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Abstract  Let f be meromorphic of finite order in the plane, such that f(*) has finitely many zeros, for
some k > 2. The author has conjectured that f then has finitely many poles. In this paper, we strengthen
a previous estimate for the frequency of distinct poles of f. Further, we show that the conjecture is true
if either

(i) f has order less than 1 + ¢, for some positive absolute constant €, or

(ii) Fm) | for some 0 < m < k, has few zeros away from the real axis.
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1. Introduction

Suppose that f is a function transcendental and meromorphic in the plane. By a theorem
of Pélya [9,26], if f has at least two poles, then for each sufficiently large k the kth
derivative f(*) has at least one zero. The following theorem confirmed a conjecture of
Hayman [8] from 1959.

Theorem 1.1 (see [5,7,18]). Suppose that m > 0 and k > 2 and that f is mero-
morphic in the plane such that f(™ and f("™*%) each have finitely many zeros. Then
fOmAD) /£(m) is a rational function. In particular, f has finite order and finitely many
poles.

We refer the reader to [2,6,13,19, 23] for related results. Now, Gol’dberg has con-
jectured that the frequency of distinct poles of f is controlled by the frequency of zeros
of a single derivative f*), provided k > 2, and the author made the following, related
conjecture in [21].

Conjecture 1.2. Suppose that k > 2 and f is meromorphic of finite order in the
plane and that f*) has finitely many zeros. Then f has finitely many poles.

Obviously, if Conjecture 1.2 is true for k£ = 2, then it is true for £ > 2. On the other
hand, Conjecture 1.2 is false for functions of infinite order, as shown in [21] by examples
of the form f”/f' = elg~! with g, h entire, for which both f’ and f” are zero-free. The
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following theorem, in which the notation is that of [9], summarizes some results in the
direction of Conjecture 1.2.

Theorem 1.3 (see [22,23]). Suppose that f is meromorphic of finite order p in the
plane and that f" has finitely many zeros. Then

N(r, f) = O(logr)?, r— <. (1.1)
If, in addition, f satisfies any one of the following, then f has finitely many poles:

(i) N(r,1/f") = 0(r1/2) asr — oo;

(ii) T(r, f) = O(r(logr)?) as r — oo, with § a constant satisfying 0 < 3200e'%§ < 1;

(iii) there exists € > 0 such that all but finitely many poles w of f have multiplicity
p(w) < |w|P~e.

The main results of this paper are substantial improvements of (1.1) and of part (ii)
of Theorem 1.3. First we have the following theorem.

Theorem 1.4. Suppose that f is meromorphic of finite order p in the plane, and that
f" has finitely many zeros. Then

N(r, f) < k(logr)?, r — oo, (1.2)
in which k is a positive constant depending only on the asymptotic values of f.

The key to the proof of Theorem 1.4 is a new way, described in § 4, of estimating f on
regions where f’ is close to its finite asymptotic values. Theorem 1.4 leads to the next
result, establishing Conjecture 1.2 for functions of order not much greater than 1.

Theorem 1.5. There exists a constant € with 0 < & < % such that if f is meromorphic
of order less than 1 + ¢ in the plane and f" has finitely many zeros, then f has finitely
many poles.

Our last result proves Conjecture 1.2 for functions for which some derivative f(™),
with 0 < m < k, has relatively few zeros away from the real axis.

Theorem 1.6. Suppose that 0 < m < k and k > 2 and that ¢(r) is a positive function
tending to 0 as r — oo. Suppose further that f is meromorphic of finite order p in the
plane, and that f*) has finitely many zeros. Finally, suppose that

log™ N*(r, 1/ f(m)
lim sup o8 (r, 1/ 1)
r—00 logr

< po < (1.3)

2-1/p’

in which N*(r,1/f(™) counts the zeros of f™ which lie outside the set {z : |arg 22| <
#(|2])}. Then f has finitely many poles.
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Note that by part (ii) of Theorem 1.3 we may assume that p > 1 in Theorem 1.6.
Functions satisfying the hypotheses of Theorem 1.6 abound: for example f(z) =1 — e'*
There is a substantial literature dealing with entire and meromorphic functions f, some
of whose derivatives have only real zeros [15,16,29]. Theorem 1.6 does not really belong
to this strand: rather, in addition to improving part (i) of Theorem 1.3, it shows that
some extra geometric information on the distribution of zeros of f(™) suffices to prove
Conjecture 1.2.

2. Lemmas needed for the theorems

Throughout this paper we denote by B(zp,r) the Euclidean disc {z : |z — zo| < 7}, by
S(zo,7) the circle {z : |z — 29| = r}, and by A(zp, R, S) the open annulus {z : R <
|z — 20| < S}.

Lemma 2.1 (see [17,22]). Suppose that h(z) = Z;’il ajz maps the disc B(0,s)
conformally onto a simply connected domain D of finite area A. Then, for real 6 and
0 <7 < s, the length L(r, ) of the image under h of the line segment z = te!?, 0 <t < r,
satisfies A )

L(r,0)? < Zlog| ——— |.
(T, ) T Og(1r252>

Lemma 2.2 (see [24]). Suppose that d > 1 and that F is transcendental and mero-
morphic in the plane with T(r,f) = O(r%) as r — oo. Then there exist arbitrarily
small positive R such that F(z) has no multiple points with |F(z)| = R and the length
L(r, R, F) of the level curves |F(z)| = R lying in |z| < r satisfies L(r, R, F) = O(r(3+4/2)
asr — oo.

Next we require Tsuji’s well-known estimate for harmonic measure [30, p. 116].

Lemma 2.3 (see [30]). Let D be a simply connected domain not containing the
origin, and let zq lie in D. Let r # |zg|. Let (t) denote the angular measure of DNS(0,t),
and let D, be the component of D\ S(0,r) which contains zy. Then the harmonic measure
of S(0,r) with respect to the domain D, evaluated at zy, satisfies

dt
w(z0,5(0,7),D,) < Cexp (ﬂ'/l 159(15))’ (2.1)
in which C is an absolute constant, and I = [2|zg|,7/2] if r > 4|zo|, with I = [2r,|z0|/2]
if dr < |zo|.

Note that (2.1) for 4r < |z| is obtained from the same estimate for the case r > 4|z|
by the substitution ¢ = 1/z.

