)) that a semi-prime ring may also 
be characterized as a ring in which the intersection of all prime ideals is 0. A 
prime ideal of 5 is any ideal P such that S — P is a prime ring. The following 
two assertions are equivalent characterizations of prime ideals: 

(a) For all ideals A and B, if AB C P then A CP or B CP-
(b) For all elements 5 and sf, if sSsf C P, then 5 G P or s' G P. 
In what follows, &{S) will denote the set of proper prime ideals of S. 
It is easily verified that, for any ideal A of a semi-prime ring S, 

A* = r\{P e SP{S)\ A (IP}. 

This was used in a different approach to Theorem 6.6 by the author in (Amer. 
Math. Soc. Notices, 7 (1960), p. 92). It turns out that every proper prime 
ideal P is either 6-closed (P** = P) or 5-dense (P** = S) in S. The former 
are also the maximal proper ^-closed ideals of 5. 
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Condition (*), which is responsible for associating a Boolean algebra with 
the ring S, might also hold for rings which are not semi-prime. It can be 
shown that (*) is in fact equivalent to the vanishing of the intersection of all 
ideals P' of S such that 

A r\B = 0=^ either A C P' or B C P ' , 

for any ideals A and B. A similar result holds for modules, but it would take 
us too far afield to go into further details here. 

6.9. As was pointed out by McCoy (16), the set &(S) of proper prime 
ideals of a semi-prime ring becomes a topological space under the usual 
Stone topology, the open sets being precisely the sets 

TA = {P 6 0>(S)\ A (IP), 

where A is any ideal of S. 
If V is any open subset of &{S), we introduce the ideal 

AV = r\PtVp. 

Then AIM = A*, the annihilator of A. On the other hand, TAV = VL is 
easily seen to be the interior of the complement of V, also called the exterior 
of V. A set of the form V-1 is called a regular open set. The open set U is regular 
open if and only if {U1-)1- = U. 

THEOREM. If S is a semi-prime ring, the mapping A —> TA is an isomorphism 
of the complete Boolean algebra of annihilator ideals of S onto the algebra of 
regular open sets in the prime ideal space SP{S). 

Proof. One easily verifies that T(A*) = (TA)± and T(AC\B) = T(A) 
Pi T(B), for annihilator ideals A and B. Thus T is a lattice homomorphism. 
Now ATA is the inverse mapping of T; for let A be any annihilator ideal, 
V any regular open set, then 

(ArA)IM = (A*)* = A, r(ATA) V = (V-1)-1 = V. 

The analogous result for maximal ideal spaces of commutative semi-simple 
rings with 1 was recently obtained by Fine, Gillman, and the present author. 
The proofs of these two results are practically identical. 

7. On the structure of semi-prime rings. We wish to present some 
results on the structure of semi-prime rings, which resemble those of Dieu-
donné (3). We require three lemmas which we have stated together for con­
venience. 

7.1. LEMMA. Let S = C © D as a direct sum of rings. 
(1) If S is a b-complete ring, then so is C. 
(2) L"(SCS) = L"(C). 
(3) sCs is a b-complete bimodule, if C is a b-complete ring, and Sl = 0 = ST. 
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Proof. 
(1) Let A < B(CC), A < B(CQ, and 0 G H o m C ( C ( i , C). We may turn 

A and i? into S-5-bimodules by demanding that DB = 0 and BD = 0. Then 
also 4 < B(CS) and A < B{8C). Now # may be regarded as an element of 
Yioms,s{A, S), hence it may be extended to an element \f/ of HomStS(B, C). 
Then TT\J/ G Homc > c(i3, 5) extends 0, where -K is the projection C 0 D —» C. 

(2) If ,4 G Lb(sCs), a striaghtforward argument shows that 4 G £6(C). 
The converse is a bit more difficult: Let A be a 6-closed ideal in C, i? its £-
closure in SCS- Then 4. < B(CS), and so, for any è Ç 5 and O ^ c f C, we 
can find x Ç ^ such that bx £ A and ex F^ 0. Now x = c -\- d + z, where 
c G C, d £ D, and z is an integer. Since bd = 0 and cd = 0, we may as well 
take d = 0, so that x G C#. Thus 4̂ < B(CC) and, by symmetry, .4 < B(CC). 
Since 4. was a 6-closed ideal of C, we have A = B, and so 4. is also 6-closed 
in sCs, as required. 

