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Abstract

Machine reading comprehension (MRC) refers to the process of instructing machines to comprehend
and respond to inquiries based on a provided text. There are two primary methodologies for achieving
this: extracting answers directly from the text or predicting them. Extracting answers involves antici-
pating the specific segment of text containing the answer, pinpointed by its starting and ending indices
within the paragraph. Despite the increasing interest in MRC, exploration within the framework of the
Arabic language faces limitations due to various challenges. A significant impediment arises from the
inadequacy of resources available for Arabic textual content, which impedes the development of effective
models. Furthermore, the inherent intricacies of Arabic, manifesting in its diverse linguistic forms includ-
ing classical, modern standard, and colloquial, present distinctive hurdles for tasks involving language
comprehension. This paper proposes an enhanced version of the bidirectional attention flow (BIDAF)
model for Arabic MRC, constructed upon the Arabic Span-Extraction-based Reading Comprehension
Benchmark (ASER). ASER comprises 10,000 sets of questions, answers, and passages, partitioned into a
training set constituting 90% of the data and a testing set making up the remaining 10%. By introduc-
ing a new input feature based on parts-of-speech (POS) word embeddings and replacing Bidirectional
Long Short-Term Memory (bi-LSTM) with bidirectional gated recurrent unit, significant improvements
were observed. Eight different POS word embeddings were generated using both Continuous Bag of
Words (CBOW) and Skip-gram methods, with varying dimensionalities. Evaluation metrics, including
exact match (EM) and F1-measure, were utilized to assess model performance, with emphasis on the latter
for its accuracy. The proposed enhanced BIDAF model achieved a remarkable accuracy of 75.22% on the
ASER dataset, demonstrating its efficacy in Arabic MRC tasks. Additionally, rigorous statistical evaluation
using a two-tailed paired samples t-test further validated the findings, highlighting the significance of the
proposed enhancements in advancing Arabic language processing capabilities.

Keywords: Question answering; natural language interaction; information extraction; machine reading comprehension;
modern standard Arabic

1. Introduction

Developing models capable of understanding and extracting information from textual passages
to answer targeted questions is referred to as machine reading comprehension (MRC). This task
poses significant challenges due to the complexity of teaching models to interpret natural lan-
guage. The importance and focus on MRC have increased for various reasons. One factor is the
availability of carefully assembled datasets, such as the one introduced by Biltawi et al. (2020a).
Additionally, there’s a rising interest among researchers in utilizing neural networks (NNs), and
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the accessibility of affordable and powerful graphical processing units has also played a significant
role, as noted by Seo et al. (2016).

According to Chen (2018), there exist four distinct categories of MRC datasets: span-extraction,
multiple-choice, cloze-style, and free-form, each containing sets of passage-question-answer
triples. Span-extraction datasets, exemplified by SQuAD (Rajpurkar et al. 2016) and NewsQA
(Trischler et al. 2017), involve extracting a single text span from the relevant paragraph as the
answer to a given question. Multiple-choice datasets, such as SciQ (Welbl et al. 2017), present
questions alongside two or more potential answers, the correct one, and the corresponding para-
graph. Cloze-style datasets, like CNN-Daily Mail (Hermann et al. 2015), involve questions where
a term or entity is missing. Free-form datasets, exemplified by MS MARCO (Nguyen et al. 2016),
present questions and paragraphs without explicit answers, requiring systems to infer the answers
from the passages.

Arabic is a challenging language distinct from English (Biltawi et al. 2021) and is still at an early
stage in terms of MRC research. With English’s global predominance, researchers have primarily
focused on English MRC, developing and utilizing benchmark datasets (Alian and Al-Naymat
2022). Experimental findings indicate that NNs and attention mechanisms can effectively improve
answer extraction from passages. However, research targeting Arabic MRC remains limited, with
only a few studies conducted in this area (Biltawi et al. 2021).

The primary focus of this paper is proposing an enhancement to the bidirectional attention
flow (BIDAF) model. For evaluation, the Arabic Span-Extraction-based Reading Comprehension
Benchmark (ASER), comprising 10,000 question-answer-passage triples, was utilized as the
benchmark dataset. The objective of this study is to introduce an improved version of the BIDAF
model specifically tailored for Arabic MRC and to compare it against four baseline models: the
sequence-to-sequence model, the original BIDAF model with two input layers, the original BIDAF
model with one input layer, and the AraBERT with BIDAF model. Additionally, the enhancement
of the improved-BIDAF model was carried out in two stages: initially, the first layer was replaced
with the parts-of-speech (POS) embedding layer, followed by the substitution of bi-LSTM with
bidirectional gated recurrent unit (bi-GRU) in the contextual and model layers. This adjustment
led to improved model performance on Arabic text, achieving an accuracy rate of 75.22%.

The structure of the paper is organized as follows: Section 2 discusses related work, Section 3
outlines the problem statement, Section 4 introduces ASER, Section 5 presents the improved
BIDAF model, Section 6 discusses the fine-tuned AraBERT BIDAF model, Section 7 details the
experimental setup, Section 8 presents the experimental findings, Section 9 provides a comparison
and discussion, and finally, Section 10 concludes the paper.

2. Related work

The field of MRC has experienced notable advancements, particularly in the English language,
where researchers have explored various methodologies to enhance MRC performance. Initially,
the adoption of NNs and word2vec embeddings laid the groundwork for subsequent devel-
opments. The emergence of transformer models marked a significant breakthrough, achieving
remarkable results on various MRC benchmarks. Recently, research focus has shifted toward
tackling more intricate MRC challenges, including addressing unanswerable questions (Hu et al.
2019), integrating reasoning capabilities (Li et al. 2022), handling queries based on multiple pas-
sages (Dong et al. 2023), and exploring conversational MRC (Gupta et al. 2020). However, in
the context of the Arabic language, MRC research remains in its early stages. Limited progress
in this domain can be attributed to the inherent complexities of Arabic, characterized by its rich
morphology and complex syntax, demanding specialized approaches for effective comprehension.
Moreover, the scarcity of large-scale Arabic MRC datasets presents a significant hurdle to further
advancements in this field.
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Recently, several surveys have been conducted on the topic of MRC. For instance, Baradaran
et al. (2022) reviewed 241 research papers spanning from 2016 to 2020, presenting three primary
observations: a shift in research focus from extraction to generation, from single-document
(passage) to multi-document (passage) reading comprehension, and from scratch learning to the
utilization of pre-trained embeddings. Another survey by Xin et al. (2019) provided a compre-
hensive overview of datasets, neural models, and various techniques employed in English MRC,
covering popular methods such as Word2Vec, Glove, ELMO, BERT, and GPT. Liu et al. (2019)
aimed to cover MRC tasks, general NN models, their architectures used for MRC, and the emerg-
ing trends and challenges in this field. Additionally, Zeng et al. (2020) analyzed fifty-seven MRC
tasks and datasets, proposing a novel taxonomy for categorizing MRC tasks based on corpus types,
questions, answers, and sources of answers. These surveys consistently emphasize the distinction
between MRC and Question Answering (QA), noting that MRC involves two inputs (the question
and the context) and one output (the answer), while QA typically involves one input (the ques-
tion) and one output (the answer). Note that phases of MRC development can be grouped into
rule-based techniques, classical ML techniques, and deep learning techniques.

For the Arabic language, the task of MRC has been explored in a few research papers. Some of
these efforts include work on Quranic datasets, such as the research by Aftab and Malik (2022) and
the attempt by Malhas and Elsayed (2022). These investigations conducted experiments utilizing
BERT and AraBERT, respectively, on the Qur’anic Reading Comprehension Dataset. The reported
highest exact match (EM) scores achieved were 8.82% and 28.01%, respectively, following the fine-
tuning of the AraBERT model on classical language. Correspondingly, the highest F1-measure
scores attained were 26.76% and 49.68%, respectively.

An inherent challenge in effectively implementing MRC lies in the availability of suitable
datasets for training and evaluating models. The presence of high-quality and diverse datasets is
important in developing MRC models capable of accurately and comprehensively answering ques-
tions. Various datasets have been created for the English language, including SQuAD (Rajpurkar
et al. 2016), NewsQA (Trischler et al. 2017), MCTest (Richardson et al. 2013), and MS MARCO
(Nguyen et al. 2016), among others. Additionally, numerous models have been developed based
on these English datasets, such as BIDAF (Seo et al. 2016), FastQA (Weissenborn et al. 2017),
and BERT (Kenton and Toutanova 2019), to name a few. In contrast, there have been only a few
endeavors to establish Arabic MRC benchmarks, as evidenced by works by Biltawi et al. (2020b)
and Biltawi et al. (2020a). However, progress in Arabic MRC has been relatively constrained, with
only a few large-scale datasets available, including Arabic SQuAD (Mozannar et al. 2019), AQAD
(Atef et al. 2020), and ASER (Biltawi et al. 2023). Recently, (Alnefaie et al. 2023) presented two
novel question-answer datasets, HAQA for Hadith and QUQA for the Quran, emphasizing the
challenges in comparing their performance due to the absence of a standardized test dataset for
Hadith and the relatively simplistic nature of questions in the Quran dataset. HAQA, the Arabic
Hadith question-answer dataset, was built from various expert sources, while QUQA a series of
construction phases, including integration with existing datasets and supplementation with new
data from expert-authored texts, and datasets comprising 1,598 and 3,382 question-answer pairs,
respectively.