Lemma 2.4. Let 0 < p < 1073 and let 2 = {z : p < |2| < 1, Im(2) > 0}. Let
Fy={et : /3 <t < 2n/3}. Let 2 lie in £ with 200p < |21|. Then

w(z1, Fo,2) 2 cp2(|z1\_1 — |z1|) sin(arg z1), (2.2)

in which c is a positive constant, independent of p and z.
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Proof. Let d; denote positive constants, independent of p and 21, and set w = ¢(z) =
2p(z 4+ 1/2). Then |z| = p gives |w| > 3/2, so that ¢({2) contains the semi-disc D; =
{w:|w| <1, Im(w) < 0}. Also ¢(Fp) = Gy is a subset of [—4p, 4p] of measure d;p, and
w1 = ¢(z1) has |wy| < 1/50.

Let ¢ map D; to the unit disc, with ¢(—i/2) = 0. Then the Schwarz reflection principle
(or elementary calculation) gives dp < |t (w)| < 1/dp for w in Dy N B(0,1), and so
Poisson’s formula leads to (2.2), since

w(Zl,Fo, Q) 2 w(wl,GO,Dl) 2 d3p dist{wl,aDl} = d3p|Im(w1)|
]

Next we recall that for 0 < L < oo and a subset E of (0,00) the upper logarithmic
density of E satisfies
dt/t

f[l,r] nE

logdens F = lim sup = logdens {t : Lt € E}. (2.3)

r—o00 logr

Lemma 2.5. Let S(r) be an unbounded positive non-decreasing function on [rg, 00),
continuous from the right, of finite order p. Let A > 1, B > 1. Then

log A
log B

logdenngp( ), G={r>ry:S(Ar) > BS(r)}.

Lemma 2.5 is stated in [10] for a characteristic function T'(r, F), but the proof goes
through for S(r). Finally, we require some standard facts from the Wiman—Valiron theory
[11,31]. Let F be a transcendental entire function. Provided r is normal for F, that is

provided r lies outside an exceptional set E of finite logarithmic measure, we have, for
zo with |zo] =7 and |F'(20)| > (1 — o(1)) M (r, F),

F'(20)
F(z0)

— u(r)z (14 o(1)), (2.4)

in which v(r) = v(r, F) is the non-decreasing central index of F. Suppose now that
G is transcendental and meromorphic in the plane, with finitely many poles bq,. .., b,
repeated according to multiplicity. Then F(z) = G(z) ;1:1(2 — b;) is entire and the
estimate (2.4) holds with F replaced by G. Thus, with a slight abuse of notation, we may
regard v(r, F') as the central index of G.

3. Preliminaries

Suppose that h is transcendental and meromorphic in the plane, and that h(z) tends
to the finite complex number a as z tends to infinity along a path . Then the inverse
function A1 is said to have a transcendental singularity over a [3,25]. For each positive
t, a domain C(t) is uniquely determined as that component of the set C'(t) = {z :
|h(2) —a| < t} which contains an unbounded component of the intersection of C’(t) with
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the path «. Here C(t) C C(s) if 0 < ¢t < s, and the intersection of all the C(¢), t > 0, is
empty.

The singularity of h~! over a corresponding to ~ is said to be direct if C(t), for some
positive ¢, contains finitely many zeros of h(z)—a, and indirect otherwise. If the singularity
is direct, then C(t), for sufficiently small ¢, contains no zeros of h(z) — a. Singularities
over oo are classified analogously.

Theorem 3.1 (see [3]). If the transcendental meromorphic function h has finite or-
der and the inverse function h™! has an indirect transcendental singularity over a, then
a is a limit point of critical values of h, that is, values taken by h at multiple points of h.

Consequently, if h is meromorphic of finite order in the plane with finitely many crit-
ical values, then all transcendental singularities of h~! are direct and, by the Denjoy—
Carleman—Ahlfors Theorem [3,25], the number of direct transcendental singularities of
h~! is at most 2p(h).

Next we need a modification of some standard facts discussed in [25]. Suppose that
F' is a transcendental meromorphic function with finitely many asymptotic values a,,
and with finitely many critical values b,,. Suppose that F' has no asymptotic values in
¢o < |w| < oo and no critical values in ¢; < |w| < oo, where ¢y < ¢1. Let V be the
domain obtained by deleting from the annulus A(0, ¢y, o), the half-open line segment

w = pelargbn’

co < p < c,
for each finite non-zero critical value b,, of F.

Consider a component Cy of the set F'~1(V;), and choose 29 € Cy and vg such that
e’ = wg = F(z0). Then

$(v) = 1(e") = F~(e"),

with 1) = F~! the branch of the inverse function mapping wg to 2o, extends by continu-
ation to an analytic function on the simply connected domain Uy = {v : e¥ € V}.

Further, ¢ maps Up into Cy. Indeed, ¢(Up) = Cy, for if z* € Cy we may join zg to z*
by a path 47 in Cy and choose a path v in Uy starting at v such that €72 = F(+;). Then
F(¢(y2)) = F(m) and so ¢(y2) = 11 by uniqueness of lifts, since both paths start at zg.

There are now two possibilities. The first is that the function ¢ is univalent on Cj,
so that the image under ¢ of Re(v) = 1 + loge; is a simple curve tending to infinity in
both directions. Thus, by a standard argument, such as the Phragmén-Lindel6f principle,
¢(u) — o0 as u — oo with Re(u) > 1+log ey, and Cj is an unbounded simply connected
domain containing a path tending to infinity on which F(z) — oo.

On the other hand, if ¢ is not univalent in Uy, then the open mapping theorem shows
that ¢ has period k27i, for some minimal positive integer k. In this case 11 (¢) = ¥(¢*) =
#(klog () extends to be analytic in Wy = {¢ : ¢¥ € V4}, mapping Wy univalently onto
Co. Also, 11(¢) has a limit as { — oo, which must be finite, and so a pole z; of F, since
F is transcendental, and F/* : Cy U {21} — Wy U {co} is univalent.

The same two possibilities occur for any component C; of the set {z : ¢y < |F(2)| < oo}
such that Cy contains no critical point of F'.
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4. An estimate on components where the derivative is small

Lemma 4.1. Suppose that G is a transcendental meromorphic function of finite order
p and that G' has no asymptotic values in 0 < |w| < dy < oo, and no critical values in
0 < |w| < d2 < d1, and that G’ has finitely many critical points z with |G'(z)| < dj.

Form the domain Vy by deleting from the annulus A(0, 0, dy) the half-open line segment

w=se 8 gy <5< dy,

for each non-zero finite critical value b, of G’. Let D be a component of the set (G')~1(V;)
containing a path v on which G'(z) = 0 as z — oc.

