INTEGRATION OF NON-MEASURABLE FUNCTIONS
Elias Zakon

(received September 27, 1965)

This is primarily an expository paper based on (and
generalizing) some ideas of J. Pierpont [6], W.H. Young [8],
R. L. Jeffery [4] and S.C. Fan [2]. Our aim is to give a simple
and easily applicable theory of integration for arbitrary extended-
real functions over arbitrary sets in a measure space. This will
be achieved by using a generalized version of Pierpont's upper
and lower integrals (with the upper integral playing the main
role), and by appropriately defining the operations in the extended
real number system, henceforth denoted by E*, so as to make
it a commutative semigroup under addition and multiplication.
It will be seen that many theorems, usually proved for '"integrable"
functions only, remain valid for arbitrary functions on arbitrary
sets; and many proofs and formulations become simpler and
stronger because integrability or measurability need not be
assumed. Some theorems (e.g. 5.3 and 5.4) are new in the
proposed generality, as far as is known to the author.

The paper should be easily understood by first year
graduate students or senior undergraduates.

§1. PRELIMINARIES. TERMINOLOGY AND NOTATION.

1. The operations and inequalities in E%* are defined as
usual (cf. [5], pp. 8-9), with two additional conventions: (+ ®) +
(o) =(+o) - (+©) =+, and 0.(+®) =(+).0=0. A finite or
infinite sum is called orthodox if it does not involve the addition
of +o and - 0. A ncon-orthodox sum is always equal to +o.
As is easily seen, these conventions preserve the commutative
and associative laws of addition and multiplication [whereas Saks'
convention (+owj+ (-0) =0, ([7], p.6), fails to preserve the
associativity of addition and hence also the general commutative
law]. The distributive law, x(y+z) = xy + xz, holds if y and z
have the same sign or if 0< x< +o, but may fail otherwise
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le.g. (-D[(+0) + (-0)] =(-1).(+0) = -0 but (-1)(+o0) + (-1)(- )
= (-0) + (+w) = +oo . Also, -(xty) = -x-y if xty is orthodox,
and ]x(y+z)| = |xy + xz| (always)].

For any sequence {a } C E* we define its "starred sum':
ol =

+ - + -
S¥a =Xa -2X a where a =max(a ,0), a = max(-a ,0).
n n n n n n n n n n

If

+ - .
orthodox (i.e., if = an< +0 or Ta < +w), it equals the
n

ordinary sum Z a_ since then Z¥ a_ = Z(a+ -a )=Za .
n n n n n

For finite sequences this holds always, by the commutative,

associative and distributive laws (for finite sums and products).

Note that Zx a exists always.

II. We denote by m a non-negative countably additive
measure defined on a o-ring /U of subsets of a set S, hence-
forth fixed. By a o-ring we mean a non-empty family of subsets
of S which is closed under countable unions and differences.

If in addition S belongs to it, we call it a o-field in S (called
c-algebra in [3]). As is well known (cf. [5], p.99, or [3],p.42),
m can be extended to an outer measure m%* on all sets ACS
by setting m*A = inf {mX|AC Xe M}, with m*¥A = + o if A is
not contained in any X ¢ M. This m%* is countably additive when
restricted to the o-field M¥ of all m¥*-measurable (briefly,
measurable) sets, i.e. sets AC S such that m#*X = MF(XUA) +
m*(X-A) for each XCS (cf. [5], p.85ff, or [3], p.41ff). Note
that, in our terminology, a measurable set, i.e. a member of
A, may not belong toM; but .M._C_.M,v Moreover, m* is
regular in the sense that every set ACS has a measurable cover
A such that ACA ¢M* and m*A = m*¥A. Two sets A,B,CS
are said to be separated if they have such covers A, B, with
m*(ANB) = 0.