The key distinction between these datasets and previous attempts primarily lies in their size,
with these datasets containing 10,000 or more records of data, whereas prior attempts typically
include 2,000 or fewer records of data. Moreover, these datasets are specifically tailored for the task
of MRC and are structured as triples comprising a question, an answer, and a context, as opposed
to only including the question and answer. Additionally, there are notable differences between
Arabic SQuAD, AQAD, and ASER. First, ASER was created manually by native Arabic speakers,
whereas Arabic SQuAD is essentially a translated version of the English SQuAD, and AQAD was
automatically generated using Arabic articles. Second, there are variations in the length of ques-
tions and answers among these datasets. ASER poses a greater challenge as it comprises longer sen-
tences compared to Arabic SQUAD and AQAD, which comprise shorter questions and answers.
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The study by Mozannar et al. (2019) evaluated the performance of QANet and BERT models
on the Arabic SQuAD dataset. The experiments resulted in an EM score of 29.4% and 34.2% and
an F1-measure of 44.4% and 61.3% for the QANet and BERT models, respectively. Similarly, Atef
et al. (2020) conducted experiments on the AQAD dataset using BIDAF and BERT models. The
results demonstrated an EM score of 32% for BIDAF and 33% and 37% for BERT, with corre-
sponding F1 measures. Furthermore, Biltawi et al. (2023) performed baseline experiments on the
ASER dataset, employing sequence-to-sequence, BIDAF, and AraBERT BIDAF models. The find-
ings revealed an EM score of 2.5% for the sequence-to-sequence model, 39.5% for the BIDAF
model, and 0% for the AraBERT BIDAF model. Additionally, F1 measures were reported as
35.76%, 66.25%, and 19.73% for the sequence-to-sequence, BIDAF, and AraBERT BIDAF models,
respectively.

Additionally, two research papers by Alkhatnai et al. (2020) and Biltawi et al. (2021) investi-
gated the trends, challenges, and conducted gap analysis in MRC. Both studies highlighted the
absence of standardized benchmarks and the complexities inherent in the Arabic language, which
pose obstacles to progress in this domain. To advance the field of Arabic MRC, it is imperative to
refrain from excluding certain techniques or models during experimentation, such as solely focus-
ing on BERT while disregarding Word2Vec. Instead, the emphasis should be on comprehensively
assessing the effectiveness of each approach, particularly in the context of Arabic. This approach
seeks to evaluate the efficacy of different techniques when applied to Arabic, rather than simply
following the latest trends since the available datasets for the Arabic language are still moderate in
size and BERT needs more data compared to Word2Vec.

The current paper differs from related works presented in this section, by extending beyond
proposing benchmark datasets and experimenting with preexisting English models for Arabic
MRC. Rather, this paper introduces a novel enhancement to the BIDAF model, customized
specifically for Arabic, with the objective of enhancing answer extraction. The emphasis is on
introducing new features and experimenting with different neural units to tackle the unique chal-
lenges of the Arabic language. This approach aims to contribute to the development of more
effective and specialized MRC models for Arabic.

3. Problem statement

It is possible to structure the MRC task as a supervised learning problem. Given training set triples
of question-answer-passage (qi, al pi)izl ... n» the objective is to train a model f that can produce
one right answer a, given a passage p and a question q. The model’s two inputs and output are
shown in Equation (1):

f:pg) —>a (1)

The passage, denoted as p, consists of |p| tokens: p = (p1, p2,...,pp|). Similarly, the ques-
tion, denoted as g, consists of |q| tokens: g =(q1, g2, . . ., q|q). Each passage token p; € V' for
i=1,...,|pl, and each question token g; € V for i=1,.. ., |q| where V represents a predefined

vocabulary. The answer a is a span within the passage, represented as (astart, deng) With the con-
straint that p; < astart < dend < p|p| (Chen, 2018). The trained model f will then be evaluated using
a testing set.

4. Arabic Span-Extraction-based Reading Comprehension Benchmark (ASER)

The experiments were conducted on ASER which is an Arabic Span-Extraction-based Reading
Comprehension Benchmark created manually and proposed by Biltawi et al. (2023). ASER was
created over the period of two semesters, where a large number of university students helped
in writing questions and their answers on articles crawled from Aljazeera website belonging to
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Figure 1. Examples from ASER.

twenty-five domains. Two Arabic native speakers validated the dataset and also performed some
editing, resulting in the creation of 10,000 records of question-answer-passage triples. These
records were divided into a training set of 9,000 records, a testing set of 1,000 records, and another
testing set consisting of 100 records sampled from the original testing set for human performance
evaluation. The human performance resulted in an EM score and F1-measure of 42% and 71.62%,
respectively.

The authors also conducted neural baseline experiments on ASER. Results showed an EM and
Fl-measure of 0% and 15.96%, respectively, on AraBERT BIDAF model, 4% and 36.9%, respec-
tively, on the sequence-to-sequence model, and 38% and 67.54%, respectively, on the original
BIDAF model, all on the 100 testing set. Figure 1 demonstrates two examples from ASER, where
each record of ASER consists of semester-number, article-ID, question, answer, paragraph, first
index of the answer from the paragraph, and domain of the article. ASER includes both long and
short answers, with lengths varying from two to seventy-five tokens. The human performance EM
score of only 42%, and the varying lengths of the answers make ASER a challenging benchmark.

5. Improved bi-directional attention flow (BIDAF) model

Several experiments were carried out to customize BIDAF for the Arabic language. The most
promising outcomes were achieved through the improved version of BIDAF (AKA improved-
BIDAF), as depicted in Figure 2. This improved-BIDAF model incorporates four inputs: the POS
word embeddings for both the question and the context, along with the word embeddings for
both the question and the context. Prior to feeding the text into the model, tokenization of the
input is necessary, where xj, X2, . . ., x7 represent the context tokens, and g1, g2, . . ., g7 denote
the question tokens.

5.1. POS word embedding layer

In this layer, pretrained POS word embeddings were utilized instead of employing character-level
convolutional neural networks (CNN). These POS word embeddings were applied to both the
question Qpps and the context Xpos. The dimension of the embeddings in this layer ranges from
3 to 32, and you can find a more detailed explanation in Section 7.
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5.2. Word embedding layer

Instead of using Glove embeddings, pre-trained Aravec embeddings (Soliman et al. 2017) were
employed for both the question Q,,,,4 and the context X,,,,4. The embedding dimension in this
layer can either be 100 or 300.

It’s important to note that the embedding dimensions of the POS and word embedding layers
are different. As a result, they are not concatenated before being passed to the contextual embed-
ding layer. Instead, the contextual embedding layer works to unify the embedding dimension for
both the POS and word embeddings.

Then, the POS and word embeddings for the question are concatenated, and similarly, the POS
and word embeddings for the context are concatenated as well. These concatenated embeddings
are then passed to the attention flow layer for further processing. This approach ensures that
the model can effectively utilize both the POS and word information during the attention flow
process.

5.3. Contextual embedding layer

In this layer, a bi-GRU is utilized to capture the temporal interactions between the words in both
the question U4 € R®*™ and the context H,pg € R**T independently, as well as between the
POS tags of both the question Upps € R24J and the context Hpos € R2*T . Then these are concate-
nated for both the question U = [U,,,,4; Upos] and the context H = [H,,,,4; Hpos], As a result, the
outputs of this layer are the column vectors U € R** for the question and H € R**T for the con-
text, where d represents the dimensionality of the embeddings, and J and T represent the number
of words in the question and context, respectively.

5.4. Attention flow layer

In this layer, attention from two directions is computed: question-to-context attention (AKA
Query2Context), denoted by H, which signifies the context words that are more relevant to ques-
tion words, and context-to-question (AKA Context2Query), denoted by U, which signifies the
question words that are more relevant to context words. These attentions are derived from a
shared similarity matrix S € R™/. These attentions help identify the relevant context words for
each question word and vice versa, highlighting the important connections between them. Then,
these attentions are concatenated with the column vector H computed in the previous layer, gen-
erating the output of the current layer, which is the query-aware vector representation of the
context words G. Essentially, this layer allows the model to refine its understanding of the con-
text by considering the relevance of each context word to the question and vice versa, enabling a
more contextually aware representation for further processing.

5.5. Modeling layer

The goal of this layer is to record the interactions between the context words conditioned based
on the questions. This layer is implemented using two bi-GRU, where G is the layer’s input and
M € R**T i the layer’s output.

5.6. Output layer
In this layer, the answer span which is represented by the begin and end indices is predicted.
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Figure 2. Improved-BIDAF Architecture.

6. Fine-tuned AraBERT BIDAF

The BIDAF model and AraBERT were both used in a previous work as a baseline experiment
without applying fine-tuning on ASER dataset. In this work, the authors applied fine-tuning on
the AraBERT model and used the pre-trained embeddings as an input to the BIDAF model as
shown in Figure 3. The experiments involved two variations. In the first experiment, bi-LSTM
was utilized within both the contextual embedding layer and the modeling layer. For the second
experiment, bi-LSTM was replaced with bi-GRU.

7. Experimentations

This section presents an overview of the modification steps of the BIDAF improved model and
the experimental settings.