Let N be an integer with N > 2+ p. Choose d3 with 0 < d3 < dy such that |G'(z)| > ds
on some circle S(0,0) with 1 < o < 2, and let D1 = {2z € D : |2| > o, |G'(2)| < d3}.
Choose d as in Lemma 2.2, with 0 < d < dg, such that the length of the level curves
|2NG'(2)| = d lying in |z| < r is O(r**P) for all sufficiently large r. Define

log™

NG (2)

0, otherwise.

s ifZGDl;

u(z) =

Then u(z) is subharmonic in the plane, and D contains finitely many components W, of
the set {z : u(z) > 0}, and these are simply connected. Let z* € W;. Then there exists
M* > 0 such that to each z € W} corresponds a path v, from z* to z, lying in the closure
of Wj, with
[tHG'(t)] | dt] < M* (4.1)
¥z

for each non-negative integer p with N — pu > 2+ p.

Finally, there exist positive constants Sy, S1 depending on D such that for z in D with
|z| > Sp and |G'(2)| < e~1d; we have

ClzG'(2)]

< PR N S
CENS 3T gl fa ()

(4.2)

in which C' is a positive absolute constant, in particular not depending on dy, ds, G or D.

Proof. The W; are simply connected by the maximum principle, since 2z G’(z) #
0,00 on D1, by the discussion in §3. Since G’ has finite order and

Bo(r,u) < 3m(2r,u) < 3m(2r,1/G") + O(logr), 1 — o0,

in which By (r, u) = sup{u(re'’) : 0 < t < 27}, the number of W is finite [12, Chapter 8].

Next, if z is in W}, then we join z* to z by a path «, in the closure of W; consisting of
part of the ray argt = arg z*, part of the circle |t| = |z|, and part of the boundary OW;
of W;. Dividing W, into its intersections with annuli {z : 297 < || < 27} we have

/BW G ()] [t < Y a2 N o 21C ) 4+ O(1) < M,
J

9=qo0
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and

/ [th G (t)||dt| < M, +/ dt' =N dt + 2rd|z|" TN = O(1),
. B
which proves (4.1).

To prove (4.2), fix zg € D. Let ¢ = G’ and let 1 = g~! be that branch of the inverse

function mapping wg = g(zp) to zg. Choose vy such that e~ = wq and set
dp(v) =) =g te™), H={v:e " €W}
Then H is the half-plane {v : Re(v) > log(1/dy)} with the half-open line segments
L, q,={s+q2ni—1iargh, :log(l/d1) < s <log(1l/d2)}, q€Z,

deleted. Further, as in §3, ¢ is analytic and univalent on H and ¢(H) = D, and D is
simply connected.

Now suppose that we attempt to analytically continue ¢ along one of the line segments
L,, 4. This continuation can only fail if ¢(v) hits a critical point of g and, since ¢ is
univalent on H, this can only happen for finitely many L,, ,. Hence there exists a constant
Ro > 0 (depending on D) such that ¢ extends analytically and univalently to the set

Hy ={v:Re(w) > co, |[v—co| > Ro}, c¢o=1log(1/dy),
with ¢(v) # 0 on Hy. Set
Hy = {v:Re(v) > co, |v—co|>100Ry}.

Then ¢(H \ Hs) is bounded, since G’ has no asymptot1c value in 0 < |w| < dy. Further,
for vy in Hy, ¢ is univalent on the disc B(vi, 3 (Re(v1) — co)).

We apply a logarithmic change of variables as used in [1,2,4] and elsewhere. Since
¢ # 0 on Hy, we may define an analytic and univalent branch of ¢ = log ¢(v) on Hs. By
Koebe’s one-quarter theorem [27], we thus have

@' (v T 32
4.3
‘ Re( ) —¢o <Re(v)—co (43)
for v in Hy. Let v; be in Hy with
. 1
zZ1 :(]5(1)1), V1 :Q+ly7 QZIOg G/(Zl)’ > CO+1. (44)

Let L be the line given by v = s +1iy, s > Q. For s > @, by (4.3),

qb' (s+iy) o 32
s+1y

X )
S — Cp

and so

6(sHiy)] < |¢>(Q+iy)|e><p( /Q 82(1—co) ! dt) — 16(Q+iy)|(5— o) (Q—co) 2. (4.5)
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and, recalling (4.3) and (4.4),
|9/ (s + )| < |21]32(s — c0)*"(Q — c0) ™. (4.6)
Now ¢(L) is unbounded, and we have
oo
|16 @ = [ e Re(e)ie'@)] el = [ el (s + )] d.
#(L) L Q

Thus, (4.6) and integration by parts give

[ 1e@lie <l [ e -l (@-a) s < Cilale Q) (47)
(L) Q

in which C is a positive absolute constant.
Now we assert that for large s we have z = ¢(s + iy) € Wj, for some j. By (4.4) and

(4.5),
2] < Jz1(s = c0)®(Q — co) ™
and so
1 L (/32
§ = log G’(z)‘ co + (@ — co) 7
so that
1
log |z] = of log eIE)

as s — +o0. It follows that a sub-path of ¢(L) joins z; to a point in one of the finitely
many W;. But G(z) = O(1) on W}, so that using (4.7) we deduce (4.2), and Lemma 4.1
is proved. ([l

5. Critical points and asymptotic values

Suppose now that F' is meromorphic of finite order in the plane, such that F' has infinitely
many poles, but F’ has finitely many zeros. Then, by Theorem 3.1, F' has finitely many
asymptotic values, and each corresponds to finitely many direct transcendental singular-
ities [3,25] of the inverse function.

Let J be a circle or a simple closed polygonal path, such that every finite asymptotic
value of F' lies on J, but is not a vertex of J. Then J divides its complement in C* =
C U{o} into two simply connected domains By and Bs, such that B is bounded, while
00 € Bs. Fix conformal mappings

hi : Bpy > A=B(0,1), m=1,2, hy(co)=0.

By the Schwarz reflection principle, if I is a line segment contained in J and not meeting
any vertex of J, then for m = 1,2 there are positive constants d,, such that

1
dp < |R, (W) < T we I (5.1)
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Let J' be the set of vertices of J and asymptotic values of F', and let J” = J\ J'. For
each component J* of J” we choose an arc I, of J* whose closure does not meet J', and
for each such I, there are constants d,, as in (5.1).

We consider the components of the sets F~!(B,,). This is more complicated than
in [22] because of the different way that J was chosen. It is convenient to take a quasi-
conformal homeomorphism ; of the extended plane onto itself such that ¢ (c0) = oo
and ¢1(B;1) = A. There exist a function g meromorphic in the plane and a quasiconformal
mapping ¢ such that

Y(oo) =00,  YroF =goi

This g has finitely many asymptotic values, all of modulus 1, and ¢’ has finitely many
zeros. By choosing 1, appropriately, we may assume that 0 is not a critical value of g and
that the distinct finite asymptotic and critical values of g have pairwise distinct principal
arguments.