III. By a measurable partition of a set ACS we mean
any finite or countable family P of (not necessarily measurable)
disjoint and mutually separated sets A such that A = Lﬁ) An;

n

in particular, P may consist of A alone. '"Partition'" will
mean ''measurable partition' unless otherwise stated. The
intersection of two partitions P's {A } and P'' = {Bk} is the
—_— n

family of all sets AnﬁB (n,k = 1,2,...); we denote it by

k
P'MP''. The following propositions are easily verified (by

replacing all sets by suitable measurable covers); we omit the
simple proofs.
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1.1. I P-= {An} is a measurable partition of a set

AC S, then m*A = Zm*An. Moreover, for every set BC A,
= then a =

the set family P = {BﬂAn} , n=1,2,..., 1is a measurable
partition of B.

1.2. I P', P''" are measurable partitions of A, so is
PNP',

1.3. Let P = {An} be a measurable partition of A.

For each n, let {Em} , i=1,2,..., be such a partition of A

Then P! =L}Pn = {Eni} , mi=1,2,..., is a measurable

partition of A, finer than P, i.e. such that each member of
P' is a subset of some An e P.

IV. All point functions f,g,h, ..., with values in E%,
are supposed to be defined on all of S [otherwise, we always
put f(xo) = 0 if f was not originally defined at xo]. Notation:

f:S—>E*., We write "{ > g on A" if f(x) > g(x) for all xe¢ A, and
put: sup f[A] = sup f(x), inf f[A] = inf f(x), A(f>a) =

xeA XeA
{xeAlf(x)>a}, A(f>a)={xeAlf(x)>a}, A(f<g) = {xecAlf(x)<g(x)},

etc. Also, fUg = max(f, g), £Ng = min({, g), £t = fu0, £ = -fU0
(all defined pointwise).
V. Given a function f:S—E* and a measurable partition

P= {An} of a set ACS, we define the upper and lower Pierpont
sums, S(f, P) and S(f, P), as follows:

(1.4) S(f, P) = =k m¥* An . sup f[An], S(f, P) = Z* m* An .inf f[An].
As previously noted, Z* may be replaced by Z if the

sum is orthodox {(e.g. if £> 0 on A) or if P is finite. It easily

follows that

(1.5) 3(,P) =3, P) - SIE7, P)>S(E, P) = S(£7, P)- B¢, P).

1.6. If P,P' are measurable partitions of ACS, with
P' finer than P, then S(f, P) < S(f,P') < S, PY) < S, P).

= I = i =
Proof. Let P = {An} and P {Bnk}, with A LéBnk

309

https://doi.org/10.4153/CMB-1966-040-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1966-040-5

for each a. By 1.1, m¥A =}im*B . Thus, if £> 0 on A,
n nk -

= T m* i =z * L i
S(6,P)=Tm¥ A inf f[A]= = okB  inf f[A]<T inf qB_]

= S(f, P'). Similarly for S(f, P) > S(f, P'). The general case
reduces to the case £>0, by 1.5. Q.E.D.

1.7. For any measurable partitions P' and P'' of a

set ACS, and any function f:S—E%*, we have S(f, P')<S(f, P'').

Indeed, by 1.2 and 1.6, S(P') < S(P'NP') < S(P'MNP')
< S(P").

In the sequel, we write m for m* and often omit the
multiplication sign (.) wherever confusion is ruled out.

§2. DEFINITION AND BASIC PROPERTIES OF THE
INTEGRAL.

Given f:S—E%, with £>0 on ACS, we define the upper

and lower Pierpont integrals, fand of f over A (with
respect to the measure m) as follows:

(2.1) f;fdmz j;fzinf S, ), f,fdm = [,f=supS(f, P)
P = = P

where P ranges over all measurable partitions of A. Note that

l&fz;fAf, by 1.7. If f is not non-negative on A, we define:

= T+ - +  F.-
(2.2) hi= ff -_fAf , _fAf=_fAf AR
EXAMPLE,* Let f = Xg where E is a non-measurable

subset of A =[0,1], with mA = m*E = m*%(A-E) = 1. This
implies that every set An (rnAn % 0) in any measurable partition

P={A} of A meetsboth E and A-E, so that Sif, P) = 1,
S(f,P) = 0. Hence, by (2.1), IAf =1, _fAf = 0. If, ins_te+ad,
=Xg " XA.g then a similar argument shows that jAf =1,

[ =0, fAf+=0, j;f_=1. Hence, by (2.2), [f=1, [f=-1.