7.1, Arabic embeddings

AraVec comprises twelve pre-trained Arabic embeddings, available in two main dimensions: 100
and 300. These embeddings were trained on diverse sources, including Wikipedia, tweets, and
the World Wide Web (www), using two distinct embedding methods: Continuous Bag of Words
(CBOW) and Skip-gram. For this study, the pre-trained embeddings with a dimension of 300
were specifically evaluated for CBOW and Skip-gram on Wikipedia and www content. Tweet
embeddings were not experimented with due to the belief that Wikipedia and the web content
were more similar to Modern Standard Arabic (MSA) than tweets. Thus, the dimension of 300
was chosen for the experiments. After conducting several experiments, it was observed that the
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Figure 3. AraBERT BIDAF Architecture.

results obtained using the dimension of 300 outperformed those achieved with the dimension of
100, leading to the selection of 300 as the optimal dimension for the pre-trained embeddings used
in this research.

7.2. Improvement experiments

Various experiments were conducted for the purpose of improving BIDAF for the Arabic lan-
guage, including adding a new input feature and replacing bi-LSTM with bi-GRU. The new input
feature is based on word embeddings for the POS tags of both the question and the passage words.
The POS word embeddings were prepared as shown in the following steps:

1.

Dataset preparation (POS tagged dataset). The training and testing sets of ASER were
combined to represent a total of 10,000 records with seven columns. Then the three
columns (question, answer, and paragraph) were merged into one column resulting in
30,000 records. After that, the Stanford POS tagger (Toutanova et al. 2003) was used to
tag the 30,000 records, and finally, these records were saved as a new dataset having only
the POS tags of the original dataset.

The POS word embeddings. When creating embeddings for the POS tags, the challenge
was choosing the dimension since the size of the vocabulary for the tagged dataset was only
32. Different references mentioned that the embedding dimension should range between
50 and 300 (Patel and Bhattacharyya 2017), and other references mentioned that the larger
the embedding dimension is, the better the performance becomes (Mikolov et al. 2013).
However, 50 and 300 are too large for a vocabulary size of 32. Thus, after searching more
on this topic, we found a general rule for choosing a dimension, which is used as a rule of
thumb, this rule states that the dimension size should equal the fourth root of the number
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of categories® dimensionSize = (vocabeSize)**. Following this rule, with the number of
categories equal to 32, the selected dimension size is 3. However, other dimensions were
also experimented (32 which represents the maximum size of vocabulary, 14 which rep-
resents a number in the middle of 3 and 32, and 20 which is chosen randomly). As a
result, eight POS word embeddings were obtained, four of which are CBOW and four are
Skip-gram.

7.3. Experimental settings
This subsection presents the experimental settings for the experiments conducted in this research.

7.3.1 POS word embeddings

Eight experiments were conducted to obtain the eight different POS word embeddings. The exper-
iments were conducted using both CBOW and Skip-gram. The implementation used Word2Vec
model from Genism v4.0.1 on Python v3.7 and a standalone computer with the specifications of a
2.21 GHz Intel Core i7 CPU and 16 GB RAM. The hyperparameters used were vocabulary size of
32, context window of 2, and different sizes of embedding vectors 3, 14, 20, and 32. Both CBOW
and Skip-gram models were trained on the POS tags dataset.

7.3.2 Improved-BIDAF

The improved-BIDAF experiments were conducted using the Adam optimizer with its default ini-
tial learning rate (0.001), two batch sizes were experimented 5 and 10, for five epochs. The training
set was split into training and validation with a ratio of 80:20, respectively. These settings were
configured manually after conducting several experiments. The hidden state dimension d of the
improved-BIDAF model is 100. Improved-BIDAF has nine million parameters when POS word
embeddings were used with the second word embedding layer (AraVec), while the parameters
decreased to seven million when POS word embeddings used with the second word embedding
layer (AraVec) along with replacing bi-LSTM with bi-GRU. The same settings were used when
experimenting BIDAF with AraBERT.

7.4. Experimental measures

EM and Fl-measure were the two primary metrics utilized to assess the experimental models.
EM (Rajpurkar et al. 2016) refers to the matching between the predicted values generated by the
model and the actual or golden values in the dataset. EM assigns a score of 1.0 to the predicted
answer that matches the golden answer for a given question and 0 otherwise. The F1-measure is a
metric used to evaluate the performance of a model’s predicted answers against the true or golden
answers. It is calculated as a weighted harmonic mean for the words present in both the predicted
answer and the golden answer, treating both sets of words as “bags of words.”

In essence, the F1-measure represents the average level of agreement between the words found
in the predicted answer and the words in the golden answer for a given question. The formula for
computing the F1-measure is shown in Equation (2):

F1 = (2xPrecisionxRecall) /(Precision + Recall), (2)
Where, precision = (truepositive) /(truepositive + falsepositive) (3)
And, recall = (truepositive) / (truepositive + falsenegative) (4)

?https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
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Figure 4. Example of EM and F1 measures.

The true positive corresponds to the number of tokens that are common between the gold
answer and the predicted answer. The false positive, on the other hand, represents the number of
tokens present in the predicted answer but not in the gold answer. Lastly, the false negative refers
to the number of tokens present in the gold answer but missing from the predicted answer.

It is worth noting that although the EM measure is an indicator of accuracy; however, it is
not considered an accurate measure, while the F1-measure can be more accurate. For instance,
consider the example in Figure 4, all the predicted answers are correct, but the EM is 0%, while
the F1-measure differs every time. The predicted answer must fully match the gold answer for the
EM to equal 1. That'’s why we applied the two-tailed paired samples ¢-test on the results of the
Fl-measure for all the experiments.

8. Experimental results

In this section, the results obtained from the BIDAF improvement steps are presented. The first
subsection showcases the outcomes achieved when adding a POS word embedding layer as a
new feature. The second subsection presents the results after replacing bi-LSTM with bi-GRU
in the model. Finally, the third subsection presents the results of the performance of the AraBERT
BIDAF model. These results offer insights into the effectiveness of each improvement step and
highlight the overall performance gains achieved through these modifications.

8.1. Improved-BIDAF (using POS word embeddings)

Tables 1 and 2 present the results of the EM and F1-measure of the BIDAF model on a testing set
consisting of 1,000 records after adding the POS word embedding layer with various dimensions
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Table 1. EM after adding POS word embedding layer to the BIDAF model

EM 1000 test set POS Dim =20 POSDim=3 POS Dim = 14 POS Dim =32
Epoch 5 5 5 5 5 5 5 5
Batch 5 10 5 10 5 10 5 10
CBOW wiki 44 394 40.2 37.2 37.9 35.9 35.1 38.7
SG wiki 37.6 39.6 40.3 38.9 39.4 39 37.4 39.5
CBOW www 43.6 42.8 42.1 40.1 41.6 40.8 42.7 41.7
SG www 353 353 33 32 33.4 339 34.1 36.3

Table 2. F1-measure after adding POS word embedding layer to the BIDAF model

F1 1000 test set POS Dim =20 POSDim=3 POS Dim =14 POS Dim =32
Epoch 5 5 5 5 5 5 5 5
Batch 5 10 5 10 5 10 5 10
CBOW wiki 74.09 64.75 67.6 65.8 67.07 63.44 63.74 67.16
SG wiki 64.27 64.39 65.69 65.18 64.48 65.52 63.6 64.34
CBOW www 70.09 70.28 69.1 68.8 69.6 68.23 69.87 69.54
SG www 60.28 59.9 59.07 59.28 62.07 61.24 61.92 61.97

(20, 3, 14, and 32). When setting the POS word embedding dimension to 20, the best EM and
Fl-measure results were achieved at 44% and 74.09%, respectively. These results were obtained
using CBOW wiki word embeddings with both epoch and batch equal to 5. On the other hand,
the worst EM result was 35.3%, which was obtained using Skip-gram WWW word embeddings.
Additionally, the worst F1-measure was 59.9%. The result was obtained using Skip-gram WWW
word embeddings, with epoch and batch equal to 5 and 10, respectively.

The best EM and Fl-measure findings were 42.1% and 69.1%, respectively, for a POS word
embedding dimension of 3. These results were produced, using CBOW WWW word embeddings
with batch and epoch both set to 5. In contrast, the worst EM result was 32%, which occurred when
using Skip-gram WWW word embeddings with epoch and batch both set to 5 and 10, respec-
tively. Furthermore, the worst F1-measure was 59.07%, also obtained with Skip-gram WWW
word embeddings and both epoch and batch set to 5.

When the POS word embedding dimension was set to 14, the best results achieved were 41.6%
for EM and 69.6% for the F1-measure. These results were obtained using CBOW WWW word
embeddings with both epoch and batch set to 5. On the other hand, the worst EM result was 33.4%,
which occurred when using Skip-gram WWW word embeddings with both epoch and batch also
set to 5. Similarly, the worst F1-measure was 61.24%, obtained with the same Skip-gram WWW
word embeddings and with epoch and batch set to 5 and 10, respectively.

