
JFP 28, e1, 20 pages, 2018. c© Cambridge University Press 2018

doi:10.1017/S0956796817000144

1

The adequacy of Launchbury’s natural
semantics for lazy evaluation�

JOACHIM BREITNER

Computer and Information Science, University of Pennsylvania, Philadelphia, PA-19146, USA

(e-mail: joachim@cis.upenn.edu)

Abstract

In his seminal paper “A Natural Semantics for Lazy Evaluation”, John Launchbury proves his

semantics correct with respect to a denotational semantics, and outlines a proof of adequacy.

Previous attempts to rigorize the adequacy proof, which involves an intermediate natural

semantics and an intermediate resourced denotational semantics, have failed. We devised a

new, direct proof that skips the intermediate natural semantics. It is the first rigorous adequacy

proof of Launchbury’s semantics. We have modeled our semantics in the interactive theorem

prover Isabelle and machine-checked our proofs. This does not only provide a maximum level

of rigor, but also serves as a tool for further work, such as a machine-checked correctness

proof of a compiler transformation.

1 Introduction

The Natural Semantics for Lazy Evaluation created by Launchbury (1993) has

turned out to be a popular and successful base for theoretical treatment of lazy

evaluation, especially as the basis of analyzing language extensions (Baker-Finch

et al., 2000; Eekelen & Mol, 2004; Nakata & Hasegawa, 2009; Nakata, 2010;

Sánchez-Gil et al., 2010). Therefore, its correctness and adequacy is important in

this field of research. The original paper defines a standard denotational semantics

to prove the natural semantics (NS) correct and adequate against.

Launchbury presents its correctness proof in sufficient detail, and it endures formal

verification with only small changes and clarifications.

His adequacy proof is only a rough outline, though. It suggests to establish the

computational adequacy by two intermediate semantics:

• A modified NS with slightly different rules for variable lookup and function

application, that is supposed to be closer to how the denotational semantic

works, and

• a resourced denotational semantics, i.e. one that keeps track of the number of

steps required to evaluate an expression.

� This work was carried out while the author was a member of the Programming Paradigms Group of
the Karlsruhe Institute of Technology, Germany. The author was supported by the Deutsche Telekom
Stiftung.
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2 J. Breitner

The equivalence between the NS and the alternative natural semantics (ANS) was

not proven by Launchbury. Although quite intuitive, a rigorous proof is yet to be

found. Sánchez-Gil et al. have attempted to perform this proof and obtained an

equivalency proof for just the change to the application rule (2014); the other half

is still pending.

Having seen the difficulty of performing these proof steps on the side of the

NS, we departed from the outline provided by Launchbury and skipped the ANS

altogether. With a small, but important modification to the resourced denotational

semantics, which ensures that while evaluating an expression with finite resources,

values on the heap are used with fewer resources, the proof was possible.

We have implemented and mechanically verified all definitions, propositions and

proofs using the theorem prover Isabelle/HOL (Breitner, 2013). This way we can be

confident that there are no holes left in the proof that would again have to be filled

by later generations. Furthermore, it provides a tool that can be used in further

work: In Breitner (2015c), we use the denotational semantics to show the functional

correctness of a compiler transformation, while we use the operational semantics

to prove that the transformation does not degrade the program’s performance

(measured by the number of heap allocations).

Our contributions are as follows:

• We reproduce and clarify Launchbury’s correctness proof (Section 3).

• We analyze the ANS used in his adequacy proof outline and show how to

handle the differences on the denotational sides (Section 4.2).

• This way, we can provide a new and more direct proof of adequacy (Section

4.3).

• We provide an Isabelle implementation of the various definitions and a

machine-checked proof.

• We identify and discuss all adjustments to original definitions that we found

to be required or helpful when rigorizing this work (Sections 2.3, 3.1 and 4.6),

and discuss.

2 Launchbury’s semantics

Launchbury defines a semantics for a simple untyped lambda calculus consisting of

variables, lambda abstraction, applications and mutually recursive bindings:

x, y, z, w ∈ Var

e ∈ Exp ::= λx. e | e x | x | let x1 = e1, . . . , xn = en in e

The set of free variables of an expression e is denoted by fv(e); we overload this

notation and use fv with arguments of other types that may contain variable names.

We equate alpha-equivalent lambda abstractions and let bindings, i.e. λx. x = λy. y

and fv(λx. y x) = {y}. The theoretical foundation used is Nominal logic (Urban &

Kaliszyk, 2012). This does impose a few well-formedness side conditions, such as

equivariance of definition over expressions. We skip them in this presentation, and

do so with good conscience, as they have been covered in the machine-checked

proof.
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The adequacy of Launchbury’s semantics 3

Fig. 1. Launchbury natural semantics, as revised by Sestoft.

Note that the term on the right hand side of an application has to be a variable.

A general lambda term of the form e1 e2 would have to be pre-processed to

let x = e2 in e1 x before it can be handled by this semantics.

2.1 Natural semantics

Launchbury gives this language meaning by a NS, specified with the rules in

Figure 1, which obey the following naming convention for heaps and values:

Γ,Δ,Θ ∈ Heap = Var �→ Exp

v ∈ Val ::= λx. e

A heap is a partial function from variables to expressions; the same type is used

for the list of bindings in a let. The domain of a heap Γ, written dom Γ, is the set of

variables bound in the heap. Heaps are not alpha-equated, so dom Γ ⊆ fv(Γ). We

write x �→ e for the singleton heap and use commas to combine heaps with distinct

domain.

A value is an expression in weak head normal form. Here, the only values are

lambda abstractions. A judgment of the form Γ : e ⇓L Δ : v means that the

expression e with the heap Γ reduces to v, while modifying the heap to Δ.