(3) Let A < B(Cs), A < 5 ( 5 C) , and 0 6 H o m 5 | 5 ( 4 , C). Let 0 ^ c G C 
and b (z B, we can find x Ç 5^ such that ex ^ 0 and #x G ^4. Now »5Z = 0, hence 
cxC = cxS ^ 0, and so there exists c' G C such that exc' ^ 0. But bxcf G 4. 
and xc' G C, hence 4. < B(CC). Similarly A < B(CC). Since C is ^-complete, 
0 can be extended to \p G Hom C i C (5 , C). We will show that \f/ G Horns,s(B, C). 

Indeed, it suffices to show that \p(db) = d(\f/b), for any b G B and d £ D. 
Given d, the mapping b —» ^(dô) belongs to H o m c ( 5 , C), and \f/(dA) = <i>(dA) 
= d(<j>A) = 0. Now we recall that A < B(CC), hence ^(dB) = 0. Since also 
dtyB) C dC = 0, the result follows. 

7.2. PROPOSITION. 7f S is the weak direct sum of the set of rings {St} UI and 
Sl = 0 = Sr

f then its maximal ring of right and left quotients S is the complete 
direct sum of the St. 

This is the two-sided analogue of (17, 2.1). 

Proof. We shall prove this in three steps. 
(1) A complete direct sum of ^-complete bimodules is ^-complete. 
Indeed, let 

M=U Mt 
iel 

where the Mt are 6-complete i?-5-modules. Suppose A < B(MS) and 
A < B(RM). Let <t> G HomRtS(A, M). Since there is a well-known mono-
morphism of Mt into M, we have A < B(MiS) and A < B{RM%). Now let 
in be the canonical epimorphism of M onto Mu then 7r* <j> G Hom f i i / S( i , Mi). 
By ^-completeness of Mif this may be extended to xpi G Hom f i f S(5, Mi). By 
definition of direct products, there exists a unique \(/ G HomBf(S(2$, ikf) such 
that wïif/ = i/u for all i £ I. Now, for any a G -4, iTii^a) = ^ a = ?r*(<£#), 
hence ^a = 0a, and so ^ extends 0. 

(2) If 

UI 
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is the weak direct sum of rings St, and Tt is a ring of right quotients of Su 

then 

iel 

is a ring of right quotients of 5. 
Actually we only require the known case Sl = 0. In the general case one 

might proceed thus: 
Let t G Tj s G S. Denoting by tt the ith component of t, then (ts)t = tiSt 

G TiSi C Tu hence T is a right 5-module. We claim that S < T(TS). Indeed, 
let tf 9e 0 and / G T, we seek x f 5 such that £'x ^ 0 and tx G 5. 

Since /' ^ 0, there exists k £ I such that 4 ' ^ 0. Now Tk is a ring of right 
quotients of Sk, hence we can find xk G S J1 such that tkxk ^ 0 and tkxk G Sk. 
Putting xt = 0 for i ^ &, we obtain an element x of 5#, for which it is easily 
verified that £'x ^ 0 and tx G 5. 

(3) We now prove the proposition. By (2) and symmetry, 

iel 

is a ring of right and left quotients of 

5 = E St. 
iel 

Now each of the Si is 6-complete as a ring, hence also as a r-T-bimodule, 
by Lemma 7.1. Therefore, by (1), T is also ^-complete. Now T < S(TS) and 
5 < T(TS), hence T < S(TT), by 1.7 (f). By symmetry also T < S(TT), 
hence T = S. 

7.3. We recall that a ring is called b-complete if it coincides with its maximal 
ring of right and left quotients. 

THEOREM. / / S is a b-complete semi-prime ring, then S = C © C*, where C 
is the socle of Lb(S). Let {A t} i€l be the set of all atoms of Lb(S), then 

C^WAU C* - nAi*. 
iel iel 

The A i are b-complete prime rings and C* is a b-complete semi-prime ring such 
that L&(C*) has no atoms. 

Proof. Since Lb(S) is a Boolean algebra, it is a complemented distributive 
lattice. By 2.9&, the socle C of Lb(S) is the ^-closure of the weak direct sum 
of the Au and by 6.6, S = C ® C*. By Lemma 7.1, C and C* are also b-
complete rings. The A t are prime rings by 2.6 and 6.3, they are ^-complete 
by 7.1. 