Yet, when the POS word embedding dimension was set to 32, the best results achieved were
42.7% for EM and 69.87% for the F1-measure. These results were obtained using CBOW WWW
word embeddings with both epoch and batch set to 5. Conversely, the worst results were 34.1%
for EM and 61.92% for the Fl-measure, which were obtained using Skip-gram WWW word
embeddings with both epoch and batch set to 5.

https://doi.org/10.1017/nlp.2024.46 Published online by Cambridge University Press


https://doi.org/10.1017/nlp.2024.46

782 M. M. Biltawi et al.

Table 3. EM after adding POS word embedding layer and replacing bi-GRU by bi-LSTM

EM 1000 test-set POS Dim =20 POSDim=3 POS Dim =14 POS Dim =32
Epoch 5 5 5 5 5 5 5 5
Batch 5 10 5 10 5 10 5 10
CBOW wiki 32.6 44 41.9 46.6 41.5 45.8 46 38
SG wiki 30.5 28.1 26.5 28.7 27.6 28.7 29.2 27.2
CBOW www 41.8 42.2 45.1 42.9 39.5 42.9 43.1 40.2
SG www 26.1 24.5 23.2 24.3 24.9 30.3 25.9 25.4

To summarize, the experimental results obtained in this study indicate that CBOW word
embeddings consistently outperformed Skip-gram word embeddings. Another significant obser-
vation was that setting both epoch and batch to 5 resulted in better performance across the
different configurations. The best performance was achieved when using a POS word embed-
ding dimension of 20 along with CBOW wiki word embeddings, with both epoch and batch set
to 5. This combination yielded the highest EM and F1-measure results, reaching 44% and 74.09%,
respectively. Conversely, the worst results were obtained when using a POS word embedding
dimension of 3 in combination with Skip-gram WWW word embeddings.

Interestingly, it is worth noting that these findings seemed to contradict the rule of thumb
mentioned in Section 7, which suggested that the dimension size of embeddings should equal
the fourth root of the number of categories. In this case, the experimental results demonstrated
that the optimal dimension size for the POS word embeddings did not follow this rule and
that other factors might have played a more significant role in determining the best-performing
configuration.

8.2. Improved-BIDAF (bi-GRU replaced bi-LSTM)

Tables 3 and 4 display the results for the EM and F1-measure of the improved-BIDAF model on
a testing set comprising 1,000 records. The experiments involve adding a POS word embedding
layer with various dimensions (20, 3, 14, and 32), as well as replacing the bi-LSTM with bi-GRU in
the model. When the POS word embedding dimension was set to 20, the best EM and F1-measure
results obtained were 44% and 74.09%, respectively. These results were achieved using CBOW
wiki word embeddings with epoch and batch set to 5 and 10, respectively. Conversely, the worst
EM and F1-measure results were 24.5% and 48.45%, respectively, obtained when using Skip-gram
WWW word embeddings with epoch and batch both set to 5 and 10, respectively.

For a POS word embedding dimension of 3, the best EM and F1-measure results achieved were
46.6% and 75.22%, respectively. These results were obtained using CBOW wiki word embeddings
with epoch and batch both set to 5 and 10, respectively. Conversely, the worst EM result was
23.2%, which occurred when using Skip-gram WWW word embeddings with both epoch and
batch set to 5. Furthermore, the worst F1-measure result was 50.4%, which was also obtained using
Skip-gram WWW word embeddings and with epoch and batch both set to 5 and 10, respectively.

When the POS word embedding dimension was set to 14, the best EM and F1-measure results
obtained were 45.8% and 73.55%, respectively. These results were achieved using CBOW wiki
word embeddings with epoch and batch set to 5 and 10, respectively. On the other hand, the
worst EM and Fl-measure results were 24.9% and 50.75%, respectively, obtained when using
Skip-gram WWW word embeddings with both epoch and batch set to 5. Similarly, when the POS
word embedding dimension was set to 32, the best EM and F1-measure results achieved were
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Table 4. F1-measure after adding POS word embedding layer and replacing bi-GRU by bi-LSTM

F1 1000 test set POS Dim =20 POSDim=3 POS Dim =14 POS Dim =32
Epoch 5 5 5 5 5 5 5 5
Batch 5 10 5 10 5 10 5 10
CBOW wiki 60.89 74.09 70.34 75.22 70.87 73.55 73.06 68.04
SG wiki 54.18 53.74 52.1 53.57 53.3 53.37 54.91 51.01
CBOW www 70.94 69.78 70.67 70.05 68.23 71.1 70.46 68.62
SG www 50.96 48.45 51.81 50.4 50.75 54.74 50.44 49.86

46% and 73.06%, respectively. These results were obtained using CBOW wiki word embeddings
with both epoch and batch set to 5. Conversely, the worst EM and F1-measure results were 25.4%
and 49.86%, respectively, obtained when using Skip-gram WWW word embeddings with epoch
and batch set to 5 and 10, respectively. These results provide further insights into the perfor-
mance of the improved-BIDAF model with different POS word embedding dimensions and word
embedding types. It appears that using CBOW wiki word embeddings generally leads to better
results compared to Skip-gram WWW word embeddings across different POS word embedding
dimensions.

To summarize, the experimental results consistently showed that CBOW word embeddings
outperformed Skip-gram word embeddings. Particularly, CBOW wiki word embeddings yielded
the best results, while Skip-gram WWW word embeddings resulted in the worst performance.
The highest EM and F1-measure results (46.6% and 75.22%, respectively) were achieved using a
POS word embedding dimension of 3, CBOW wiki word embeddings, and with epoch and batch
both set to 5 and 10, respectively. Interestingly, this configuration adheres to the rule of thumb
discussed in Section 7, indicating that a dimension size equal to the fourth root of the number of
categories might lead to optimal performance. Additionally, the replacement of bi-LSTM with bi-
GRU improved the results, leading to a 2% increase in EM and a 1.13% increase in the F1-measure.
On the other hand, the lowest EM result was 23.2%, obtained when using a POS word embedding
dimension of 3 with Skip-gram WWW word embeddings and both epoch and batch set to 5.
Meanwhile, the worst F1-measure result was 48.45%, obtained when using a POS word embedding
dimension of 20 with Skip-gram WWW word embeddings and with epoch and batch set to 5 and
10, respectively. These observations shed light on the impact of different configurations on the
performance of the improved-BIDAF model, emphasizing the importance of word embedding
types and dimensions, as well as the choice of recurrent NN architecture.

8.3. Fine-tuned AraBERT BIDAF model

Table 5 presents the F1-measure results obtained from the experiments conducted using the fine-
tuned AraBERT BIDAF model. There were four different configurations tested:

o DPretrained AraBERT with BIDAF using bi-LSTM, with an epoch set to 5 and two different
batch sizes (5 and 10).

o DPretrained AraBERT with BIDAF using bi-GRU, with an epoch set to 5 and two different
batch sizes (5 and 10).

For all four models, the EM metric resulted in 0%, indicating that none of the models achievedEMs
with the golden answers. However, the highest F1-measure obtained was 34.12%. This result was
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Table 5. F1-measure for the fine-tuned AraBERT BIDAF model

F1 of 1000 test set AraBERT BIDAF bi-LSTM AraBERT BIDAF bi-GRU
Epoch=5Batch=5 33.01% 30.52%
Epoch =5 Batch =10 33.44% 34.12%

Table 6. The models selected for comparison with the highest results

EM (1000 test set) F1 (1000 test set) EM (100 test set) F1 (100 test set)

Human N/A N/A 42% 71.62%
Seq2Seq 3.3% 34.53% 4% 36.9%
AraBERT 0.1% 19.73% 0% 15.96%
Fine-tuned AraBERT 0.2% 33.1% 0% 32.93%
BIDAF1 23.3% 48.14% 24% 43.14%
BIDAF2 39.5% 66.25% 38% 67.54%
Improved-BIDAF1 44% 74.04% 45% 73.61%
Improved-BIDAF2 46.6% 75.22% 47% 78.52%

achieved when using pre-trained AraBERT embeddings and replacing bi-LSTM with bi-GRU
within the BIDAF model, with an epoch set to 5 and a batch set to 10, showing an improvement
of 14.39% from the baseline AraBERT BIDAF model. These results indicate that while the models
did not perform well in terms of EM, the F1-measure improved slightly in the configuration with
pre-trained AraBERT embeddings and bi-GRU.

9. Comparison and discussion

In this section, a comprehensive comparison is conducted between the improved BIDAF model,
human performance, several baseline models on the ASER dataset, and other models.

9.1. Improved BIDAF and baseline models

Table 6 presents the results for the EM and F1-measure for each of these models on both the 1,000
and 100 testing sets. It is important to note that the human performance evaluation was only
conducted on the 100-testing set. The baseline models include:

 Sequence-to-sequence models using bi-LSTM as both the encoder and decoder.

« BIDAFI model, which replaces the character embedding layer with the Arabic fastText
embedding layer. This model represents the original BIDAF.

« BIDAF2 model, which is implemented without the character embedding layer. It also
represents the original BIDAF.

o AraBERT BIDAF model using bi-GRU.
« Fine-tuned AraBERT BIDAF model using bi-LSTM.
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Both the improved-BIDAF1 and improved-BIDAF2 models use a POS word embedding layer.
The main difference between these two models is that the latter replaces bi-LSTM with bi-GRU.
Both of these models are designed for the Arabic language. The results in Table 6 provide insights
into the performance of these models on the ASER dataset. The comparison with human per-
formance on the 100-testing set allows for assessing how well the models perform relative to
human-level understanding and comprehension.

The results demonstrate that Improved-BIDAF2 achieved excellent performance on both the
1,000-record testing set and the 100-record testing set. It surpassed all other models, includ-
ing human performance on the smaller testing set. For the 100-record testing set, the human
performance achieved an EM and Fl-measure of 42% and 71.62%, respectively. However,
Improved-BIDAF2 outperformed human performance, achieving an EM and F1-measure of 47%
and 78.52%, respectively. This represents a gap of 5% in EM and 6.8% in F1-measure, showing
the superiority of Improved-BIDAF2 over human performance on this particular dataset. The
second-best results were obtained by Improved-BIDAF1, with an EM and F1-measure of 45% and
73.61%, respectively. Interestingly, human performance ranked third on the 100-record testing
set. The authors attribute the improved performance of both Improved-BIDAFI and Improved-
BIDAF?2 to the addition of a POS word embedding layer. This layer contributes semantic features
to the models, leading to enhanced performance and better comprehension of the data. Overall,
the results highlight the effectiveness of the POS word embedding layer in boosting the perfor-
mance of the models and achieving results that even surpass human-level understanding in some
cases.