The set L was not present in Launchbury’s rules, but added by Sestoft (1997)

to keep track of variables that must be avoided when choosing new names in the

Let rule, but would otherwise not be present in the judgment any more (cf. Section

2.3.1).

We consider a judgment Γ : e ⇓L Δ : v to be closed if fv(Γ, e) ⊆ dom Γ ∪ L. Note

that this property is preserved by our semantics, as fv(Δ, v) ⊆ dom Δ ∪ L holds for

closed judgments as well.

The evaluation does not forget bindings, i.e. Γ : e ⇓L Δ : v implies dom Γ ⊆ dom Δ.

2.2 Denotational semantics

In order to show that the NS behaves as expected, Launchbury defines a standard

denotational semantics for expressions and heaps, following Abramsky (1990). The

semantic domain Value is the initial solution to the domain equation:

Value = (Value → Value)⊥,

which distinguishes ⊥ from λx.⊥. Lifting between Value → Value and Value is

performed using the injection Fn ( ) and projection ↓Fn . Values are partially

ordered by �.
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4 J. Breitner

A semantic environment maps variables to values:

ρ ∈ Env = Var → Value

and the initial environment ⊥ maps all variables to ⊥. Environments are ordered by

lifting the order on Value pointwise.

The environment ρ|S , where S is a set of variables, is the restriction of ρ to S:

(ρ|S ) x =

{
ρ x, if x ∈ S

⊥ if x �∈ S.

The environment ρ \ S is defined as the restriction of ρ to the complement of S , i.e.

ρ \ S := ρ|Var\S .

The semantics of expressions and heaps are mutually recursive. The meaning of

an expression e ∈ Exp in an environment ρ ∈ Env is written as �e�ρ ∈ Value and is

defined by

�λx. e�ρ := Fn (λv.�e�ρ
{x �→v})

�e x�ρ := �e�ρ ↓Fn ρ x

�x�ρ := ρ x

�let Δ in e�ρ := �e�{{Δ}}ρ.

We can map this over a heap to obtain an environment:

�x1 �→ e1, . . . , xn �→ en�ρ := [x1 �→ �e1�ρ, . . . , xn �→ �en�ρ]

The semantics of a heap Γ ∈ Heap in an environment ρ, written {{Γ}}ρ ∈ Env, is

then obtained as a least fixed-point:

{{Γ}}ρ = (μρ′. ρ++dom Γ�Γ�ρ′)

where

(ρ++S ρ
′) x :=

{
ρ x, if x /∈ S

ρ′ x, if x ∈ S.

is a restricted update operator.

The least fixed-point exists, as all involved operations are monotone and contin-

uous, and by unrolling the fixed-point once, we can see that

Lemma 1 (Application of the heap semantics)

({{Γ}}ρ) x =

{
�e�{{Γ}}ρ, if (x �→ e) ∈ Γ

ρ x, if x /∈ dom Γ.

The following substitution lemma plays an important role in finding a more direct

proof of adequacy, but is also required for the correctness proof, as performed by

Launchbury:

Lemma 2 (Semantics of substitution)

�e�ρ(y �→ρ x) = �e[x/y]�ρ.
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Proof

We first show ∀ρ. ρ x = ρ y =⇒ {{e}}ρ = {{e[x/y]}}ρ by induction on e, using parallel

fixed-point induction in the case for let. This allows us to calculate

�e�ρ(y �→ρ x) = �e[x/y]�ρ(y �→ρ x) {as ρ(y �→ ρ x) x = ρ(y �→ ρ x) y}
= �e[x/y]�ρ {as y /∈ fv(e[x/y])}. �

We sometimes write {{Γ}} instead of {{Γ}}⊥. In an expression {{Γ}}({{Δ}}ρ), we omit the

parentheses and write {{Γ}}{{Δ}}ρ.

2.3 Discussions of modifications

It is rare that a formal system developed with pen and on paper can be formalized

to the letter, partly because of vagueness (what, exactly, is a “completely” fresh

variable?), partly because of formalization convenience, and partly because the

stated facts – even if morally correct – are wrong when read scrupulously, and our

work is no exception. We discuss any such divergence from Launchbury’s work here.

2.3.1 Naming

Getting the naming issues right is one of the major issues when formalizing anything

involving bound variables. In Launchbury’s work, the names are manifestly part of

the syntax, i.e. λx. x �= λy. y, and his rules involve explicit renaming of bound

variables to fresh ones in the rule Var. His definition of freshness is a global one,

so the validity of a derivation using Var depends on everything around it. This is

morally what we want, but very unpractical.

Sestoft (1997) noticed this problem and fixed it by adding a set L of variables to

the judgment, so that every variable to be avoided occurs somewhere in Γ, e, or L.

Instead of renaming all bound variables in the rule Var, he chooses fresh names for

the new heap bindings in the Let.

We build on that, but go one step further and completely avoid bound names in

the expressions, i.e. λx. x = λy. y. We still have them in the syntax, of course, but

these are just representatives of the an α-equivalency class. Nominal logic (Urban

& Kaliszyk, 2012), which is implemented in Isabelle, forms the formal foundation

for this. So in our rule Let we do not have to rename the variables, but simply

may assume that the variables used in the representation of the let-expression are

sufficiently fresh.

The names of bindings on the heap are not abstracted away in that manner; this

follows (Sánchez-Gil et al., 2012).

2.3.2 Closed judgments

Launchbury deliberately allows non-closed configurations in his derivations, i.e.

configurations with free variables in the terms that have no corresponding binding

on the heap. This is a necessity, as rule Var models blackholing by removing a

binding from the heap during its evaluation.
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6 J. Breitner

With the addition of the set of variables to avoid, which will always contain

such variables, the question can be revisited. And indeed, Sestoft defines the notion

of L-good configurations, where all free variables are either bound on the heap, or

contained in L. He shows that this property is preserved by the operational semantics

and subsequently considers only L-good configurations. We follow this example with

our definition of closed judgments. Threading the closedness requirement through

a proof by rule induction is a typical chore contributing to the overhead of a

machine-checked formalization.