Also, in the general case, &f > fAf, since

%
Suggested by the referee.
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7.t + Fe- - r _
l&f > fA.f and Lf Z_fAf I j./;. = _fAf’ we say that f is
integrable on A. If in addition lj;;fl < 4+, we say that { is

strictly integrable on A. An integral is called orthodox if it does
not have the form (+o) - (+w) when represented as in (2.2). This
is always the case if the integral is less then +w or if f does
not change its sign on A.

As will be seen, integrability is not needed for the proof
of most properties of the integral. The upper integral possesses
them without certain restrictions which apply to the lower integral.

Thus it is natural to call [Af simply ''the integral' and denote
it by Af [we find it unnecessary to restrict this notation to the
integrable case alone]. However, wherever desirable, we shall
also use the original notation Lf , along with Af . From our
definitions we obtain at once:

2.3. For any functions f, g:5S—+ E* and any set ACS,

we have:
(a) If f=c (constant) on A then L :_[Af = m¥A.cC.

o)
R
=
h
1

0 on A, or m¥A =0, then j;& :__fAf:O'

(c) If £f>g on A then Af_>_ Ag and _Afz_ng' Hence:
(d) I£.£>0 (£<0) on A then szo and _fAfzo
(resp. < 0).

(e) If 0<p< +w then jl;pfzp“[kf and jApf=pIAf.

(f) j‘;\(-f)=-fAf and fA(-f)z-Af if one of the two

integrals involved in each case is orthodox. Otherwise, we
only have:

@ 1Ll = Ll L cal= gl - fns [

-;fA(-f)S[Af,
(g) f £>0 on A and ADB then [f> [f. Ifin

addition B is separated from A-B, then also fAfZ fo.
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(h) If £>0 on A and [Af=0 (orif £<0 and [ f=0)

then £f=0 a.e. on A; i.e., £ =0 on A-D for some set
D with m*D = 0.

(i) IjAf,ﬁLlfl, l—_fAfISA]ft (but not IfAflg_thlfl,

in general).

Indeed, for non-negative functions, all this follows by 2.1
and 1.1 - 1.4 from standard properties of sup and inf. The
general case then follows by 2.2. In particular, for the first
part of (g), use 2.1 noting that each Pierpont sum S(f, P) over A
exceeds some S(f, P') over B, by 1.1 (2nd part). A somewhat
different proof, utilizing the partition {B, A-B}, yields the 2nd
part of (g). To prove (h)for £> 0, let D= A(f>0) and
An = A(f>1/n), n=1,2,... . Then D = UAn. Also, by (g)

and (c), 0 = _Afzj‘:& f> _& (1/n) =mAn.(1/n). Thus, for all n,
n n

mA =0, implying that also mD = m(JA )=0, as required. The
n n

case f<o in (h) reduces to the case f > o by (f). Finally,
(i) follows from (c) and (f) since +f< [f[ implies

Ao s [l ana [ < fle]s also, - ff< [, (-f). Q.E.D.
Given a function f:S =+ E*, we can define two set functions

§ and s on all sets XCS by setting sX = fxf and §X=_fxf.

These set functions are called, respectively, the upper and lower

indefinite integrals of f, denoted by ff and ff . Our next

theorem shows that § and s are, in a certain sense, countably
additive (for measurable partitions). As will be seenin § 3, all
members of measurable partitions of a set A constitute a
o-ring A. Thus, if £>0, 5§ and s are measures when
restricted to A.

2.4. For any measurable partition P = {En} of ACS

and any function f{:S—>E%* , we have:

(a) [if= = fEnf and  (b) fAf: ¢ [  where

=% fEf stands for sz A sz £ and Z*fEf stands
n n

- n - 1n
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+ - -
for szf - sz f . Inboth (a) and (b) T* may be replaced
— n n
by Z if P* is finite or Af. (resp. fAf) is orthodox.