Since g may have finite critical values off the unit circle, we choose ¢; € (0,1) and
cg > 1 such that g has no critical values in |w| < ¢; nor in ¢p < |w| < oco. Let M be the
union of the line segments

w = se' 86n c1 < s< e,

in which the (,, are the finite critical values of g, and let
A =B, 1)\ M, Ay={w:1<|w| <oo}\M.

Then, as in § 3, all components of the sets g~!(A;) are simply connected. Further, for each
component T of g~1(Ajy), either T contains just one pole of g, or T contains no pole of g,
but instead a path tending to infinity on which g(z) tends to infinity. Because the inverse
function ¢~! has finitely many singularities, there are only finitely many components T°
of this second type.

Consider now a pole z; of g. Then z; lies in a component T; of the set g_l(Ag). We
assert first that if z; is large enough, then 7} is unbounded, and to prove this we assume
the contrary. Since ¢’ has finitely many zeros the closure T, of T} is a bounded component
of the set {z : |g(z)| > 1} and, by analytic continuation, T} is a subset of a bounded
component T3 of the set {z : g(z) € C* \ A1}, such that ¢’(z) # 0 on T3. Hence the set
9 1(A;) has a multiply connected component, which is impossible.

Consider next an unbounded component S of {z : [g(z)| < 1} having no zero of ¢’ in
its closure in the finite plane. By §3, S is simply connected and conformally equivalent
under ¢ to the unit disc. There must be at least one path tending to infinity in S on
which g(z) tends to one of its finitely many asymptotic values: we call S type I if there
is only one such asymptotic value of g approached along a path tending to infinity in 5,
and type II if there are at least two distinct such values. Clearly a type I component S
with no zero of ¢’ on its boundary 95 is such that S consists of just one simple analytic
curve going to infinity in both directions, and such an S cannot separate the plane. We
shall call an unbounded component S’ of the set F~1(B;) type I or 1L if S = ¢(5’) is a
type I or II component of {z : |g(2)| < 1}.
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We return now to a pole z; of g, of multiplicity p, with |z1| large, lying in a component
Ty of g=(As). Then Tj is unbounded and cannot share a finite boundary point with
another component of g7 (Ay). Thus Ty is a subset of a component Ty of {z : |g(z)| > 1},
such that 0T, C 9T} and such that ¢’ has no zeros in the closure of T} in the finite plane.
By §3, Ty is simply connected and v(z) = g(z)_l/p is conformal on Ty. Each boundary
point of T} is a boundary point of a component of g~1(A;). Indeed, the boundary of T,
consists of finitely many simple level curves L* of g on which arg g(z) is monotone, each
mapped by g onto an open arc of |w| = 1. Each such arc must form a boundary curve of
a type I or type II component of the set {z : |g(z)| < 1}, with type II for at least one L*.
In particular, g must have at least two distinct finite asymptotic values and so must F.

Lemma 5.1. Let My > 0 and let ¢ : [0,00) — [0,00) be such that ¢(r) — oo as
r — oo, and let

A(k) = {z : 7Y% < |2 < k) (5.2)

for large r and for positive integer k. Suppose that A(2) contains N; distinct poles
Z1,...,2N, of F', with N1 > ¢(r). Then provided r is large enough, there exist N > ¢y N,
distinct type I components E; of the set F~(By), each with the property that

Li={2€E;:|V(2)| <1—-r"M}CA®B), V=nhoF. (5.3)

Here ¢ is a positive constant depending only on the finite asymptotic values of F'.

Proof. Let D; be the component of F~1(Bs) in which z; lies, and denote by 0;(t)
the angular measure of the intersection of D; with the circle S(0,t). Since r is assumed
large the D; are simply connected.

We shall use in this proof ¢ to denote positive constants, not necessarily the same at
each occurrence, but depending only on the asymptotic values of F, and in particular
not on r or Ni. By the discussion above, we may assume that at least 256N of these D;,
say D1,..., Dosgn, with IV an integer satisfying

N = cNy = co(r), (5.4)

are such that the following is true. There are distinct finite asymptotic values a1, as of F'
such that to each D; corresponds a type II component E; of F~!(B;), the boundaries of
D; and Ej; sharing a component K;. Here K is a simple piecewise smooth curve going
to infinity in both directions and mapped by F' onto a fixed sub-path J; of the curve J,
the closure of J; joining a; to as. Since F' is univalent on each E;, we have E; # Ej, for
1<j<k<256N.

Now each D; meets |z| > S1, and at least 64N of the D;, 1 < j < 256N, are such that

(1/2)r*
> cN | , 5.5
L. N (55)
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since if (5.5) fails for Dy, ..., Dy we have
M M
i< (Low) (L o).
j=1 j=1
M e/t gy 2

M
NMlogr > >—1 2).
c ogr 2/2 - og(r/2)

j=1 r? te] (t)

Of these 64N domains D;, at least 16V of them, say D1,..., Dign, have

CYR R P
/2r1/4 10,0 > ¢Nlogr. (5.6)
If the closures of at least 16N of the D; satisfying (5.5) fail to meet {z : |2| < 2r'/4},
then we choose 16N of these domains, and (5.6) is obvious, while otherwise we use the
same argument as in (5.5).

We now fix a sub-arc Jy of Jq, one of the arcs I chosen following (5.1). We write p; for
the multiplicity of the pole of F' at z;, and for 1 < j < 16N we define v; = (ho o F)'/Pi so
that v; maps D; conformally onto A, with v;(z;) = 0. The path K; forming the boundary
between D; and E; has a sub-path A; mapped onto Jo by F. As z describes the arc Aj;,
the image (hg o F')(2) describes an arc of the unit circle of length at least ¢, using (5.1),
so that v;(z) describes an arc of the unit circle of length at least ¢/p; > er=?(F)=1. This
gives

w(zj, Aj, Dj) = ¢/pj = er PEL, (5.7)

Set o; = A\; \ A(4). Since z; lies in A(2), Lemma 2.3, (5.5) and (5.6) imply that

/2t g4 a2’ g
0. D) < _ _ _
(725, Dj) Ce"p( ”/ wj@))““p( ”fw tw))

< cexp(—cN logr).