Indeed, the addition of POS word embeddings to the BIDAF model has proven to be beneficial
in enhancing the model’s performance. In the context of the highly phonetic nature of the Arabic
language, the writing reflects the pronunciation, which can lead to different meanings for homo-

graphic words based on their POS tags. This is exemplified by words like (2,9 which can mean
“mentioned” if tagged as a verb and “flower” if tagged as a noun. In such cases, character embed-
dings might not effectively differentiate between the two meanings, while POS word embeddings
can capture these semantic nuances, leading to improved comprehension and disambiguation.
Moreover, the utilization of POS word embeddings can aid in resolving the out-of-vocabulary
problem, where the model may encounter words not present in its training vocabulary. By con-
sidering the POS tags, the model can still gain insights into the context and meaning of such OOV
words, enhancing its ability to provide meaningful answers.

Additionally, in the improved-BIDAF2 model, the replacement of bi-LSTM with bi-GRU has
resulted in performance improvements, specifically the model’s EM and F1-measure increased by
2.6% and 1.18%, respectively in the 1,000 record testing set, and by 2% and 4.91%, respectively, in
the 100-testing set. Despite LSTM’s reputation for performing well with long sequences, the results
demonstrated that GRU performed better in this particular scenario. The model achieved higher
EM and F1-measure scores on both the 1,000-record and 100-record testing sets, showcasing the
effectiveness of using GRU in this context. Overall, the combination of POS word embeddings and
bi-GRU has proven to be a successful enhancement in the improved-BIDAF2 model, contributing
to its superior performance on the ASER dataset. These improvements allow the model to better
understand the complex semantics of the Arabic language and provide more accurate answers.

In order to show the superiority of Improved-BIDAFI and Improved-BIDAF?2 to the base-
line models, we have performed statistical evidence using the t-test as depicted in Table 7.
The first null hypothesis Hy states that there is no significant performance difference between
the Seq2Seq and the Improved-BIDAF1 model. However, the ¢-test resulted in (p — value = 0),
and since the p — value < «(0.05), Hy is rejected, and the Seq2Seq population’s average is not
equal to the Improved-BIDAF1 population’s average. As a result, the difference between the
averages of Seq2Seq and Improved-BIDAF1 is big enough to be statistically significant. The sec-
ond null hypothesis Hy states that there is no significant performance difference between the
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Table 7. t-test statistics results

Population’s
Models Null hypothesis Hy t-test result Ho average Result
Seq2Seq and The first states that (p — value =0), Rejected Not equal The difference between
improved-BIDAF1 thereis no significant  p — value < the averages is big
models. performance «(0.05) enough to be
difference between statistically significant.
the models.
BIDAF1 and The second states (p — value = 0), Rejected Not equal The difference between
improved-BIDAF1 that thereis no p — value < the averages is big
models. significant «(0.05) enough to be
performance statistically significant.
difference between
the models.
BIDAF2 and The third statesthat ~ (p — value = Rejected Not equal The difference between
improved-BIDAF1 thereis no significant  1.004e — 10), the averages is big
models. performance p — value < enough to be
difference between «(0.05) statistically significant.
the models.
AraBERT BIDAFand  The fourth states that  (p — value =0), Rejected Not equal The difference between
improved-BIDAF1 thereis no significant  p — value < the averages is big
models. performance «(0.05) enough to be
difference between statistically significant.
the models.
AraBERT BIDAFand  The fifth states that (p — value = Cannot be Not equal The difference between
improved-BIDAF1 there is no significant  0.7035), rejected the averages is very
models. performance p — value > small.
difference between «(0.05)
the models.
Seq2Seq and The sixth states that (p — value =0), Rejected Not equal The difference between
improved-BIDAF2 thereis no significant  p — value < the averages is big
models. performance «(0.05) enough to be
difference between statistically significant.
the models.
BIDAF1 and The seventh states (p — value =0), Rejected Not equal The difference between
improved-BIDAF2 that thereis no p — value < the averages is big
models. significant «(0.05) enough to be
performance statistically significant.
difference between
the models.
BIDAF2 and The eighth states (p — value = Rejected Notequal  The difference between
improved-BIDAF2 that thereis no 1.619e — 13), the averages is big
models. significant p —value < enough to be
performance «(0.05) statistically significant.
difference between
the models.
AraBERT BIDAFand  Theninth statesthat  (p — value = 0), Rejected Not equal The difference between
improved-BIDAF2 thereis no significant  p — value < the averages is big
models. performance «(0.05) enough to be
difference between statistically significant.
the models.
Fine-tuned AraBERT  The tenth statesthat  (p — value = Cannot be Not equal The difference between
BIDAF and thereis no significant  0.7035), rejected the averages is very
improved-BIDAF2 performance p — value > small.
models. difference between «(0.05)
the models.
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BIDAF1 and the Improved-BIDAF1 model. However, the ¢-test resulted in (p — value = 0), and
since the p — value < «(0.05), Hy is rejected, and the BIDAF1 population’s average is not equal
to the Improved-BIDAF1 population’s average. As a result, the difference between the averages of
BIDAF1 and Improved-BIDAF1 is big enough to be statistically significant.

The third null hypothesis Hj states that there is no significant performance difference
between the BIDAF2 and the Improved-BIDAF1 model. However, the t-test resulted in
(p — value = 1.004e — 10), and since the p — value < «(0.05), Hy is rejected, and the BIDAF2 pop-
ulation’s average is not equal to the Improved-BIDAF1 population’s average. As a result, the
difference between the averages of BIDAF2 and Improved-BIDAF1 is big enough to be statis-
tically significant. The fourth null hypothesis Hy states that there is no significant performance
difference between the AraBERT BIDAF and the Improved-BIDAF1 model. However, the ¢-test
resulted in (p—value =0), and since the p — value < «(0.05), Hy is rejected, and the AraBERT
BIDAF population’s average is not equal to the Improved-BIDAF1 population’s average. As a
result, the difference between the averages of AraBERT BIDAF and Improved-BIDAF1 is big
enough to be statistically significant. The fifth null hypothesis Hy states that there is no signifi-
cant performance difference between the fine-tuned AraBERT BIDAF and the Improved-BIDAF1
model. However, the t-test resulted in (p — value = 0.7035), and since the p — value > «(0.05),
Hj cannot be rejected, and the fine-tuned AraBERT BIDAF population’s average is not equal to
the Improved-BIDAF]1 population’s average. As a result, the difference between the averages of
fine-tuned AraBERT BIDAF and Improved-BIDAF1 is very small.

The sixth null hypothesis Hy states that there is no significant performance difference between
the Seq2Seq and the Improved-BIDAF2 model. However, the t-test resulted in (p — value = 0),
and since the p — value < (0.05), Hy is rejected, and the Seq2Seq population’s average is not equal
to the Improved-BIDAF2 population’s average. As a result, the difference between the averages
of Seq2Seq and Improved-BIDAF?2 is big enough to be statistically significant. The seventh null
hypothesis H states that there is no significant performance difference between the BIDAF1 and
the Improved-BIDAF2 model. However, the t-test resulted in (p — value = 0), and since the p —
value < a(0.05), Hy is rejected, and the BIDAFI population’s average is not equal to the Improved-
BIDAF2 population’s average. As a result, the difference between the averages of BIDAF1 and
Improved-BIDAF2 is big enough to be statistically significant.

The eighth null hypothesis Hy states that there is no significant performance difference between
the BIDAF2 and the Improved-BIDAF2 model. However, the t-test resulted in (p — value =
1.619¢ — 13), and since the p — value < «(0.05), Hy is rejected, and the BIDAF2 population’s
average is not equal to the Improved-BIDAF2 population’s average. As a result, the difference
between the averages of BIDAF2 and Improved-BIDAF?2 is big enough to be statistically signif-
icant. The ninth null hypothesis Hy states that there is no significant performance difference
between the AraBERT BIDAF and the Improved-BIDAF2 model. However, the t-test resulted
in (p — value =0), and since the p — value < «(0.05), Hy is rejected, and the AraBERT BIDAF
population’s average is not equal to the Improved-BIDAF2 population’s average. As a result,
the difference between the averages of AraBERT BIDAF and Improved-BIDAF2 is big enough
to be statistically significant. The tenth null hypothesis Hy states that there is no significant
performance difference between the fine-tuned AraBERT BIDAF and the Improved-BIDAF2
model. However, the t-test resulted in (p — value = 0.7035), and since the p — value > «(0.05),
Hj cannot be rejected, and the fine-tuned AraBERT BIDAF population’s average is not equal to
the Improved-BIDAF2 population’s average. As a result, the difference between the averages of
fine-tuned AraBERT BIDAF and Improved-BIDAF?2 is very small.