Proof. If {>0 on A and €>0, use 2.1 to find for
each E apartition P = {E }, i=1,2,..., with
n n ni

S(f, P )<f £ +e/2™. By 1.3, P =P is a measurable
n - En n

partition of A; thus I/_\f < S(f, P) = %‘1 (.?mEni.sup f[En*"]) <

~

n
= f+ € = + €. 1 i f< Z
= (-/E /27) < fE f As &£ is arbitrary, J;XI < fE f.
n n n
The reverse inequality is obtained in much the same manner
(without introducing an € ), by considering an arbitrary partition

{Ak} = P'of A and, for each E_, the partition P'={E A },
n n n <
k=1,2,... . The proof of (b) for f> 0 is analogous on noting

that all fE f may be assumed finite (otherwise, also jAf = +w,
=*n =

by 2.3(g)). Finally, the general case easily follows by 2.2. Thus

all is proved.

2.5. The integrals Af and fAf do not change if A is

modified by some set D with m*D =0, or f is arbitrarily

re-defined on D.

Indeed, D has a measurable cover —D, mD = 0. Hence
A-D, AND} is a measurable partition. By 2.4,
P y

hpft Ime = [f with [A‘an -0. Q.E.D.

A function f{:S—E¥ is said to be elementary on A if { is
constant on each set E  of some measurable partition {E } = Px
n n’

of A. If P* is finite, f is called simple.

2.6. If the functions f,g:S—> E* are elementary on ACS,
with fza on A (n=1,2,...)for some partition P* = {A },
n— n n
then X
(a) ‘[A.f :_JAf = E% anmA,n (thus f and g are integrable);
(b) Afi [Ag = A(fig) = ;[A(fig), provided that JAI or

jj;g is finite, or that both integrals and their sum (resp.
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difference) are orthodox,

Proof. Part (a) is immediate from 2.3(a) and 2.4. For
(b), we may assume that g = bn on An , n=1,2,..., for the

same partition P* = {A.n} [otherwise replace P* by the inter-

section of two given partitions; this also shows that, if f and g
are elementary or simple, so are f +g, flJg and £(lg; hence

+ -
also f =fU0 and f = -fU0]. Thus frg=a % bn on An

Also note that if Ij‘;\hfl < + o then the series Ta mA is
n n

absolutely convergent and its termwise addition to any other
series does not affect the absolute convergence or divergence of

the latter, i.e., the finiteness or infiniteness of its positive
+ +
and negative parts; e.g. Z(a +b ) = 4+ iff b = +o . Thus
n n n

o

if I&g =t o, then fA(f‘l“g) = Lg =to= [Af + ng. If however both

]‘[L&g l, lef] < 400, all reduces to ordinary addition of convergent

series. In the orthodox infinite case, a similar proof works on
noting that either the positive or negative parts of both series are
finite. Thus the theorem is proved.

2.7. For every function f:S— E¥ and any set ACS, we
have:
(a) I fo < qe E¥, there is an elementary function

h>f on A such that Afs -[A.h< q.

(b) If fAf> pe E* and if fAf is orthodox, there is an

elementary function g <f on A such that fAf > Lg > p.

(c) Moreover, h and g canbe so chosen that, for x e A,
h(x) > f(x) > g(x) exceptif h(x) = f(x) = g(x) = 0 or

h(x) = f(x) = +o [resp. f(x) = g(x) = - ]; we then say that
the inequalities g <f< h are almost strict, and write
gCf<Ch.

(d) X £>0, thenalso h>0and g>0.

Proof. (a) If g > fA': _&f+- fAf- then, by our

. +
conventions, Af < +o0. Hence there are u,ve E* (Iu' < +oo)
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such that Af+< u and - fAf— <v<q-u. By2.1thereisa
= + +
partition P = {A } of A suchthat u> S(f ,P) = ZmAnsupf (A ]
n n

and -v < §(f_, P) [we can satisfy both conditions for one and the
same P, by intersecting two partitions if necessary]. Define
two elementary functions h', h'' on A by setting h' = sup f+[An]

- +
and h'' =inf f [A ] on An, n=1,2,... . Then h'>f
n
- +
h''<f on A and, by 2.6(a), jA ' = ZmAn sup f [An] =

- ¥+ -
S(f ,P) < u, fAh" =S(f ,P)>-v. Then h_ =h'-h'" isthe
+ -
elementary function h of assertion (a) since hozf -f =1{ and,
- v A

by 2.6(b), L.ho = j[;h fAh <u+tv<q.