2.3.3 Join versus update

Launchbury specifies his denotational semantics using a binary operation 
 on

environments. He does not define it explicitly, but the statements in his Section 5.2.1

leave no doubt that he indeed intended this operation to denote the least upper

bound of its arguments, as one would expect. Unfortunately, with this definition, his

Theorem 2 (which corresponds to our Theorem 2) is false.

A counter example is e = x, v = (λa. let b = b in b), Γ = Δ = (x �→ v) and

ρ = (x �→ Fn (λ .Fn (λx.x))). Note that the denotation of v is Fn (λ .⊥) in every

environment. We have Γ : e ⇓{} Δ : v, so according to the theorem, �e�{{Γ}}ρ = �v�{{Δ}}ρ
should hold, but

�e�{{Γ}}ρ =
(
{{Γ}}ρ

)
x

= ρ x 
 �v�{{Γ}}ρ

= Fn (λ .Fn (λx.x)) 
 Fn (λ .⊥)

= Fn (λ .Fn (λx.x) 
 ⊥)

= Fn (λ .Fn (λx.x))

�= Fn (λ .⊥)

= �v�{{Δ}}ρ.

The crucial property of the counter-example is that ρ contains compatible, but

better information for a variable also bound in Γ. The mistake in his correctness

proof is in the step ({{x �→ v,Δ}}ρ) x = �v�{{x �→v,Δ}}ρ in the case for Var, which should

be ({{x �→ v,Δ}}ρ) x = �v�{{x �→v,Δ}}ρ 
 ρ x.

Intuitively, such rogue ρ are not relevant for a proof of the main Theorem 1.

Nevertheless, this issue needs to be fixed before attempting a formal proof. One

possible fix is to replace 
 by a right-sided update operation that just throws away

information from the left argument for those variables bound on the right. We use

the syntax ρ++S ρ
′ for this operation, and by using that the proof goes through in

full rigor.

It is slightly annoying having to specify the set S in this operation explicitly, as it

is usually clear “from the context”: Morally, it is the set of variables that the object

on the right talks about. But as environments, i.e. total functions from Var → Value,

do not distinguish between variables not mentioned at all and variables mentioned,

but bound to ⊥, this information is not easily exploitable in a formal setting.
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The adequacy of Launchbury’s semantics 7

For the same reason we replace Launchbury’s ordering � on environments by

the more explicit equality between restricted environments in the formulation of

Theorem 2.

3 Correctness

The main correctness theorem for the NS is

Theorem 1 (Correctness)

If Γ : e ⇓L Δ : v holds and is closed, then �e�{{Γ}} = �v�{{Δ}}.

In order to prove this by rule induction, we have to generalize it to

Theorem 2 (Correctness, generalized )

If Γ : e ⇓L Δ : v holds and is closed, then for all environments ρ ∈ Env we have

�e�{{Γ}}ρ = �v�{{Δ}}ρ and ({{Γ}}ρ)|dom Γ = ({{Δ}}ρ)|dom Γ.

Our proof follows Launchbury’s steps, but differs in some details. Two required

technical lemmas are stated and proved subsequently.

For clarity, we write ρ =|S ρ
′ for ρ|S = ρ′|S .

Proof

by induction on the derivation of Γ : e ⇓L Δ : v. Note that in such a derivation, all

occurring judgments are closed.

Case: Lam

This case is trivial.

Case: App

The induction hypotheses are �e�{{Γ}}ρ = �λy. e′�{{Δ}}ρ and {{Γ}}ρ =|dom Γ
{{Δ}}ρ as well as

�e′[x/y]�{{Δ}}ρ = �v�{{Θ}}ρ and {{Δ}}ρ =|dom Δ
{{Θ}}ρ.

We have {{Γ}}ρ x = {{Δ}}ρ x: If x ∈ dom Γ, this follows from the induction

hypothesis. Otherwise, we know x ∈ L, as the judgment is closed, and the new

names bound in Δ avoid L, so we have ρ x on both sides.

While the second part follows from the corresponding inductive hypotheses and

dom Γ ⊆ dom Δ, the first part is a simple calculation:

�e x�{{Γ}}ρ = �e�{{Γ}}ρ ↓Fn {{Γ}}ρ x
{ by the denotation of application }

= �λy. e′�{{Δ}}ρ ↓Fn {{Γ}}ρ x

{ by the induction hypothesis }
= �λy. e′�{{Δ}}ρ ↓Fn {{Δ}}ρ x

{ see above }
= �e′�({{Δ}}ρ)(y �→{{Δ}}ρ x)

{ by the denotation of lambda abstraction }
= �e′[x/y]�{{Δ}}ρ

{ by Lemma 2 }
= �v�{{Θ}}ρ

{ by the induction hypothesis }
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8 J. Breitner

Case: Var

We know that �e�{{Γ}}ρ′ = �v�{{Δ}}ρ′ and {{Γ}}ρ′ =|dom Γ
{{Δ}}ρ′ for all ρ′ ∈ Env.

We begin with the second part:

{{x �→ e,Γ}}ρ = μρ′. (ρ++dom Γ{{Γ}}ρ′)[x �→ �e�{{Γ}}ρ′]

{ by Lemma 3 }
= μρ′. (ρ++dom Γ{{Γ}}ρ′)[x �→ �v�{{Δ}}ρ′]{

by the induction hypothesis. Note that

we invoke it for ρ′ with ρ′ �= ρ!