Tables 8 and 9 illustrate EM and F1l-measure results, respectively, for human and improved-
BIDAF models on the 100-testing set according to the evaluation label. Improved-BIDAF2
outperformed improved-BIDAF1 within the “exact-match” category, it also outperformed human
performance within the same category in both EM and F1-measure with an increase of 8.41%
and 6.89%, respectively. Within the “Sentence-level paraphrasing” category improved-BIDAF1
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Table 8. EM according to evaluation label

Category Human Improved-BIDAF1 Improved-BIDAF2
Exact match (54) 45.29% 44.44% 53.7%
Sentence-level paraphrasing (34) 40.91% 47.06% 38.24%
Partial clues (10) 30% 40% 30%
Multiple sentences (2) 31.81% 50% 100%

Table 9. F1-measure according to evaluation label

Category Human Improved-BIDAF1 Improved-BIDAF2
Exact match (54) 74.25% 70.94% 81.14%
Sentence-level paraphrasing (34) 68.73% 77.35% 72.35%
Partial clues (10) 67.56% 80% 81.07%
Multiple sentences (2) 69.83% 50% 100%

outperformed improved-BIDAF2 and human performance, while improved-BIDAF2 ranked
third according to EM within this category and ranked second according to F1-measure. Within
the “partial-clues” category, improved-BIDAF1 outperformed improved-BIDAF2 and human
performance within the EM measure, while Improved-BIDAF2 has the highest F1-measure within
this category. Improved-BIDAF?2 outperformed improved-BIDAF1 and human performance with
both EM and F1-measure equal to 100% within the category “multiple-sentences”. The gap dif-
ference between improved-BIDAF2 and human performance is significant in this category which
reached an EM and F1-measure of 68.19% and 30.17%, respectively.

Tables 10 and 11 provide insights into the EM and F1-measure results for both human and
improved-BIDAF models on the 100-testing set, categorized based on domain coverage. In the
“technology” domain, both the human performance and improved-BIDAF models achieved an
EM of 0%, indicating that neither were able to provide EMs with the golden answers in this
domain. On the other hand, human performance reached the highest EM of 81.81% in both
the “culture and art” and “coverages” domains. This suggests that humans were able to perform
quite well in these domains, with a relatively high level of understanding and comprehension. In
the “culture and art” domain, none of the models outperformed human performance, as they all
achieved an EM of 0%. However, in the “coverages” domain, both improved models achieved an
EM of 100%, indicating that they were able to provide EMs with the golden answer in this domain,
outperforming human performance. These results show that while the human performance was
strong in certain domains, the improved-BIDAF models were able to excel in the “coverages”
domain, where they achieved a perfect match with the golden answer. This highlights the effec-
tiveness of the enhancements made to the BIDAF model, particularly with the addition of POS
word embeddings and the replacement of bi-LSTM with bi-GRU, in capturing the intricacies of the
language and domain-specific information, leading to improved performance in certain domains.

In the “medicine and health” domain, human performance achieved an EM of 45.45% and an
F1-measure of 90.4%. This indicates that humans were able to provide correct answers for approx-
imately 45.45% of the questions in this domain, and the average overlap between their answer
and the golden answer was around 90.4%. In contrast, both the human and improved-BIDAF
models achieved an EM of 0% in the “medicine and health” domain. This suggests that neither
humans nor the models were able to provide an EM with the golden answer for the question
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Natural Language Processing

Domain category Translation Human Improved-BIDAF1 Improved-BIDAF2
g~ (18) Arabic 42.93% 55.56% 50%
olls>s & (18) Reports and dialogues 37.37% 41.67% 44.44%
Ll (12) Culture 42.42% 58.33% 50%
=~ (12) Health 46.21% 37.5% 66.67%
olegs (8) Mix 29.54% 40% 50%
Blrall Uy (5) Press tour 40% 25% 40%
E.’b; () International 40.9% 50% 25%
il (4) Jerusalem 40.9% 33.33% 50%
sLasl (3) Economy 57.58% 66.67% 33.33%
slasl (3) Culture and art 81.81% 0% 33.33%
&) Art 36.36% 0% 33.33%
L 555 (2) Technology 0% 0% 0%
Ll (2) Politics 22.73% 0% 0%
2y b (1) Medicine and health 45.45% 0% 0%
ol >y Ssi> (1) Law and freedom 72.73% 100% 100%
p s (1) Science 72.73% 0% 100%
ldas (1) Coverages 81.81% 100% 100%
Slax® (1) Figures 9.09% 100% 100%
il (1) Woman 72.73% 0% 0%

in this domain. However, improved-BIDAF2 reached an F1-measure of 85.71% in the “medicine
and health” domain, making it the second-best model in this domain based on the F1-measure.
While it did not outperform human performance in terms of F1-measure, it demonstrated a rela-
tively high level of overlap between its answers and the golden answers. Similarly, in the “woman”
domain, the human performance achieved an EM of 72.73% and an F1-measure of 80.19%. Again,
neither of the models, including improved-BIDAF2, outperformed human performance in this
domain. All the models achieved an EM and F1-measure of 0% in this domain, indicating that
they were unable to provide EMs or significant overlap with the golden answers.

These results highlight the challenges posed by specific domains, such as “medicine and health”
and “woman,” where even the improved-BIDAF models struggled to achieve high performance
compared to human understanding. The discrepancies between human performance and the
model results in these domains suggest that there may be domain-specific complexities and
nuances that are difficult for the models to capture effectively. Further research and fine-tuning of
the models may be necessary to improve their performance in such challenging domains.

The comparison between improved-BIDAF1 and improved-BIDAF2 reveals interesting find-
ings regarding their performance in different domains. While both models showed improvements
over the baseline BIDAF, there are some variations in their domain-specific performance.
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Table 11. F1-measure according to domain

Domain category Translation Human Improved-BIDAF1 Improved-BIDAF2
g (18) Arabic 72.64% 76.72% 77.34%
Shlyy 2,5 (18) Reports and dialogues 67.9% 83.08% 82.57%
L (12) Culture 71.5% 67.86% 77.79%
=2 (12) Health 70.9% 86.34% 88.59%
olesie (8) Mix 65.35% 63.99% 82.75%
Blrall Y5> (5) Press tour 74.81% 77.14% 89.78%
5_)53 ) International 84.1% 72.14% 69.74%
o (4) Jerusalem 53.79% 57.55% 50%
sLasl (3) Economy 76.12% 86.9% 88.57%
oy B 3) Culture and art 92.15% 95.83% 83.08%
RAE) Art 64.89% 65.56% 88.24%
L 195G (2) Technology 65.5% 11.35% 26.67%
Ll (2) Politics 69.21% 38.87% 34.19%
=2y (1) Medicine and health 90.4% 47.06% 85.71%
ol s Ssi> (1) Law and freedom 86.83% 100% 100%
pste () Science 74.21% 25% 100%
Sl (1) Coverages 95.15% 100% 100%
Sl (1) Figures 79.09% 100% 100%
e (1) Woman 80.19% 0% 0%

Improved-BIDAF2 achieved an EM of 0% in only 4 domains, while improved-BIDAF1 had 7
domains with an EM of 0%. This suggests that improved-BIDAF2 performed better in a larger
number of domains, as it had fewer domains with zero EM scores. Furthermore, improved-
BIDAF2 achieved an EM and Fl-measure of 100% in 4 domains, while improved-BIDAF1
achieved this level of performance in 3 domains. It is noteworthy that none of the domains
resulted in 100% EM for human performance, indicating that the models were able to outperform
humans in certain specific domains.

The results strongly suggest that replacing bi-LSTM with bi-GRU in the improved-BIDAF2
model led to significant enhancements in performance across different domains. The bi-GRU
architecture appears to have better captured the linguistic patterns and context in various
domains, enabling improved-BIDAF2 to achieve better results compared to improved-BIDAF1
in multiple scenarios.

These findings highlight the importance of selecting appropriate NN architectures for specific
tasks and domains. The replacement of bi-LSTM with bi-GRU in the improved-BIDAF2 model
demonstrated its superiority in handling the complexities and nuances of different domains,
resulting in more accurate and robust performance across the dataset.
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9.2. Qualitative analysis

For qualitative analysis, examples having different lengths of passages, questions, and answers
were selected from the testing set. Table 12 presents the chosen lengths, the corresponding domain
of each example, and the performance of the models. All the selected examples are available and
shown in Appendix A, which includes Figures 5-12.

The first example belongs to the “Arabic” domain and consists of a long passage (52 words),
a long question (17 words), and a long answer (20 words). Improved BIDAF1 and improved
BIDAF2 are the only models that provided the EM of the answer. Noting that “Arabic” is the
largest domain of the ASER dataset with a coverage of 18.24 per cent, one will suggest that all mod-
els should perform well on larger domains having more training examples. However, both BIDAF1
and BIDAF2 could not provide the correct answer scoring an EM and F1-measure of 0%. On the
other hand, when an example was selected from the same domain with long passage (45 words),
long question (16 words), and short answer (3 words), BIDAF2 was able to provide parts of the
answer, having EM of 0% and F1-measure of 66.7%, and improved BIDAF1 and improved BIDAF2
were the only models to answer this category correctly scoring EM and F1-measure of 100

The third example consists of a long passage (61 words), a short question (4 words), and a
long answer (34 words). None of the models were able to provide the correct answer, although the
example is from the domain “Health” which is the fourth largest domain within ASER. The bad
performance of all models is due to having few words within the question, which makes it difficult
for the model to look for the correct answer. However, improved BIDAF2 provided the closest
answer with an F1- measure of 98.5%. The fourth example consists of a long passage (forty-two
words), a short question (four words), and a short answer (one word) from the domain “Art.”
Domain “Art” covers a few training examples within the ASER dataset. Improved BIDAF2 was
the only model to provide the correct answer with EM and F1 measures of 100%, while BIDAF1
scored 0% in both measures. Most of the models were able to answer questions of the remaining
categories correctly with an EM and F1-measure of 100% except for AraBERT BIDAF before and
after fine-tuning and seq2seq models. These categories have short passages and varying lengths of
questions and answers.