(c) Nowlet C=A(h =-w), B = A(-w< ho< 0) and

o
D=A(h >0). As ho is elementary, {B, C,D} is clearly a
o)

measurable partition of A. Hence we obtain for each n an
elementary function hn_>__ ho >f on A by setting hn =-n on C,

h =(1-1/n)h on B, and h =(1 +4/n)h on D. Obviously,
n o n o

hn>ho>f except where h (x) =0 or +ow; thus h>f. By 2.4
z ° ol

and 2. 3(e, a), fAhn = thn + fchn + thn =(1-1/n) tho +

_ h . : - (. 1
(-nmC) + (1 + 1/n) fD o Thus, since tho ﬂ)h th
< A)h' < 400, all is orthodox, and we have

lim fAhn = tho + (-0)mC + thO = Aho> q -

=0
Hence, for a large n, fh > q. As h}f, this h is the

YA n n n

desired h in (c). Furthermore, if f> 0, we can replace

+
h by h >0, with all inequalities only strengthened; this proves
(d) for upper integrals. The dual proof for lower integrals works

only if fAf. is orthodox [instead, one can also use 2. 3(f)].

NOTE. It follows from this proof that, if £> 0 and

hn =c . on Ank , k=1,2,..., then hn > sup f[A.nk], except

where h =c¢ K =0 =f or where allis +o . Similarly, for
n n

lower integrals, g, < inf f[A.nk] except where g~ f=0 or -cw.
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2.8. (a) I [Af< +0 then f< 4+ a.e. on A;

(b) If _fAf is orthodox and _[Af>—oo then £> - a.e.
on Aj

(c) If both conditions hold then |f]| < +w a.e. on A.

Proof. (a) If Af < +w then 2.7 yields an elementary
function h > f with fh<+oo. Let h =a on A, n=1,2,...,
- A n n n

for some measurable partition of A. By 2.6, Z*anrnAn

+ -
2a mA - Za mA = fh< + w. Hence, by our conventions,
n n n n A
+
n
we have f < +ow except on sets A with mAn = 0. This proves
n

(2). The dual (b) follows by 2. 3(f).

+
we must have a < +o except if rn./-\.n =0. As f<h<h on An,

2.9. For any functions f,g:S—= E* and any set ACS, we
have:

(a) ‘&f + [Agz_/l;&(f+g), always;
() Jol+e)> [, f+ fig i [ g<+e.

(c) ~[A.f+ngZfA(f+g) if fAf>-oo and ng>-oo;

@ [yG+e)> [f+ [ie it [f, [g and [if+ [,g are
or thodox. - - B - - B

Proof. Suppose that IA-f + jAg< _&(f+g) . Then there

are two numbers p > Lf and q> Ag, with p + q< L(fi—g) .
By 2.7, there are elementary functions f'>{ and g'> g with
p> Af' and q> Lg' . As f+g<f'+g', we have [by 2. 3(c)
and 2.6(b)] that L(f+g)5_ jA(fl+ g') = Af" + j‘;&g' <ptaq

contrary to our choice of p and q. This proves (a).

(b) By our conventions we have f< (f+G) +(-g). Hence,

by 2.3(c,f) and 2.10(a) , L ﬁj;(f+g)+j1;(-g)= L(Hg)- j;kg,

q.e.d.

(c) We may assume that J&f < +00 and ng < +oo . Thus
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we have -w< fAf < d&f< +o and ,ng, < +e0 (all orthodox!).

By 2.8, |[f] < +® on A, a.e. . By—é. we can make f finite
+

5)
on all of A so that -(f+g) =(-f) +(-g) on A. Moreover,
using 2. 3(f), we have -(L\f + ng) = —Af - ng = fA(-f) + J;(-g)
< Ju(-f-g), by (b). Also, by (a), [ (-f-g)< [(-£)+ [ (-g)
< | ._[Afl + l;ngl < +w, so that /A(-f-g) = -_fA(+f+g) by 2. 3(f),
all being orthodox. Combining, we have -(Af +IAg) < -—fA(f+g),
and (c) follows.