}
=|dom (x �→e,Γ)

μρ′. (ρ++dom Δ{{Δ}}ρ′)[x �→ �v�{{Δ}}ρ′]

{ by the induction hypothesis; see below }
= {{x �→ v,Δ}}ρ

{ by Lemma 3 }

The second but last step is quite technical, as we need to push the |dom (x �→e,Γ)

inside the fixed-point operator. This goes through by parallel fixed-point induction

if we first generalize it to |Var\dom Δ ∪ dom (x �→e,Γ), the restriction to the complement of

the new variables added to the heap during evaluation of x.

The first part now follows from the second part:

�x�{{x �→e,Γ}}ρ = ({{x �→ e,Γ}}ρ) x

= ({{x �→ v,Δ}}ρ) x { by the first part and x ∈ dom (x �→ e,Γ) }
= �v�{{x �→v,Δ}}ρ { by Lemma 1. }

Case: Let

We know that �e�{{Γ,Δ}}ρ = �v�{{Θ}}ρ and {{Γ,Δ}}ρ =|dom (Γ,Δ)
{{Θ}}ρ. For the first part, we

have

�let Δ in e�{{Γ}}ρ = �e�{{Δ}}{{Γ}}ρ { by the denotation of let-expressions }
= �e�{{Γ,Δ}}ρ { by the following Lemma 4 }
= �v�{{Θ}}ρ { by the induction hypothesis }

and for the second part, we have

{{Γ}}ρ =|dom Γ
{{Δ}}{{Γ}}ρ { because dom Δ are fresh }

= {{Γ,Δ}}ρ { again by Lemma 4 }
=|dom (Γ,Δ)

{{Θ}}ρ. { by the induction hypothesis. } �

In the case for Var, we switched from the usual, simultaneous definition of the

heap semantics to an iterative one, in order to be able to make use of the induction

hypothesis:

Lemma 3 (Iterative definition of the heap semantics)

{{x �→ e,Γ}}ρ = μρ′.
(
(ρ++dom Γ {{Γ}}ρ′)[x �→ �e�{{Γ}}ρ′]

)
.
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The adequacy of Launchbury’s semantics 9

A corresponding lemma can be found in Launchbury (1993), but without proof.

As the proof involves some delicate fixed-point-juggling, we include it here in detail:

Proof

Let L = (λρ′. ρ++dom (x �→e,Γ)�x �→ e,Γ�ρ′ ) be the functorial of the fixed point on the

left hand side, R be the functorial on the right hand side.

By Lemma 1, we have

1. (μL) y = �e′�μL for y �→ e′ ∈ dom Γ,

2. (μL) x = �e�μL,

3. (μL) y = ρ y for y /∈ dom (x �→ e,Γ)

Similarly, by unrolling the fixed points, we have

4. (μR) y = �e′�{{Γ}}(μR) for y �→ e′ ∈ dom Γ,

5. (μR) x = �e�{{Γ}}(μR),

6. (μR) y = ρ y for y /∈ dom (x �→ e,Γ),

and also for ρ′ ∈ Env (in particular for ρ′ = (μL), (μR)), again using Lemma 1,

7. ({{Γ}}ρ′) y = �e�{{Γ}}ρ′ for y �→ e′ ∈ dom Γ,

8. ({{Γ}}ρ′) y = ρ′ y for y /∈ dom Γ.

We obtain

9. {{Γ}}(μR) = (μR)

from comparing (4)–(6) with (7) and (8). We can also show

10. {{Γ}}(μL) = (μL),

by antisymmetry and using that least fixed points are least pre-fixed points:

�: We need to show that (μL) ++dom Γ�Γ�(μL) � (μL), which follows from (1).

�: We need to show that {{Γ}}(μL) ++dom (x �→e,Γ)�x �→ e,Γ�{{Γ}}(μL) � {{Γ}}(μL). For

dom Γ, this follows from (7), so we show �e�{{Γ}}(μL) � (μL) x = �e�(μL), which

follows from the monotonicity of �e� and case �.

To show the lemma, (μL) = (μR), we use the antisymmetry of � and the leastness

of least fixed points:

�: We need to show that L (μR) = μR, i.e.

— ρ y = (μR) y for y /∈ dom (x �→ e,Γ), which follows from (6),

— �e′�μR = (μR) y for y �→ e′ ∈ Γ, which follows from (4) and (9) and

— �e�μR = (μR) x, which follows from (5) and (9).

�: Now we have to show that R (μL) = (μL), i.e.

— ρ y = (μL) y for y /∈ dom (x �→ e,Γ), which follows from (3),

— �e′�{{Γ}}(μL) = (μL) y for y �→ e′ ∈ Γ, which follows from (1) and (10), and

— �e�{{Γ}}(μL) = (μL) x, which follows from (2) and (10). �

The final lemma required for the correctness proof shows that the denotation of a

set of bindings with only fresh variables can be merged with the heap it was defined

over:
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10 J. Breitner

Lemma 4 (Merging the heap semantics)

If dom Γ is fresh with regard to Δ and ρ, then

{{Γ}}{{Δ}}ρ = {{Γ,Δ}}ρ.

Proof

We use the antisymmetry of �, and the leastness of least fixed points.

�: We need to show that {{Δ}}ρ++dom Γ�Γ�{{Δ,Γ}}ρ = {{Δ,Γ}}ρ, which we verify

pointwise.

— For x ∈ dom Γ, this follows directly from Lemma 1.

— For x /∈ dom Γ, this holds as the variables bound in Γ are fresh, so the

bindings in {{Δ}}ρ keep their semantics.

�: We need to show that ρ++dom (Γ,Δ)�Γ,Δ�{{Γ}}{{Δ}}ρ = {{Γ}}{{Δ}}ρ.