Thus (5.4) and (5.7) give, provided r is large enough,
w(zj, 5, D;) = c/p; = er P71 X=X\ N A4). (5.8)

By (5.8), A} is mapped by v; into a finite union of sub-arcs of the unit circle of total
length at least ¢/p; and so is mapped by F' into a union of sub-arcs of Jy of total length
at least ¢, using (5.1) again. Let ¢;(t) be the angular measure of the intersection of E;
with the circle S(0,t). The above reasoning gives at least NV of the Ej, say F1,...,Ey,
each having

/2 g4 (1/2)rt/*
——— >cNlogr, / ——— >cNlogr. 5.9
L we s 16,0 >

We know that V maps E; univalently onto A, with A mapped onto a union y; of sub-arcs
of the unit circle of total length at least c. Hence

w(w, g, A) > el — ) (5.10)
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for |w| < 1. If z lies in Ej \ A(8), then, because A} lies in A(4), Lemma 2.3 and (5.9)
imply that

w(V(z),pj, A) = w(z7)\;,Ej)

(1/2)r® dt (1/2)r/4 dt
< cexp(—w/ ) +cexp(—7r/ )
2r4 td)j (t) 2r1/8 t¢j (t)

< cexp(—e¢N logr).

(5.3) now follows using (5.10). O

6. Proof of Theorem 1.4

We assume that f is meromorphic of finite order p(f), and that f has infinitely many
poles, while f” has finitely many zeros. We apply the reasoning of §5, with F' = f’, and
retain the notation there. Let the finite asymptotic values of f’ be a,,, repeated according
to how often they occur as direct transcendental singularities of (f/)~!. Choose a path
I', starting at 0 and tending to infinity, such that f'(z) — an, as z tends to infinity on
I'. Next choose dy, do with 0 < dy < dy such that:

i) for each n, there are no asymptotic values of /' in 0 < |w — a,| < di; and
) ymp
(ii) for each n, there are no critical values of f’ in 0 < |w — a,| < da.

Obviously, d; depends only on the a,,, while dy depends also on f.
For each n, define a domain V,, as follows. From the annulus A(a,,0,d;) delete, for
each finite critical value b,, # a,, of f’, the half-open line segment

w=a, + seiarg(bm_“"), do < 5 < dj.

The following lemma is an immediate consequence of Lemma 4.1 and the discussion
preceding it.

Lemma 6.1. Choose ¢y > 0 such that |a, — a,| > 4e¢ for a, # a,,. There exist
a positive constant €1 and, for each n, an unbounded simply connected domain U, a
component of the set (f')~1(V,), such that U, contains a path tending to infinity on
which f'(z) tends to ay. Further, f'(z) # a, on U, and |f(z) — anz| < €o|2| for all large
z in Uy, with |f'(z) — an| < €1. The constant £, depends only on the asymptotic values

of f.

Now let £2 be such that, for each n, if |hi(w) — hyi(an)| < €2, then |w — a,| < &1,
in which €7 is as determined in Lemma 6.1. Next, let €3 be positive but so small that
lw — a,| < e3 implies that |hy(w) — hi(an)| < €2, for n = 1,2. Both 5 and e3 depend
only on the a,. Let p, ¢ be such that a, # a4 and, for n = p, g, let W,, be a component
of the set {z € U, : |f'(2) — an| < e3}. For r > 1y, with ry large, let ¢(r) be the angular
measure of the intersection of S(0,r) with the complement of W, U W,.
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Lemma 6.2. There exists a positive constant C, depending only on the asymptotic
values of f', such that for large r the number of distinct poles of f in the annulus A(2),
as defined by (5.2), is at most

(1)
C—i—C/TO Tdt'

Proof. Suppose that r is large and that A(2) contains N distinct poles of f, where

1+/T @dt:o(Nl). (6.1)

Applying Lemma 5.1 we obtain N > ¢oN; distinct type II components E; of the set
(f)~Y(By1), each satisfying (5.3). Since there are finitely many a,,, we may assume that
a1 # ap and that a1, ap are each asymptotic values of f’ in each E;. For n = 1,2, as w
tends to a, along a path in By, the pre-image in E; tends to infinity in U,,. Provided r
is large enough, (5.3) shows that A(8) contains the pre-image H; under V = hy o f’ of
the disc B(0,1 — 1), for 1 <j < N.

We may also assume that r is so large that none of the H; meet the path I'" chosen
prior to Lemma 6.1, on which f/(z) = a,, as z — oo. Defining an analytic and univalent
branch of { =log z on the complement of the path I', the regions ((H;) are disjoint and,
since the H; all lie in the intersection of A(8) with the complement of W, U W, (6.1)
shows that at least one of the ((H;), say ((H), has area o(1). Using Lemma 2.1, the
pre-image in ((H;) under V o exp of the line segment w = thy(a,), 0 <t <1 — %52, has
length o(1). This allows us to choose a path v* in ((H;), of length o(1), such that the
path v = exp(y*) in H; joins 17 to 72, and such that

[V (nn) = hian)| < 222, n=1,2.
By the choice of &3, there are points 1} arbitrarily close to n,, with f'(n}) € V,,. By the

choice of J and V;,, there exists a path o¢ in V;, N By which starts at f'(n}) and tends to
ayn. Thus ), € U,, and Lemma 6.1 gives

|f(77n) - annn| < 50|77n|a n = 1, 2. (62)

We estimate the length of . Since v* has length o(1), we have z = (1 + o(1))n; for all z

on v and
[ael = [ 1el1acl = ofim.
v v*

But f’ maps v into the bounded domain B;, and so
) = Fm) = [ 1)z = offm.
¥

Since a; # ag, this contradicts (6.2), and Lemma 6.2 is proved. O
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We now complete the proof of Theorem 1.4. By Lemma 6.2 and the fact that ¢(t) < 2,
there exist positive C; depending only on the a,, such that, for all large r,

8
" t
a(r?, f) —a(rt?, f) < 01 + Cl/ @ dt < Cylogr < Cs(logr? —logr!/?).
To
Thus 7(r, f) < Cylogr, and Theorem 1.4 is proved. O

7. Proof of Theorem 1.5

We assume that f is meromorphic in the plane of order less than 1+ ¢, where 0 < € < %,
and that f” has finitely many zeros but f has infinitely many poles. We retain the
notation of the previous section. By the discussion in § 5, f’ has at least two distinct finite
asymptotic values a1, as. By the Denjoy—Carleman—Ahlfors Theorem [3,25], these are
the only asymptotic values of f’. Hence we may assume that a, = a1 =1, ag = ag = —1.

Lemma 7.1. We have
"(t) _
Tdt < 2rmelogr, #@(r, f) < Celogr, r— oo, (7.1)
To

in which C' is a positive absolute constant, in particular not depending on ¢.