From (a) we deduce (d) by 2.3(f), noting that -(f+g)< -f-g.

2.10. If the functions f, g:S— E* are strictly integrable
on A, sois pf +qg for any finite numbers p,q, and

L(pf +qg) = po + qL‘g = —fA(pf + qg). Non-strict integrability

of f,g implies this formula too, if Af, j};g and the sum

p/Af + q‘[ALg are orthodox.

Indeed, this follows from 2.9(a, d) combined with 2. 3(e, f).

2.41. I £>0 on A and A =GUH, then Afngwa];_If.

[This fails for lower integrals, along with its generalization 4.3.]

Proof. We may assume that GNH = § (otherwise replace
H by H-G). Define two functions g, h:S = E¥ by setting g =f
on G, h=f on H, g=z0 on S-G and h=z0 on S- H. By

2.10(a), L = jj;.(g +hy< j[;g + [A_h’ and it remains to show that

&g = ng = fo and jf;.h = th = fo . To achieve this, note that

no upper Pierpont sum S(g, P), with P a partition of G, changes
its value if P 1is replaced by a corresponding partition of a
measurable cover G of G ; for, since g vanishes outside G,
this enlargement of the partition sets does not affect the supremum
of g over such sets. By 2.1 and 2.3(g) it easily follows that

[~

Joe
fcg

ng . A similar argument shows that I};‘g = ng = -[K-(‘}g +

0+ fc-}g = ng . Similarly, Lh = fﬁh = fo , as required.
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This completes the proof.

REMARKS (Alternative definitions). 1) From 2. 3{(c) and

2.7 we infer that f& = inf [h and, if fAf is orthodox,
h>f -

fAf = sup jAg, with g,h ranging over the set of elementary

= gt

functions on A. This could serve as a definition (with 2.6a

treated as a definition for elementary f).

2) The proof of 2.7 also shows that formulae 2.1 could be
used as a definition also in the general case (instead of 2.2), except

when fAf is not orthodox (then we put ]Af = +w). In particular,

this definition can always be used for bounded functions on sets of
finite outer measure. This procedure was adopted by Pierpont in
[6], with unbounded functions treated separately by means of a
limit process. Itis less general since it makes the existence of
the integral dependent on the existence of a limit. Pierpont
considers only the Euclidean n-space, with m the Lebesgue
measure and with separated sets defined in terms of approximating

families of cells in En .

3) Fan [2] and Jeffery [4] likewise consider only sets of
finite outer (or inner) measure. Fan's integral always exists for
bounded functions (it is defined in terms of partitions of the
X-axis), but it is, in general, neither linear nor monotone nor
additive. Unbounded functions again require a separate treatment
by means of a limit process.

§3. MEASURABILITY AND INTEGRABILITY. A function

f:S -+ E* is said to be A-measurable (on a set ACS) if the set
A(f>a) is separated from A(f<a) for every ae¢E¥, under the
given measure m. A set XC A is called A-measurable if X

is separated from A-X (see §1). Clearly, the A-measurable sets
are exactly all members of the various measurable partitions of
A. Instead of "A-measurable', Fan and Jeffery use such terms
as ''relatively measurable! or ''separable'. We shall show that

this notion reduces to ordinary measurability under a new measure
m depending on the set A. Our notation is as in § 1.

3.1. LEMMA. For every set ACS, the family A of all
A-measurable sets is a o-field in A which consists exactly
of all sets of the form ANX (XeA*), with A= ANS¢A. More-
over, the restriction of m¥* to A is a countably additive
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measure (we call it mA).