— For x ∈ dom Γ, this follows from unrolling the fixed point on the right

hand side once.

— For x �→ e ∈ dom Δ (and hence x /∈ dom Γ), we have

(ρ++dom (Γ,Δ)�Γ,Δ�{{Γ}}{{Δ}}ρ) x

= �e�{{Γ}}{{Δ}}ρ { by Lemma 1 }
= �e�{{Δ}}ρ { because dom Γ is fresh with regard to e }
= ({{Δ}}ρ) x { by unrolling the fixed point }
= (�Γ�{{Δ}}ρ) x { because x /∈ dom Γ and Lemma 1 } .

— For x /∈ dom Γ ∪ dom Δ, we have ρ x on both sides.

�

3.1 Discussions of modifications

Our main Theorem 1 and the generalization in Theorem 2 differ from Launchbury’s

corresponding Theorem 2. The additional requirement that the judgments are closed

is discussed in Section 2.3.

Furthermore, the second part of Theorem 2 is phrased differently. Launchbury

states {{Γ}}ρ � {{Δ}}ρ, where ρ � ρ′ is defined as (∀x. ρ x �= ⊥ =⇒ ρx = ρ′x), i.e. ρ′

agrees with ρ on all variables that have a meaning in ρ.

The issue with this definition is that there are two reasons why {{Γ}}ρ x = ⊥ can

hold: Either x /∈ dom Γ, or x ∈ dom Γ, but bound to a diverging value. Only the

first case is intended here, and actually � is used as if only that case can happen, e.g.

in the treatment of Var in the correctness proof. We therefore avoid the problematic

� relation and explicitly show {{Γ}}ρ =|dom Γ
{{Δ}}ρ.

4 Adequacy

A correctness theorem for a NS is not worth much on its own. Imagine a mistake in

side condition of the Let rule that accidentally prevents any judgment to be derived

for programs with a let – the correctness theorem would still hold.

https://doi.org/10.1017/S0956796817000144 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000144
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So we want to ensure that all programs that have a meaning, in our case according

to the denotational semantics, also have a derivation:

Theorem 3 (Adequacy)

For all e, Γ and L, if �e�{{Γ}} �= ⊥, then there exists Δ and v so that Γ : e ⇓L Δ : v.

The proof uses a modified denotational semantics that keeps track of the number

of steps required to determine the non-bottomness of e, which we will now introduce,

prove adequate and show its relationship to the standard denotational semantics.

4.1 The resourced denotational semantics

The domain used to count the resources is a solution to the equation C = C⊥.

The lifting is done by the injection function C : C → C, so the elements are

⊥ � C ⊥ � C (C ⊥) � · · · � C∞ – this is isomorphic to the extended naturals. We

use r for variables ranging over C.

The resourced semantics N�e�ρ r now takes an additional argument r ∈ C,

which indicates the number of steps the semantics is still allowed to perform: Every

recursive call in the definition of N�e�ρ r peels off one application of C until none

are left.

The intuition is that if we pass in an infinite number of resources, the two

semantics coincide:

∀x. ρ x = σ x C∞ =⇒ �e�ρ = N�e�σ C∞,

as Launchbury puts it. While the intuition is true, it cannot be stated that naively:

Because the semantics of an expression is now a function taking a C, this needs to

be reflected in the domain equation, so we obtain a different domain, as observed

by Sánchez-Gil et al. (2011):

CValue = ((C → CValue) → (C → CValue))⊥,

the lifting and the projection functions are hence

CFn ( ) : (C → CValue) → (C → CValue) → CValue

↓CFn : CValue → (C → CValue) → (C → CValue).

We use σ for variables ranging over resourced environments, σ ∈ Var → (C →
CValue).

The definition of the resourced semantics resembles the definition of the standard

semantics, with some resource bookkeeping added:

N�e�σ ⊥ := ⊥
N�λx. e�σ (C r) := CFn (λv.N�e�σ
{x �→v}|r)

N�e x�σ (C r) := ((N�e�σ r) ↓CFn (σ x)|r) r
N�x�σ (C r) := σ x r

N�let Δ in e�σ (C r) := N�e�{{Δ}}σ r
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where f|r restricts a function f with domain C to take at most r resources:

f|r := (λr′. f (r � r′)).

The semantics of the heap is defined as before:

N{{Γ}}σ := (μσ′. σ++dom Γ N�Γ�σ′).

Given the similarity between this semantics and the standard semantics, it is not

surprising that Lemmas 1–4 hold as well. In fact, in the formal development, they

are stated and proven abstractly, using locales (Ballarin, 2014) as a modularization

tool, and then simply instantiated for both variants of the semantics.

The correctness lemma needs some adjustments, as a more evaluated expression

requires fewer resources. We therefore obtain an inequality:

Lemma 5 (Correctness, resourced )

If Γ : e ⇓L Δ : v holds and is closed, then for all environments σ we have

N�e�{{Γ}}σ � N�v�{{Δ}}σ and (N{{Γ}}σ)|dom Γ � (N{{Δ}}σ)|dom Γ.

Proof

Analogously to the proof of Theorem 2. �

4.2 Denotational black holes

The major difficulty in proving computational adequacy is the blackholing behavior

of the operational semantics: During the evaluation of a variable x the corresponding

binding is removed from the heap. Operationally, this is desirable: If the variable is

called again during its own evaluation, we would have an infinite loop anyways.

But obviously, the variable is still mentioned in the current configuration, and

simply removing the binding will change the denotation of the configuration in

unwanted ways: There is no hope of proving N�e�N{{x �→e,Γ}} = N�e�N{{Γ}}.