Proof. For n = 1,2, define the following. For r > rq, let 1,,(r) be the angular measure
of the intersection of W, with the circle |z| = r. Let u,(z) be defined by u,(z) =
log |es/(f'(2) — ay)]| for z in W,,, with u,(z) = 0 for z outside W,,. Then u; and usy are
subharmonic in the plane and Lemma 2.3 gives

"oor
— T4t <log Bo(2r, u, 1)< (1+¢)logr,
/rot?/fn(t) og Bo(2r,u,) + O(1) < (1 +¢)logr

as r — oo, for n = 1,2. But, for t > rg,

T n T S 47 _ 4m Y(t)
Vi(t)  ha(t) T wr(t) +a(t) 2w —ap(t) T

This proves the first assertion of Lemma 7.1, and the second follows as in the previous
section. The following is a simple consequence of Lemma 2.3. [

Lemma 7.2. There exists Ly > 1 such that the following is true. Let r > 0, L > 1
and let v, be a simple piecewise smooth path which, apart from its endpoints, lies in
r < |z| < Lr and which joins |z| =7 to |z| = Lr. Let U, = {z : r < |z| < Lr, z & .}
Then if L > Lo we have

w(z,800,7),U;) + w(z,50,Lr),U,) < %, zeU, |z|=LY?.

29
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Let L > Ly, with Ly as in Lemma 7.2. By (2.3) and (7.1), the sets

Ki={r>ro:¢(r)>e/?},  Ky={r>ry:¢(Lr)>e?} (7.2)
each have upper logarithmic density at most 27e!/?

the set

. Next we note that by Lemma 2.5

Ky ={r>1:T(L* f") > L°T(r, f")} (7:3)
has upper logarithmic density at most % Further, (7.1) gives
h(r) = exp(A(r, f)) = O(r%®), r— oo,
and so by Lemma 2.5 again and (2.3) the set
Ky={r>1:a(L?f)>na(r/L,f)} ={r>1:h(L?) >eh(r/L)} (7.4)

has upper logarithmic density at most 3Ce log L.
Provided ¢ is small enough we may choose arbitrarily large r, not in any of the excep-
tional sets K1, K5, K3, K4, and such that

MR NIIC

f'(z) —aq 1'(z) —as
denoting by ¢; positive constants which do not depend on €. By (7.4), f has no poles
in r/L < |z| < L?r. Hence, by (7.3) and a standard application of the Poisson-Jensen

<7, |zl =7 L, (7.5)

formula we have

log|f"(2)] <eT(r, f"), r<l|z[ <L (7.6)
since L does not depend on e. Further, by (7.2) and (7.5), we have
log|f"(2)| < calogr, 2z € (S(0,r)\T;)U(S(0,Lr)\ Tr,), (7.7)

in which T}, € S(0,7) and T}, € S(0, Lr), each having angular measure at most £'/2.
Choose a simple piecewise smooth curve 7, on which

log|f"(2)] < =(3)T(r, f"), (7.8)

such that «, joins |z| = r to |z| = Lr and, apart from its endpoints, lies in r < |z| < Lr.
Such a curve exists by the maximum principle applied to 1/ f”. Define U,. as in Lemma 7.2,
so that
w(z, ¥ Up) > 5, z€U,, |z]= LY?r, (7.9)
For z in U, with |z| = L'/?r,
w(z, T, Uy) < w(z, Tpr, B0, L)) < c3e'/?,

and the change of variables ( = 1/z shows that the same estimate holds for w(z, T}, U;.).
Hence, (7.6), (7.7), (7.8) and (7.9) give

log| f"(2)] < (= + cac/®)T(r, "),

so that f”(z) is small on the whole circle |z| = L'/?r, provided ¢ is small enough. This
contradicts the existence of the distinct asymptotic values 1 of f/ and Theorem 1.5 is
proved. O

https://doi.org/10.1017/50013091599001029 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091599001029

470 J. K. Langley

8. Proof of Theorem 1.6

Assume that f satisfies the hypotheses of Theorem 1.6, but has infinitely many poles.
By Theorem 1.4 we have (1.2). Let the finite asymptotic values of f*=1 be a,, repeated
according to how often they occur as direct transcendental singularities of the inverse
function of f*~1. By §5 there are at least two distinct a,. If the positive constant ey
is small enough, then to each a, corresponds, as in §4, an unbounded simply connected
component U, of the set {z: [f*1(2) —a,| < &0}, lying in {z : |z| > 2}, such that
f*=1(z) # a,, on U, and

FE2(2) = anzl < Calal [f*(2) = anl +O(1), 2 € U, &1

in which C] is a positive constant not depending on a,, or f.

Lemma 8.1. Choose a large positive integer N and for each n let the subharmonic
function u,, be defined as in Lemma 4.1 by uy,(z) = log™ |d,/(zN (f*~V(2) — a,))]| for z
in U, with u,(z) = 0 otherwise, and with d,, a small positive constant.

Then U,, contains finitely many components W, of the set {z : un(z) > 0}, each
simply connected, and we have

%) =0z, z2eWn, v=0,... k=2 (8.2)
Each u,, has lower order at least 1/(2 —1/p).

Proof. The estimate (8.2) will be proved by applying (4.1) to f*~2)(2) — a,,z. Fixing
z* in Wy, choose a polynomial P, of degree at most k& — 1 such that

z ”— k—v—2
1) = P + [ G

(fEV) —ay)dt, z2€ Wi, 0<v<k-—2
(8.3)
Expanding out the (z —¢)*7¥~2 term in (8.3), and using (4.1), we obtain (8.2).
To prove that each w,, has lower order at least 1/(2 — 1/p), assume without loss of
generality that a1 # a2 and, for n = 1,2 and ¢ > 0, let 0} (¢) be the angular measure
of the intersection of U, with the circle S(0,t). Proceeding as in [28, Lemma 3], the

Cauchy—Schwarz inequality gives

T 40 .
> == .
(/1 0] dt) </1 o df) > (logr)®, r—o00, n=1,2

But, by Lemma 2.3, for large r,

™

t05(1)

(p+o(1)) log r > log Bo(2r,uz) + O(1) > / dt.
1

Thus
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so that
T

" 1
> > | — — .
log Bo(2r,u1) + O(1) > /1 THO) dt > (2 1/, 0(1)) logr

|

Lemma 8.2. Choose p; with pg < p1 < --- < pg < 1/(2 —1/p), and let 5, be a
small positive constant. Then there exists do > 0 such that the following is true. If H
is a subset of [1,00) of finite measure, then for each sufficiently large r and each n there
exists s € Hy such that

PO s <20y (2) > s, 2 € Hy (), (8.4)
in which H,(r) is a subset of the circle |z| = s, of angular measure at least ds.