Proof. If C is A-measurable then, by definition, C is
separated from A-C; so there are sets X, Y e M with X2 C,
YD A-C and m(XNY)=0. Let Z=XNYeM*, mZ =0. Then
C-Z = (ANX)-Z whence C=(C-Z)J(CNZ) = (ANX-Z)u (CNZ) =
(ANX-Z) |y (ANCNZ) = AN[(X-Z) Y (CNZ)]. Thus C has the
desired form ANX' where X' =(X-Z)J (CN2Z) is measurable
since so are X, Z and CNZ [the latter because m*(C/1Z) < mZ=0].
Conversely, if C= ANX (Xe M%), let A be a measurable cover
of A. Then A-C=A-(ANX)=A-XCA-XeM* and
C=ANXCXeM*. Thus A-C and C are contained in two
disjoint measurable sets A-X and X, respectively. It easily
follows that A-C is separated from C. Thus, indeed, the
A-measurable sets are exactly those of the form ANX (Xe M*),
Such sets however form a o-field (in A) because JU* is a
o-field in S. The fact that m* is countably additive on that
o-field easily follows from 1.1- Q.E.D.

We thus have obtained a measure space (AA mA), with

mA a measure in A. Since rnA is a restriction of m%, we

may write m*X for mA(X)' if Xe A. Itis also clear that a
function f:S = E* is A-measurable in the sense defined above
if and only if its restriction to A is mA-measurable (i.e.

measurable in the ordinary sense under the measure mA). It

follows that all theorems on measurable functions apply to
A-measurable functions, for any (fixed) set ACS. In
particular, the sum and product of two A-measurable functions
are themselves A-measurable; so also are the pointwise
supremum, infimum, lim and lim of any sequence of A-
measurable fdnctions; so are all elementary functions on A.

3.2. If f:S— E* is A-measurable, it is integrable on A
(A C S).

Proof. It suffices to consider the case £> 0. Fix any

+1
€>0 and let A_= Alf = +o), A_= A (1+e) < f< (1+6)7 ),

n=0, +1, +2,... . By the A-measurability of f, all these sets
together form a measurable partition of A. Thus we obtain two

elementary functions g,h on A, setting g=h=f= 40 on Aoo,

and g = (1+£)n, h = (H—E)n+1 on An for each n. Then
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h=(1+¢)g and g<f<h on A. Now, if .[A.g = +o0, then also

Lf = fAf = +0 and f 1is integrable, as required. If however

Ag< +o then, by 2.6(b) and 2.3(e), th- Ag' = '[A(h-g)

= &Lg. - Since ;[Ag S_[Af < [A_f < .&h’ we certainly have
Ij‘;& - !Afl < é_&g < +eo whence, letting € — 0, '/Af ::—/Af_ Q.E.D.
Note that the converse to 3.2 fails. Counterexample: Let

m be Lebesgue measure on the line. Let A =[0,2]. Choose an
unmeasurable set B C[0,1] andput f=1 on B and f = +w on

A-B. Then Ja; :_-_[Af = +0 but f is not A-measurable. However,

we have:

3.3 For any f:S— E¥ and ACS, the following are
equivalent:

(2) f is strictly integrable on A;

(b) £ is A-measurable and Lf is finite ;

(c) For every & >0, there are elementary functions

g,h on A suchthat g<f<h on A -and »['\h- [&g< €.
Indeed, (c) easily follows from 2.7. Condition (b) implies

strict integrability by 3.2. In order to prove the converse, we
first establish:

3.4, For any function f:S - E¥ and any set ACS, there
is an A-measurable function h>f on A, with Ai h = jj;f. I
fAf is orthodox, there also is an A-measurable function g<f
on A, with Lg :_[Af'

Proof. If -[‘Xf = 400, the constant function h = +0 1is the

required one. If Af < +o0, there is a decreasing sequence of

reals 4 _[Aj By 2.7, there is for each n an elementary
f ti h >f A it > [h > . 1 h
unction a2 fon A wi h a, _[A& 0> ka Clearly, al n
are also A-measurable; hence so is the function h = inf hn.

Moreover, the inequalities q > fAh > Lh> _]Af imply that
n n— -
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Lh =lim q = ]Af. Thus h is the required A-measurable
function. The second assertion is proved similarly. We now
return to the proof of 3.3.

If f is strictly integrable then, by 3.4, there are two
A-measurable functions g,h with g<f<h and fg = fA =
jAf = [Axh< +0, so that jA(h—g) =0 by 2.10 (since g and h

are strictly integrable by 3.2). As h-g>h-f>0, we have
jj;(h-f) = 0 whence, by 2.3(h), h-f=0 a.e. onA. This implies

that f is A-measurable (for so is h) and the proof of 3.3 is
complete.