But we can prove a weaker statement, which reflects the idea of “not using x

during its own evaluation” more closely:

Lemma 6 (Denotational blackholing)

N�e�N{{x �→e,Γ}}r �= ⊥ =⇒ N�e�N{{Γ}}r �= ⊥

This is a consequence of the following lemma, which states that during the

evaluation of an expression using finite resources, only fewer resources will be

passed to the members of the environment (which are of type C → CValue):

Lemma 7

N�e�σ|C r = N�e�(σ|r)|C r

Proof

by induction on the expression e.

In order to show N�e�σ|C r = N�e�(σ|r)|C r, it suffices to show N�e�σ (C r′) =

N�e�(σ|r) (C r), for an arbitrary r′ � r.

The critical case is the one for variables, where e = x. We have

N�x�σ (C r′) = σ x r′ = (σ x|r) r′ = N�x�(σ|r) (C r′)

as r′ � r.
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In the other cases, the result follows from the fact that nested expressions are

evaluated with r′ resources or, in the case of lambda abstraction, wrapped inside a

|r′ restriction operator.

For the case of let, a related lemma for heaps needs to be proven by parallel

fixed-point induction, namely ∀r. (N{{Γ}}σ)|r = (N{{Γ}}(σ|r))|r . �

Equipped with this lemma, we can begin the

Proof of Lemma 6

Let r′ be the least resource such that N�e�N{{x �→e,Γ}}(C r′) �= ⊥. Such an r′ exists by

the assumption, and C r′ � r, and by the continuity of the semantics r′ �= C∞. In

particular, N�e�N{{x �→e,Γ}}r
′ = ⊥.

We first show

N{{x �→ e,Γ}}|r′ � N{{Γ}} (∗)

by bounded fixed-point induction. So given an arbitrary σ � N{{x �→ e,Γ}}, we may

assume σ|r′ � N{{Γ}} and have to prove N�x �→ e,Γ�σ|r′ � N{{Γ}}, which we do

point-wise:

For y �→ e′ ∈ Γ, this follows from

N�x �→ e,Γ�σ|r′ y = N�e′�σ|r′

= N�e′�σ|r′ |r′ { by Lemma 1 }
� N�e′�σ|r′

� N�e′�N{{Γ}} { by the induction hypothesis }
= N{{Γ}} y { by Lemma 1 }

while for x, this follows from

N�x �→ e,Γ�σ|r′ x

= N�e�σ|r′

� N�e�N{{x �→e,Γ}}|r′ { usingσ � N{{x �→ e,Γ}}}
= ⊥ {by the choice of r′}
= N{{Γ}} x {as x /∈ dom Γ}.

So we can conclude the proof with

⊥ � N�e�N{{x �→e,Γ}}(C r′) { by the choice of r′ }
= N�e�N{{x �→e,Γ}}|r′ (C r′) { by Lemma 1 }

� N�e�N{{Γ}}(C r′) { by (*) }
� N�e�N{{Γ}}r { as C r′ � r }

�

4.3 Resourced adequacy

With the necessary tools in place to handle blackholing, we can do the adequacy

proof for the resourced semantics:
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Lemma 8 (Resourced semantics adequacy)

For all e, Γ and L, if N�e�{{Γ}} r �= ⊥, then there exists Δ and v so that Γ : e ⇓L Δ : v.

Proof

Because the semantics is continuous, it suffices to show this for r = Cn ⊥, and

perform induction on this n, with arbitrary e, Γ and L.

The case r = C0 ⊥ = ⊥ is vacuously true, as N�e�{{Γ}} ⊥ = ⊥.

For the inductive case assume that the lemma holds for r, and that N�e�{{Γ}} (C r) �=
⊥. We proceed by case analysis on the expression e.

Case: e = x.

From the assumption, we know that Γ = x �→ e′,Γ′ for some e′ and Γ′, as otherwise

the denotation would be bottom, and furthermore that N�e′�N{{x �→e′ ,Γ′}} r �= ⊥
With Lemma 6 this implies N�e′�N{{Γ′}} r �= ⊥, so we can apply the induction

hypothesis and obtain Δ and v with Γ′ : e′ ⇓L∪{x} Δ : v. This implies x �→ e′,Γ′ : x ⇓L

Δ : v by rule Var, as desired.

Case: e = e′ x.

Assume that fv(Γ, e′) ⊆ L. We do not lose generality here: If we can show a

derivation in the NS with a larger set of variables to avoid than required, then the

same derivation is also valid with the required set L.

From the assumption, we know that (N�e′�N{{Γ}} r ↓CFn (N{{Γ}} x)|r) r �= ⊥. In

particular (N�e′�N{{Γ}} r) �= ⊥, so by the induction hypothesis, we have Δ, y and e′′

with Γ : e′ ⇓L Δ : λy. e′′, the first hypothesis of App.

This judgment is closed by our extra assumption, so we use Lemma 5 to ensure

that N�e′�N{{Γ}} � N�λy. e′′�N{{Δ}} and N{{Γ}} � N{{Δ}}. We can insert that into the

inequality above to calculate

⊥ � (N�e′�N{{Γ}} r ↓CFn (N{{Γ}} x)|r) r
� (N�λy. e′′�N{{Δ}} r ↓CFn (N{{Δ}} x)|r) r
� (N�λy. e′′�N{{Δ}} r ↓CFn N{{Δ}} x) r

� (CFn (λv.N�e′′�N{{Δ}}
{y �→v}) ↓CFn N{{Δ}} x) r

= N�e′′�N{{Δ}}
{y �→(N{{Δ}} x)} r

= N�e′′[x/y]�N{{Δ}} r { by Lemma 2 }

which, using the induction hypothesis again, provides us with Θ and v so that the

second hypothesis of App, Δ : e′′[x/y] ⇓L Θ : v, holds, concluding this case.