Proof. Using Lemma 8.1, take {y with |(o| = r and u,({o) > r*°, and let Dy be the
component of the set {z € Uy, : u,(z) > r?#} in which (p lies. Let 6(¢) be the angular
measure of the intersection of Dy with the circle |z| = ¢. Since u,, has order at most p,
Lemma 2.3 gives

(14)(14281) A/ gy
Py < < rPs 14+p) (1426, _ /
r Un(Co) <778 +7r exp| —m i 00 )

and Lemma 8.2 follows. 0

Lemma 8.3. Let a,, # 0 and let K be a large positive constant. Let the positive
function n(r) tend to 0 slowly as r — oco. Then for all sufficiently large r, at least one of
the sets

r, n(r) <argz < —n(r)},

K < K
27 ={z:r/K < Kr, m+n(r) <argz <27 —n(r)}

T

is a subset of one of the Wj j,.

Proof. Using (1.2) and (1.3), write

- (8.5)

in which h; is analytic outside the region |arg 2?| < ¢(|z]), and hy is entire of order less
than pg. Choose a family of discs B,, with finite sum of radii, and a positive constant
My, such that for all z not in the union H* of the B, we have

’f(m)(z) ‘f(k‘l)(Z) () +’ F¥(z)
7(2) F ) | e | T DG — ay

| log [ha(2)]] < |27

< J2M

il

(8.6)
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Further, choose a small positive §; and s = s,, satisfying (8.4). We may assume without
loss of generality that the part H(r) of H,(r) lying in {z : n(r) < argz < m —n(r)} has
angular measure at least d3 > /4, in which s is as in Lemma 8.2. We may choose s,
as well as r; and \ with
K% <m <K', n(r)/8 <A <un(r)/4,

such that

00(s,45, ) N H* = 002(r1,25,2\) N H* = 002(K?rq,5,4\) N H* = ),

in which
Q(tl,tz,t:;) = {Z < |Z| <o, ta<argz < m —tg}.

Since d; is small, we have, by (8.5) and (8.6),
log |h1(2)| < P, 2z € 082(s,4s,\) U 092(rq,2s,2)). (8.7)
We apply the two-constants theorem to log |hi(z)| on the region £2(s,4s,\). Since
f&) ) FE=D _q, fE=1)
g = (or=a ) (™) ()

(8.4) and (8.6) give

log |h1(2)| < —rP7, =z € H}(r).
Thus, (8.7) and a standard estimate for harmonic measure lead to
loglhi(z)] < —rf°, z€ Ey={z:]z| =2s, m/8 < argz < 7m/8}. (8.8)
By Lemma 2.4 and a simple change of variables,
w(z, Eo, 2(r1,25,2)\)) = =% 2 € 0Q(K%ry,5,4\).
Hence, using (8.6), (8.7) and (8.8) we have

F®(z) 2
log |h1(2)] < —r*3, ) <exp(—rft), z€ 0R(Kr1,s,4N). (8.9)
mi(z
We estimate f on 92(K?rq, s,4X). Choose z1 in H}:(r) and so in 002(K?ry, s, 4\)NW p,
and a polynomial P; such that Pl(y)(zl) = f)(z) for 0 < v < k— 1. Then we may write

z y— k—1 z
10 =R+ [ S M@= R+ [ aosoa

21 21

in which, using (8.2), (8.6) and (8.9), for some M3 > 0 independent of r and K,

[Pu(z)| <2 [n(t)] < exp(=r™), 2 € OR(K?r1, 5,4M).
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A standard application of Gronwall’s Lemma [14] and (8.6) and (8.9) give

log™ |f(2)] = O(log ),
|

FP @) < exp(—r72),  for 2 € OR(Kr, 5,4)).
log™ |1 (2)] = angr),}

Since 21 is in H,(r), a further integration shows that 902(K?ry, s, 4)) is a subset of W, ,,
and so is £2(K?rq,s,4\), since W, is simply connected. This proves Lemma 8.3. O

Lemma 8.4. We have N(r, f) # o(logr)? as r — oc.

Proof. Suppose on the contrary that N(r, f) = o(logr)? as r — co. Then
T(r, f*D /) < N(r, f) + O(logr) = o(logr)*.

It follows from Lemma 2 of [20] that there exist sequences R,, — oo and S, — oo such
that

f(lc+1)( Z)

f®(2)

in which each 7, is an integer and each 3, is a non-zero complex number. There is no
loss of generality in assuming that both R, and 2R, are normal for the Wiman-Valiron
theory [11,31] applied to 1/f®*), for otherwise we may adjust R, and make S, slightly
smaller. Since the central index o(r) of 1/f*) is non-decreasing, (2.4) gives 7, > —1 for
each . We may also assume that

ARG

for all finite asymptotic values a, of f*~1) and for some fixed M, independent of .

= B2 (L +o(1), ;2R <|2 < S2R,, (8.10)

— O(RY), |s| =R, (8.11)

Case 1. Suppose that 7, = —1.

In this case, (2.4) shows that we may assume without loss of generality that [,
—Ni = —0(Ry,). Integration of (8.10) gives, with C' a non-zero constant,

1/f¥(2) = C(z/R,)Ve®™), 2R, <|2| < 3R,.

Since M(2R,,1/f™®) is large, this implies that C(2)™ must be large. Thus f*)(z) =

O(R;Q) on |z| = 3R, and a further integration leads to a contradiction to the established

fact that f(*~1 has at least two asymptotic values.
Case 2. Suppose that 7, > 0.

Choose z1, zo with
a1l = Ryl = RuS, /O] = M0,/ ),
Next, choose a branch of log f*)(z) with

[tm(log f®) ()| < 7. (8.12)
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For z with
RHS’;1 <zl < R,S,, —w<arg(z/z) <, (8.13)

we integrate by parts along the straight line from z5 to 22|z/22| and then around an arc
of the circle || = |z] to obtain

k k Bzt
log f)(2) = log ) (22) + (1+0(1))
T+ 1
Tutl z Tu+1
20" B —1
- — 01 1 - d¢.
o) + [Pl ag
Thus, for z satisfying (8.13),
log f®)(2) = D+ AzN (1 + o(1)), (8.14)
in which
Tu+1
Delog f[M(s) P22 4 B Ny 8.15
ng (ZQ) Tu-f—l ) Ty+1’ TH+ ( )