Let B be the sum of the atoms of Lb(C), then C is the ^-closure of B in 
S, hence B < C(SS), and so B < C(CS). We claim that B < C(CB). 

Indeed, let c' ^ 0 and c, c' G C. Since Sl = 0, we have c'S ^ 0. But 
cfC* = 0, hence c'C ^ 0. Now J5 < C(CS), hence c'i? ^ 0. Thus we can pick 
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b £ B such that c'b ^ 0. Since B is an ideal of C, we also have cb G B, and 
therefore £ < C(CB). 

By symmetry also B < C(BC), and so C is a ring of right and left quotients 
of B. Since C is 6-complete, C = By the maximal ring of right and left quo­
tients of B. By 7.2, we have 

c^ n .̂ 
We now turn our attention to C*. We have 

c* = £*** = £* = /£ ^ \* = n A*m 
V i e / / iel 

As pointed out before, C* is a ^-complete ring. Suppose there is an atom A 
of L&(C*). By Lemma 7.1, this lattice is the same as Lb(sC*s). Now all b-
closed submodules of SC*s are ^-closed ideals of S, by 2.6&. Thus 4̂ is a 
6-closed ideal of S. 

Suppose A contains the non-zero ideal / of S, then J < A(C*S), and so 
J is a large submodule of 5, hence A C J**, by (4) in the proof of 6.6. In 
view of 6.6, A is contained in the ^-closure of J. Thus A is an atom of Lb(S). 

Now all atoms of Lb(S) are contained in the socle C, hence A C C C\ C* = 0, 
a contradiction. Therefore Lb(C*) has no atoms. To see that C* is semi-prime, 
assume that N is a nilpotent ideal of C*. Then N is also a nilpotent ideal of 
S = C © C*, and so TV = 0, as required. 

7.4. An immediate consequence of the preceding theorem is the following. 

COROLLARY. / / 5 is a semi-prime b-complete ring whose Boolean algebra of 
annihilator ideals is atomic, then S is a complete direct product of b-complete 
prime rings. 

Theorem 7.3 reduces the study of all 6-complete semi-prime rings S to 
three special cases. 

Case 1. 5 is a è-complete prime ring with non-zero socle. This case is com­
pletely described in terms of dual vector spaces by 5.5 and 5.6. 

Case 2. S is a 6-complete prime ring with zero socle. Section 4 throws some 
light on prime rings with zero socle, but it is not clear whether this is helpful 
here. 

Case 3. 5 is a 6-complete semi-prime ring for which Lb(S) has no atoms. 
Such rings are very common, as the following example shows. 

7.5. Example. Let X be a compact Hausdorff space without isolated points. 
Following (6), we consider the ring C{X) of all continuous functions from X 
to the real line, under point-wise addition and multiplication. With every 
point x G X there is associated a maximal ideal Mx = {f G C(X)\f(x) = 0}, 
and every maximal ideal has this form. Clearly C\xtXMx = 0, hence C{X) is 
semi-prime (even semi-simple). Since X has no isolated points, also 
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r\xeX-{xo}Mx = 0, for any point x0 G X. It is known (6, 2.11) that every 
prime ideal P is contained in a unique maximal ideal MP. Let SP be the set 
of all prime ideals, then 

P* = r\{pf e &\ P <t P'\ c r\\Mx * MP\ % e x\ = o. 
Now it is not difficult to show, for any semi-prime ring, that every maximal 
proper annihilator ideal has the form P = P**, where P is a prime ideal. Here 
p** _ g* = C(X), hence there are no maximal proper annihilator ideals. 
Therefore the Boolean algebra of annihilator ideals has no atoms. 

7.6. One can also obtain a kind of converse to Theorem 7.3. We shall 
here be content to remark one (probably well-known) fact. 

LEMMA. A complete direct product of semi-prime rings is semi-prime. 

Proof. First we observe that, if 5 = C ® D as a direct sum of rings, then 
any prime ideal P of C gives rise to a prime ideal P + D of S. 

Now let {Si) UI be a set of semi-prime rings, 5 their complete direct product. 
Let s £ S and suppose that s lies in every prime ideal of S. In view of the 
above observation, the component st oî s in St lies in every prime ideal of 
St. Since all St are semi-prime, st = 0, for all i Ç / , hence s = 0. 

COROLLARY. A complete direct product of b-complete semi-prime rings is a 
b-complete semi-prime ring. 
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