Case: e = λy. e′

This case follows immediately from rule Lam with Δ = Γ and v = λy. e′.

Case: e = let Δ in e′

We have

⊥
� N�let Δ in e′�N{{Γ}} r

� N�e′�N{{Δ}}N{{Γ}}

= N�e′�N{{Δ,Γ}} { by Lemma 4 }
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so we have Θ and v with Δ,Γ : e′ ⇓L Θ : v and hence Γ : let Δ in e′ ⇓L Θ : v by rule

Let, as desired. �

4.4 Relating the denotational semantics

Lemma 8 is almost what we want, but it talks about the resourced denotational

semantics. In order to obtain that result for the standard denotational semantics,

we need to relate these two semantics. We cannot simply equate them, as they have

different denotational domains Value and C → CValue. So we are looking for a

relation �� between Value and CValue that expresses the intuition that they behave

the same, if the latter is given infinite resources. In particular, it is specified by the

two equations

⊥ �� ⊥

and

(∀x y. x �� y C∞ =⇒ f x �� g y C∞) ⇐⇒ Fn (f) �� CFn (g).

Unfortunately, this is not admissible as an inductive definition, as it is self-

referential in a non-monotone way, so the construction of this relation is non-

trivial. This was observed and performed by Sánchez-Gil et al. (2011), and we have

subsequently implemented this construction in Isabelle.

We lift this relation to environments ρ ∈ Env and resourced environments σ ∈
Var → (C → Value) by

ρ ��∗ σ ⇐⇒ ∀x. ρ x �� σ x C∞.

This allows us to state precisely how the two denotational semantics are related:

Lemma 9 (The denotational semantics are related )

For all environments ρ ∈ Env

and σ ∈ Var → (C → Value) with ρ ��∗ σ, we have

�e�ρ �� N�e�σ C∞.

Proof

Intuitively, the proof is obvious: As we are only concerned with infinite resources, all

the resource counting added to the denotational semantics becomes moot and the

semantics are obviously related. A more rigorous proof can be found in Sánchez-Gil

et al. (2011) and in our formal verification. �

Corollary 10

For all heaps Γ, we have {{Γ}} ��∗ N{{Γ}}.

Proof

by parallel fixed-point induction and Lemma 9. �

4.5 Concluding the adequacy

With this in place, we can give the
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Fig. 2. Launchbury alternative natural semantics.

proof of Theorem 3

By Corollary 10 we have {{Γ}} ��∗ N{{Γ}}, and with Lemma 9 this implies �e�{{Γ}} ��

N�e�N{{Γ}} C∞.

With our assumption �e�{{Γ}} �= ⊥ and the definition of �� this ensures that

N�e�{{Γ}} C∞ �= ⊥, and we can apply Lemma 8, as desired. �

4.6 Discussions of modifications

Our adequacy proof diverges quite a bit from Launchbury’s. As this new proof

constitutes a major part of this paper’s contribution, we discuss the differences in

greater detail.

Launchbury performs the adequacy proof by introducing an ANS that is closer

to the denotational semantics than the original NS. He replaces the rules App and

Var with the two rules given in Figure 2. There are three differences to be spotted:

1. In the rule for applications, instead of substituting the argument x for the

parameter y, the variable y is added to the heap, bound to x, adding an

indirection.

2. In the rule for variables, no update is performed: Even after x has been

evaluated to the value v, the binding x on the heap is not modified at all.

3. Also in the rule for variables, no blackholing is performed: The binding for x

stays on the heap during its evaluation.

Without much ado, Launchbury states that the original NS and the ANS are

equivalent, which is intuitively obvious. Unfortunately, it turned out that a rigorous

proof of this fact is highly non-trivial, as the actual structure of the heaps during

evaluation differs a lot: The modification to the application rule causes many

indirections, which need to be taken care of. Furthermore, the lack of updates in

the variable rules causes possibly complex, allocating expressions to be evaluated

many times, each time adding further copies of already existing expressions to the

heap. On the other side, the updates in the original semantics further obscure the

relationship between the heaps in the original and the alternative semantics. On top

of all that add the technical difficulty that is due to naming issues: Variables that

are fresh in one derivation might not be fresh in the other, and explicit renamings

need to be carried along.

Sánchez-Gil et al. have attempted to perform this proof. They broke it down into

two smaller steps, going from the original semantics to one with only the variable

rule changes (called No-update natural semantics, NNS), and from there to the

ANS. So far, they have performed the second step, the equivalence between NNS

and ANS, in a pen-and-paper proof (2014), while relation between NS and NNS

has yet resisted a proper proof.
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Considering these difficulties, we went to a different path, and bridged the

differences not on the side of the NS, but on the denotational side, which turned

out to work well:

1. The denotational semantics for lambda expressions involves a change to the

environment (�λx. e�ρ := Fn (λv.�e�ρ
{x �→v})), while the NS uses substitution into

the expression: e[x/y].

This difference is easily bridged on the denotational side by the substitution

Lemma 2, which is needed anyways for the correctness proof. See the last line

of the application case in the proof of Lemma 8 for this step.

2. The removal of updates had surprisingly no effect on the adequacy proof: The

main chore of the adequacy proof is to produce evidence for the assumptions

of the corresponding NS inference rule, which is then, in the last step, applied

to produce the desired judgment. The removal of updates only changes the

conclusion of the rule, so the adequacy proof is unchanged.

Of course updates are not completely irrelevant, and they do affect the

adequacy proof indirectly. The adequacy proof uses the correctness theorem

for the resourced NS (Lemma 5), and there the removal of updates from the

semantics would make a noticeable difference.