These results demonstrate that improved BIDAF is capable of effectively handling long pas-
sages from diverse and complex sources, making it well-suited for the Arabic language, which
is known for its lengthy sentences and intricate structure. The enhancements made to the
BIDAF model have also contributed to its ability to generalize well across various questions
and domains.

9.3. Improved BIDAF and other models

Table 13 provides a comprehensive comparison of improved-BIDAF with other models that were
experimented on Arabic text. Despite improved-BIDAF being experimented on a smaller dataset
(ASER) compared to the models in the table, it demonstrated superior performance in terms of
Fl-measure, outperforming QANet, BERT, and BIDAF by considerable margins of 30.82%,
13.92%, and 9.22%, respectively.

In terms of EM, improved-BIDAF also outperformed QANet and BERT, achieving higher
scores with gaps of 17.2% and 12.4%, respectively. However, BIDAF managed to outperform
improved-BIDAF by a gap of 9.4% in EM. The authors attribute the differences in performance to
the variations in the datasets experimented. Notably, the size of the Arabic SQuAD dataset is much
larger, containing 70,000 records, whereas ASER comprises only 10,000 records. Additionally, the
answer lengths in SQuAD tend to be shorter, with a maximum length of forty-three tokens, while
ASER has answers with a maximum length of seventy-five tokens.

The differences in dataset size and answer length likely influence the models’ performance.
A larger dataset provides more diverse training examples and potentially allows the models to
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Table 12. EM and F1 measures for one record having different lengths

Question Dataset EM =100

Passage Question Answer QID  category  coverage per cent Fl-measure

Long Long Long 9083 Arabic 18.24 Improved-  BIDAF1 =0 per cent, BIDAF2 =0

(52 words) (17 words) (20 words) percent  BIDAFL, per cent, improved-BIDAF1 = 100
improved-  per cent, improved BIDAF2 =100
BIDAF2 per cent, fine-tuned AraBERT

BIDAF = 33.3 per cent, AraBERT
BIDAF = 36.4 per cent,
Seq2seq =48.9 per cent

Long Long Short 9013 Arabic 18.24 Improved-  BIDAF1=23.1 per cent,

(45 words) (16 words) (3 words) percent  BIDAFL, BIDAF2 = 66.7 per cent,
improved-  improved-BIDAF1 = 100 per cent,
BIDAF2 improved BIDAF2 = 100 per cent,

improved BIDAF2 =100 per cent,
fine-tuned AraBERT BIDAF =0
per cent, Seq2seq = 0 per cent

Long Short Long 9592 Health 11.97 None BIDAF1 =24.6 per cent,

(61 words) (4 words) (34 words) per cent BIDAF2 = 73.9 per cent,
improved-BIDAF1 =24.6
per cent,improved-BIDAF2 = 98.5
per cent, fine-tuned AraBERT
BIDAF =T76.5 per cent, AraBERT
BIDAF = 97.5 per cent,
Seq2seq =20.8 per cent

Long Short Short 9891 Art 2.9 Improved-  BIDAF1 =0 per cent, BIDAF2 =66.7
(42 words) (4 words) (1 word) percent  BIDAF2 per cent, improved-BIDAF1 = 66.7
per cent, improved-BIDAF2 = 100
per cent, fine-tuned AraBERT
BIDAF =0 per cent, AraBERT
BIDAF = 0 per cent, Seq2seq =50

per cent
Short Long Long 9035 Arabic 18.24 BIDAF1, BIDAF1 =100 per cent,
(17 words) (10 words) (9 words) percent  BIDAF2, BIDAF2 = 100 per cent,
improved-  improved-BIDAF1 =100 per cent,
BIDAF1, improved-BIDAF2 = 100 per cent,
improved-  fine-tuned AraBERT BIDAF =0
BIDAF2 per cent, AraBERT BIDAF =0
per cent, Seq2seq = 94.1 per cent
Short Long Short 9621 Mix 7.93 BIDAF1, BIDAF1 = 100 per cent,
(21 words) (15 words) (3 words) percent  BIDAF2, BIDAF2 = 100 per cent,
improved-  improved-BIDAF1 =100 per cent,
BIDAF1, improved-BIDAF2 = 100 per cent,
improved-  fine-tuned AraBERT BIDAF = 50
BIDAF2 per cent, AraBERT BIDAF =50
per cent, Seq2seq = 57.1 per cent
Short Short Long 9620 Mix 7.93 BIDAF1, BIDAF1 =100 per cent,
(17 words) (7 words) (3 words) percent  BIDAF2, BIDAF2 = 100 per cent,
improved-  improved-BIDAF1 =100 per cent,
BIDAF1, improved-BIDAF2 = 100 per cent,
improved-  fine-tuned AraBERT BIDAF =0
BIDAF2 per cent, AraBERT BIDAF =0
per cent, Seq2seq = 78 per cent
Short Short Short 9629 Mix 7.93 BIDAF2, BIDAF1=33.3 per cent,
(13 words) (4 words) (7 words) percent  improved-  BIDAF2 =100 per cent,
BIDAF1, improved-BIDAF1 =100 per cent,
improved-  improved-BIDAF2 = 100 per cent,
BIDAF2 iine-tuned AraBERT BIDAF =0

per cent, AraBERT BIDAF =0
per cent, Seq2seq =0 per cent
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Table 13. Comparison of improved-BIDAF with other models

QANet BERT BIDAF Improved-BIDAF
Dataset Arabic SQUAD Arabic SQUAD Arabic SQUAD ASER
Dataset size 48,344 48,344 70,000 10,000
EM 29.4% 34.2% 56% 46.6%
F1 44.4% 61.3% 66% 75.22%

generalize better to unseen data. Moreover, shorter answer lengths in SQuAD may facilitate eas-
ier comprehension and extraction, whereas longer answer lengths in ASER present additional
challenges for the models.

Despite these differences, improved-BIDAF demonstrated its strength in handling the ASER
dataset, outperforming other models in terms of F1-measure, and achieving competitive results
in EM. The performance differences underscore the significance of dataset characteristics and
demonstrate the capability of improved-BIDAF in tackling the complexities of the ASER dataset
with longer answer lengths.

9.4. Limitations and future directions

This study has two primary limitations. First, while the ASER dataset comprises 10,000 records,
it remains relatively small compared to datasets available in other languages. This limitation may
have constrained the generalizability of current findings to a larger dataset. Unfortunately, the
scarcity of dependable large datasets for MRC tasks in the Arabic language means this limitation
cannot be easily addressed.

Second, we encountered a lack of preexisting embeddings for POS tags in the Arabic language
trained on substantial datasets, necessitating the creation of a dataset for POS tags and subsequent
embeddings.

Moving forward, future research could aim to address these limitations by exploring the study’s
concepts on a larger, more diverse dataset. Additionally, experimentation with an improved
BIDAF model could be conducted for classification and plagiarism tasks.

10. Conclusion

In this research paper, the authors proposed an enhanced version of the BIDAF model specif-
ically designed for the Arabic MRC task. The model was evaluated on the ASER dataset, an
Arabic Span-Extraction Reading Comprehension Benchmark. The improvements to the BIDAF
model involved two key modifications: replacing the character embedding layer with a POS word
embedding layer and substituting the bi-LSTM with bi-GRU.

Experimental results demonstrated a significant performance gap between the baseline models
experimented on ASER and the improved-BIDAF model. The improved-BIDAF model showcased
superior performance, achieving higher EM and F1-measure scores compared to the baseline
models. Notably, the model even surpassed human performance in this specific task, achieving
an EM and F1-measure increase of 5% and 6.9%, respectively, over human performance.

The use of POS word embeddings in the BIDAF model was instrumental in enhancing its
performance. POS tags provide semantic meaning to words, and incorporating this information
through the POS word embeddings allowed the model to better capture the nuances and context
of the Arabic language, leading to improved comprehension and more accurate answers.
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The study’s findings highlight the potential of deep learning models in outperforming human
performance in certain tasks, such as MRC. By effectively leveraging advanced NN architec-
tures and linguistic features like POS word embeddings, these models can exhibit remarkable
capabilities in understanding and processing complex natural language data. The results encour-
age further exploration and development of deep learning approaches for natural language
understanding tasks, specifically for the Arabic language.

Competing interests. The author(s) declare none.
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Appendix A. Examples from ASER dataset with the answers provided by the
experimented models

Figure 5.

Question:
Lo e leliy dlee sl adinal e i o3l L
0 5 ol pe Aa 3 A Al

Passage:
el 5 el e ald £ 3 42T (il
o CLAEY) el ) Olana s 48l s e Jass 2l
e gn Jsla a1 0" il s coaadl B g
geinall e 5 Adidy ks e s LAY
LI Jonad Jaiyy L ) W Seas of Js0
SLATY ¢l ja) e (SaT (Aa Ll elil (g
" ool gl e A N 5 A 80 5 Al

Gold answer:
Ot CVL Jened Jaats g L W jeay of
Laldl AT o) pa) (e (ST Sa Lndh ol
Ot Al o Al M1 5 Ay p

BIDAFT:
A e Jeay ) il

BIDAF2:
Al e Janty

Improved BIDAF1:
Ll el G VLT g J3ah g e 51 U Sem )
Al )l g dgny il 5 4alll STV 6] jal e (SaT in
'_‘J,':.';IJEH «..;...-.;

Improved BIDAF2:
Ll el e VLAt g Jaaty g L 51 W gy o
Al M1 5 dgmy il 5 4paldl CLATYY 6l jal (e (SaT s

Finetuned AraBERT-BIDAF:
ity Ll W g o (ol pataall oy 44l asiala

AraBERT-BIDAF:
b agala o g LAY dega ol g (V) e
Jating Lyl W Jga o o) pindll o

Seq2seq:
3 go Jla ins OV e Glialy aaall e 5
o «;I'J‘ﬂ' cﬂ:‘-T-‘h ‘_5‘:-_9 ALl 4y ala »_sl" o ey

el o YLV Jguad iy i) U s

Example from ASER: Long passage, long question with long answer.