We set T}, = RMS,:S/4 and distinguish two subcases.
Case 2(a). Suppose that [AT| < |log FE)(29)].
Then using (8.12) and the fact that 7, > 0,
log f*)(2) = D(1+40(1)) = (1+0(1)) log | f*)(22)], |2] = R,S, ", -7 <arg(z/z) <,
and f*)(2) = O(|z|72) on |z| = R,S; !, a contradiction arising as in Case 1.
Case 2(b). Suppose that [ATY| > |log f*) (25)].
Then |AT,Y] is large and (8.14) becomes
log f®)(2) = A2V (1 + 0(1)), RMS;1/2 < z] < RMS}/Q, —m < arg(z/z1) < m. (8.16)

But f*)(z) is small on an arc of |z| = R, of angular measure at least m — o(1), by
Lemma 8.3 and (8.11), so that (8.16) gives N = 1. However,

o(Ry) _ f*HD(z)

—(1 1 e = A(1 1

( +0( )) 2 f(k)(zl) ( +0( ))7

by (8.10) and (8.15), since R,, is normal for the Wiman-Valiron theory applied to 1/f%).
Thus

arg Az = m+ o(1). (8.17)
Writing (8.16) in the form

uw=—log f*)(2) = —Az(2/21)(1 4 o(1)), (8.18)
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it follows that « is univalent with

% = —A(1+o(1)) (8.19)

on
2 ={z:R,/16 < |z| < 16R,, |arg(z/z1)| < 57/8},

and u({2) contains the region
21 ={u:|A|R,/8 < |u| < 8|A|R,, |argu| < 97/16}.
Let

2y ={2:R,/4<|z| <4R,, log|fPM(2)| < —2M log R,,}.
Then (8.17) and (8.18) imply that 2, is a subset of {2, and
w(2:) € 25 = {u: |A|R, /8 < |u| < 8| ARy, Re(u) > 2M log Ry} C 1.
Using Lemma 8.1, choose distinct asymptotic values a1, as of f*~1) and ¢ and ¥, with
[¥n] = Ry, log |f* V() — an| < =AM log R, n=1,2.

Then 11, 19 lie in 25 by (8.11), and their images under u lie in £23. Thus u(11) and u(s)
may be joined by a path A in 23, of length O(|A|R,,). Now the pre-image A = u='(\)
joining ¥ to v, has length O(R,,), by (8.19), and is such that

log|f®)(2)] < —2M log R,,, =z € A.

Thus f*=1(¢1) — fE1 (1)) = 0(1), which contradicts the choice of the 1,,. Lemma 8.4
is proved. ([l

As in §5, choose a closed path J on which each finite asymptotic value a, of f*~1
lies. If there are just two distinct a,,, say a1, as, then J is the circle of centre (ay + ag)/2
and diameter |a; — az|. Let By be the interior domain of J, and let Ba, hq, ho be defined

as in § 5. In particular, if J is a circle, then h; is simply a linear transformation.

Lemma 8.5. For each type II component E; of the set {z: f*~1(z) € By}, choose
¢; € E; such that hy(f*~1(¢;)) = 0. Let no(r) be the number of {; in |z| < r. Then
no(r) # o(logr) as r — co.

This follows at once from Lemmas 5.1 and 8.4.

Choose a large positive L such that for arbitrarily large r there are at least 64 distinct
¢; in A(0,7/L, Lr). Since w = hy(f*~Y(2)) maps E; univalently onto B(0,1), we may
choose G; to be the inverse function mapping B(0, 1) onto Ej;.

Lemma 8.6. Denote by c; positive constants independent of r and L. Then

ar < |G5(0)] < cor (8.20)
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Proof. The right-hand estimate of (8.20) follows from the Koebe one-quarter theorem,
since 0 is not in E;. To prove the left-hand estimate, suppose that G;(0) = o(r). Let a1,
as be distinct finite asymptotic values of =1 in E;. Koebe’s distortion theorem gives
a path v, of length o(r), joining 2, € U, to z, € Uy, with a, # a4 and

/ f(k_l)(z) dz = o(r),

which contradicts (8.1) if 9 was chosen small enough.

Lemma 8.7. f*~1) has precisely one finite non-zero asymptotic value.

Proof. Suppose that f(*~1) has more than one finite non-zero asymptotic value. Then
Lemma 8.3 and the Koebe one-quarter theorem applied to G; on B(0, %) give G;. (0) =
o(r). On the other hand, f*~1 has at least two finite asymptotic values, and this proves
Lemma 8.7. O

We may assume henceforth that the finite asymptotic values of f*~1 are 0 and 1.

Thus J is the circle S(%,1), while By is the disc B(%,1), and hy(w) = 2(w — ). Set

9(z) =2(f* V() = §) = i (f* 7V (2)).

Let 6;(t) be the angular measure of the intersection of E; with the circle S(0,t). Recall
that w = g(z) maps E; univalently onto B(0,1), with ¢g({;) = 0 and inverse function
z = Gj(w). Since there are 64 of the Ej, at least one of them must be such that

L3r dt r/L dt
/ > 4log L, / > 4log L. (8.21)
L t0;(t) r/r2 10;(t)

Suppose that Z € E; \ A(0,7/L? L?*r) and W = g(Z). Then

log(1+W|)2/ |dw| 72/ |dz|
1L —[W]| ow] 1 — |wf? a(o,w)) (1= |w]?)|G)(w)]

and so Koebe’s one-quarter theorem and (8.21) give

1+ |W> 1/ |dz| / |dz|
1og< > 1 e S 4egL,  (8.22)
1—|W| 2 Ja,qowy dist{z, 0E;} ~ Ja,qo,wy) 1210;(]2])

since (; = G,(0) € A(0,r/L, Lr). Define vy, vs by

v, =Gji(t,), ti=-1+L"3  ty=1-L" (8.23)

Then (8.22) gives
H() = Gj([tl,tg]) g A(O,r/LQ,Lzr). (824)

Let
hz)=2f* D) =2 W(z)=g(2)
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Using Lemma 4.1, we obtain
|h(’01) + ’U1| < C?,‘Ull.[/_g7 ‘h(vg) — ’Ug‘ < 03|’U2|L_3. (825)

Integration by parts gives

h(ve) — h(v1) = /

" g(2) dz = v2g(va) — v1g(v1) — / zg'(z)dz.

Hy

Thus, using (8.23), (8.24) and (8.25),

‘/ zdw‘ = ’/ 2g'(2)dz
[t1,t2] Hy

But Lemmas 8.3 and 8.6 and the Koebe Theorems give, without loss of generality,
Im(¢;) > csr, and Im(Gj(t)) > cer for —c7 < t < ¢y, while Im(G,(t)) > —o(r) for

< |h(v1) — vig(vr)| + |h(v2) — vag(ve)| < carL™t. (8.26)

t1 <t < to. This contradicts (8.26) and Theorem 1.6 is proved. O
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