3. Finally, and most trickily, there is the issue of blackholing. We explain our

solution in Section 4.2, which works due to a small modification to the

resourced denotational semantics.

Our proof relies on the property that when we calculate the semantics of

N�e�σ r, we never pass more than r resources to the values bound in σ

(Lemma 1). This concurs with our intuition about resources.

In the original definition of the resourced semantics, this lemma does not

hold: The equation for lambda expression ignores the resources passed to it

and returns a function involving the semantics of the body:

N�λx. e�σ (C r) := CFn (λv.N�e�σ
{x �→v})

With that definition, N�λx. y�σ (C ⊥) = CFn (σ y), which depends on σ y r

for all r, contradicting Lemma 1.

Therefore we restrict the argument of CFn ( ) to cap any resources passed to it

at r. Analogously, we adjust the equation for applications to cap any resources

passed to the value of the argument in the environment, σ x.

These modifications do not affect the proof relating the two denotational

semantics (Lemma 9), as there we always pass infinite resources, and |C∞ is the

identity function.

5 Related work

A large number of developments on formal semantics of functional programming

languages in the last two decades build on Launchbury’s work; here is a short

selection: Van Eekelen & de Mol (2004) add strictness annotations to the syntax

and semantics of Launchbury’s work. Nakata & Hasegawa (2009) define a small-step
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semantics for call-by-need and relate it to a Launchbury-derived big-step semantics.

Nakata (2010) modifies the denotational semantics to distinguish direct cycles from

looping recursion. Sánchez-Gil et al. (2010) extend Launchbury’s semantics with

distributed evaluation. Baker-Finch et al. (2000) create a semantics for parallel

call-by-need based on Launchbury’s.

While many of them implicitly or explicitly rely on the correctness and adequacy

proof as spelled out by Launchbury, some stick with the original definition of the

heap semantics using 
, for which the proofs do not got through (Baker-Finch

et al., 1999; Eekelen & Mol, 2004; Nakata & Hasegawa, 2009; Sánchez-Gil et al.,

2010), while others use right-sided updates, without further explanation (Baker-

Finch et al., 2000; Nakata, 2010). The work by Baker-Finch et al. is particularly

interesting, as they switched from the original to the fixed definition between the

earlier tech report and the later ICFP publication, unfortunately without motivating

that change.

Such disagreement about the precise definition of the semantics is annoying,

as it creates avoidable incompatibilities between these publications. We hope that

our fully rigorous treatment will resolve this confusion and allows future work to

standardize on the “right” definition.

Furthermore, none of these works discuss the holes in Launchbury’s adequacy

proof, even those that explicitly state the adequacy of their extended semantics. Our

adequacy proof is better suited for such extensions, as it is rigorous and furthermore

avoids the intermediate NS.

This list is just a small collection of many more Launchbury-like semantics. Often

the relation to a denotational semantics is not stated, but nevertheless they are

standing on the foundations laid by Launchbury. Therefore, it is not surprising that

others have worked on formally fortifying these foundations as well:

In particular, Sánchez-Gil et al. worked toward rigorously proving Launchbury’s

semantics correct and adequate. They noted that the relation between the standard

and the resourced denotational semantics is not as trivial as it seemed at first, and

worked out a detailed pen-and-paper proof (2011). We have formalized this, fixing

mistakes in the proof, and build on their result here (Lemma 9).

They also bridged half the gap between Launchbury’s natural and ANS (Sánchez-

Gil et al., 2014), and plan to bridge the other half. We avoided these very tedious

proofs by bridging the difference on the denotational side (Section 4.6).

As a step toward a mechanization of their work in Coq, they address the naming

issues and suggest a mixed representation, using de Bruijn indices for locally bound

variables and names for free variables (2012). This corresponds to our treatment

of names in the formal development, using the Nominal logic machinery (Urban &

Kaliszyk, 2012) locally but not for names bound in heaps.

Having an implementation of the present work in Isabelle does not only give

us great assurance about the correctness of our work, but additionally is a tool to

formalize further work. We have used these semantics to prove that the compiler

analysis and transformation “Call Arity” (Breitner, 2015a), which is implemented

in the Haskell compiler GHC, is semantics-preserving and does not degrade

performance (Breitner, 2015b, 2015c). We measure performance on a sufficiently
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abstract level by counting allocations on the heap, for which Launchbury’s semantics

provides just the right level of detail.

6 Conclusion and future work

Was beweisbar ist, soll in der Wissenschaft nicht ohne Beweis geglaubt werden.1

— Richard Dedekind, Was sind und was sollen die Zahlen, 1888

In computer science, we are in the happy situation that we can use the tools of

logic and mathematics to describe our artifacts, and hence to give proofs of our

claims, and indeed, we often do. But we are also in the unfortunate situation that

our models become large and complex, so our proofs becomes large and complex,

without necessarily becoming harder or more interesting. So classical pen-and-paper

proofs are likely to be incomplete or erroneous, without anyone noticing.

We can help ourselves here by using our computers check the proofs. This is what

we have done: We took an established formalism and with the help of the theorem

prover Isabelle, weeded out all mistakes, filled all the holes and clarified a lot of

details.

Such mechanization is a thankless task: With today’s theorem provers, it is still

very laborious, and at the end one usually finds that everything is all right, and even

though there were no complete proofs before, the results still hold. Nevertheless,

we should invest the effort to fortify at least our foundations this way. We deem

Launchbury’s semantics important enough to warrant this effort.

We used our formalization to prove a compiler transformation correct, but the

formalization gap between Launchbury’s or Sestoft’s core calculus, and the full Core

language used by GHC is rather large. It would be very useful to have GHC Core

formalized, possibly building on Eisenberg’s specification (2013), allowing for much

more use of formal methods in the development of the Haskell compiler.
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