Question:
chﬂ;'\.‘-_)gc chia;;\]lé.\;.’uﬂ}&\_"u
W e padl @A e e 3 ladl o e
Salanall

Passage:
s Gafi ) o ) Al jalas &l
iy g danall 5 ) jg5 AWV 5l 5y e Gl
2o dese Cpfgall anl Gasial Glef (3aY
Jie e 3 okhad) o gad e dinia e 230)
e el i gl dlaidl I3 de jadl 43
Il e S il gag 3 eal) uae

Gold answer:
adlidl ne e

BIDAF1:
o Aniia ye a2l ve dese (el anly Siaaiall
&) Alaiall oY1 de jaall Al e e o landl oy
a3l i

BIDAF2:
ANl e e (fipall andy Saaill

Improved BIDAF1:
adlusdl e dasa

Improved BIDAF2:
?JLJI de dana

Finetuned AraBERT-BIDAF:
No answer provided.

AraBERT-BIDAF:
G S8 4 g2

Seq2seq:

g Ay daaall

Figure 6. Example from ASER: Long passage, long question with short answers.
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Question:
Yl sl 1L

Passage:
s ol 855 i Y1 el X
ol MY e dals 5l A laa 8l 52
088 plaall A A8 jall Uatil) A jles
23 el G peS ladall J gl
Ol sl sl Qg cam JSy
Jans SU Zlaall & daly A jlee
O peal) Bl gy e G Lo
Jatls 48 a5 38 5% S 5 5
On WA Sl e 5 g o QI I8
Mgl 1 b alakl)

Gold answer:
o Al A e o g S e
035 B o Jasd U el
O5Ss Sl g 3 GY camall A sl
e OsSy ol J28 Jatlls a8 a5 8
e a8 alakall e WA Lyl

BIDAF1:
e Gl e e Al 1 Al jlee sl g S )0 5 pm
el oo pedSad aladall J glii 33 Zlaall A 4 all adalay)
> JS ad )

BIDAF2:
u)m_;l._._\mgylfulf)\u)u“\,.\ 4_!';1_‘;_,“),).4‘:
oallil e agiSad aladall J gl 50 Fluall 8 48 jall adaliy)
ghall A auals Il s jlae ol o5 oS0 sty JU g a JS2 g 3
Sl 03 5aa Y peall (B ol 05 e G oa o Jens SU
On LA L) a5 5 g QI 50 Jatlls dd a3 8 S
gl 13 8 alakall

Improved BIDAF1:
4 jlae Gl ALY o duals ) A flaa ol g Ja% o g i
ﬁ\iﬂwﬁaﬁ&em\‘]}hﬁuﬁcwléﬂﬁ)ﬂiﬁy|
s JEL agi s

Improved BIDAF2:
G o Jans SU laall il i) da e o) 5 8l
Jadlls a8 0 38 0 Sl 0o i OV pead) (3 padll 05 55
gl e aladall e WIS L) aa 55 Jl S8

Finetuned AraBERT-BIDAF:
0 rluall B4 all Al du jles ol Ae V) e duals
gl iy J 5 2un OS5 g 5 g el a pei€ad pladall J glis
ol pyae G oa o dens SU Flall a1 ds e o
OS5 Gl 28 Jadlls 48 a3 8 0 Sl 550 Y pealdl
Sl e

AraBERT-BIDAF:
O pluall (84S all dlay) du jles G MY o duals
N iy J g dun S0 g 5 g el g€t pladall Jglis
ol 53 ae B a Jo Jend SU ~laall 4 dals ) 4 jles o)
asSeg ) S8 Jally 48 o 55 38 5% Sl (g e OF peedd) A
S|P | JFIES

Seq2seq:
4 jlae Gl AR Y) o dualy ) A flaa ol g Ja o g puin
Flaall 648 al) dayl

Figure 7. Example from ASER: Long passage, short question with long answer.

Question: BIDAFI:
fattall Jai and L doalall 4ibe) jual g
BIDAF2:
Passage: Al alas
i B s ad gl s 8 33l sase 5 | | Improved BIDAF1:
Syl By M Ll Cilsall gas) Lle g alas
<l ig Aealal) 4l jaaly Mdaa" J5Y) | [Tmproved BIDAF2:
4e g g duda) 5 45 gea e Caaall Sy ol gt ad gl

éiﬁ@}jﬂﬂbé#iﬁ@‘jj ;“‘é_ﬁll
#Lﬂi&‘g’l ‘J‘».aljﬁh cjl)‘.) 4_‘.1.\;1.‘.'- e:\:-\gl

Gold answer:
gl

Finetuned AraBERT-BIDAF:
LEXWS JJY‘ _)5)4]\4 _ju_’ LR J.._ul.uul Sldasadl s_ﬁhl’ kg;
Ce Cuaall s 3 gl 2l g dualall anie) jaal
duua’amaﬂ&élj}fﬂlﬂ.éﬁ%mhnbﬁ}a
[Py

AraBERT-BIDAF:
48ua Jg¥ S pall 5 g adaa 4ullll Slaaall gaa) e
Oe Gutall g 3l et 2l g avalall anie) joal
d&né,moﬂ@‘jjﬂlﬁgjuhbﬁ}ﬂ
2R

Seq2seq: s
al gl alas S8

Figure 8. Example from ASER: Long passage, short question with short answer.
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BIDAF1:
el A jlaa 4y jad @llgiil g Cpaluall elial ) il 4l
4l

Question:

oo Ay SN ‘ﬁ_a_;l_-'..'.'né.j,}um Jhas Cauag i
Skl ¢ )

Passage:

;1ﬁy1@ﬂ|‘1‘g‘)\a’.\\£J_’wMu‘aﬂJJ

BIDAF2:
il 4 jlas 4 jad Sl g cpabisall e liial ) il 4il
4gigall

Wil g Cpadasall jeliial 1 il adly i )
Aol el A jlae &y yal

Improved BIDAF1:
il ds jlaa 4y jad @llgiil g Cpalusall e liial ) il 43l
4ziall

Gold answer:
i jlae Ay el gl 5 cpalusall jeliial i) 4l
Agall yiladh

Improved BIDAFZ2:
) A jlas 4y ad @il Gealuall jelial ) il 4l
agiall

Finetuned AraBERT-BIDAF:
No answer provided.

AraBERT-BIDAF:
No answer provided.

Seq2seq:
il A jlas 4y jad @llgiil g ralisall el i il
agiall
Figure 9. Example from ASER: Short passage, long question with long answer.
Question: BIDAF1:
aad Al - A W) 8 jall yee dawgie aly OIS S Lle 26 s
£1970 ple * 550 J5Y | | BIDAF2:
Lle 26 s
Passage: o Improved BIDAF1:
U5 Jaad e &S e 1) e Lo sie el Lle 26 sai
uas (IS 1970 ple Lais dale 26 i s 350 | [ Improved BIDAF2:
L 214 Lle 26 s
Gold answer: Finetuned AraBERT-BIDAF:
Ll 26 ¢ Lile
AraBERT-BIDAF:
Lle
Seq2seq:
26 s Wao

Figure 10. Example from ASER: Short passage, long question with short answer.

Question:
S s oLl a3 lsd oS e

BIDAF1:
ol Lagd) muuzadl Laglli aay (K19 Jalll A 0l (paliadd e
g QIS (gl laliy

Passage:
any G815 AN A o) sl e elalll a3

BIDAF2:
Ot Gl e

3 IS gl aliy ol Lagil ruall Lagi

Improved BIDAF1:
Sl Galads e

Gold answer:

Improved BIDAFZ2:

Finetuned AraBERT-BIDAF:
No answer provided.

AraBERT-BIDAF:
G s

Seq2seq:
gl Logldi 2y

Figure 11. Example from ASER: Short passage, short question with short answer.
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Question: BIDAF1:
foeliall el & g 13y el das Clids 4y g apnlall 3 ) gall CaliSELL
BIDAFZ2:
Passage: il e i 4y g dgagelall 3 ) gal) i
a3t p=lihaal) el G Aaall sl | [ Improved BIDAFT:
- el e Cliads Ay g Al 3 gall CilLESEGL el prhas ks 4y g Agagalall 3 ) gal) CLESIUL
Improved BIDAF2:
Gold answer: il o s iy g el 5 ) sal) ClLiSEL

) e i iy g Al 3 ) sall LSS | [TFinetuned AraBERT-BIDAF:
No answer provided.

AraBERT-BIDAF:
No answer provided.

Seq2seq:
Clladn sy dgmlall 3 ) gall GLESEAL o s e libaial)

s

Figure 12. Example from ASER: Short passage, short question with long answer.
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