3.5. If two functions f{,g:S—= E¥ are strictly integrable

on A, so also are fug, fNg, f+, f and ffl (also f +g, by
2.10).
Indeed, all these functions are A-measurable, hence

integrable on A. As lLfl < +o0, fAf+ and &f‘ are finite;

therefore L]fl < fAf+ + Af- < 400 (by 2.9a). Also, ]L(ng)l <

+ -
Llivel < fidleluleh < flil+ [ lel < 4. Thus £, ¢, [£]
and fUg are strictly integrable. Hence so is fflg =
-[(-f)u(-g)]. Q.E.D.

Thus the family of all functions which are strictly integrable
on A is closed under the operations + , [J and 1 . This fails
for multiplication, but we have:

3.6. ({'"Mean value theorem!'). Let f be A-measurable
and bounded on A, with p =inf f[A], q = sup f[A]. Then, if
g is strictly integrable on A, so is fg ; moreover, Af gl =

aA[gl for some reali a (p<a<q). Ifin addition f has the

Darboux property on A [i.e. if the restriction of f to A takes
on all intermediate values between f(c) and f(b) for every

; I Y = f ! e
b, c, € A], ther Af ig! I(Xo) j};&ggl for some xoeA.

Proof. By assumption, lfl < k for some finite k. As
f and g are A-measurable, soc is fg; and, as ,j“; g,_<_

kj;,xilg, < +o0, fg is strictly integrable (by 3.3). Moreover, if
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_[A‘lgi # 0, then the number a = JAfIg] / L&fg[ is the desired
one. If however A[g] = 0 then for any ae [p,q] we have

‘[A&f]gl Ska g[ =0 = aAIgI . Finally, the last assertion is
obvious if p< a< q . I, instead, a = p =inf f[A] then
(f-a)|g] >0 and fA(f-a)[glszflg[-afAig!=O; so, by 2.3(h),
f-a =0 a.e. on A. Therefore there must be some xoe A with
f(x ) =a (unless mA = 0). The proof is similar in case

o
a = q = sup {f{A]. Thus the theorem is proved.

§4. CONVERGENCE THEOREMS (B. Levi, Fatou,
Lebesgue).

Throughout this section, f and f_ denote arbitrary (not
n

necessarily measurable or integrable) functions from S to E¥*,
and ACS is arbitrary, too. We write “fn/vf (ptw.) on A"

if the sequence {fn} is non-decreasing on A and if fn - f
pointwise on A, 1i.e. fn(x)—> f(x) for each xe¢ A . Similarly

for non-increasing sequences (f ~f) and for a.e. convergence.
n

4.1. LEMMA. Given fn/rf (ptw.) on A, there always

are A-measurable functions h >f and h>f on A, with h _>h
a2t 22 2t on ALt S
(ptw.) on A and fhn:f’fn’ fh=ff.

Proof. By 3.4, there are A-measurable functions
h' > f d h'>1f , ith h' = ' = , n=1,2,...
2f and h'> fn wi L &f and j./;; ) jAfn n=1,2

Let h = inf (h'Nh') (ptw.) and h= sup h =1limh (since
n k>n k n n n

{hn} is no;-decreasing). Then all hn and h are A-measurable.

Moreover, hnf_ h' implies hn'<‘h = lim hnf_ h' and, for k > n,

Vs . . _ ing). ‘
}}( > sz fn (since {fn} is non-decreasing). Thus fng inf
k>n
(h'ﬂi'k')ihf_h', whence f =1im f <h<h'. By 2.3(c),
n="=

Lfnﬁlﬁhng_[&hr;:&n and [f< [h< [h'= [f. Thus

Lfn=£hn, fAf=fAh, Q.E.D.
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4.2. (B. Levi). (i) I fn)'f (a.e.) on A and if

—&\fn>—°° for some n, then ‘L\‘fn/"'&f. (ii) If fn\f(a.e.)

on A and if fAfn< +o for some n, then fAfn\ fAf.

Proof. (i) By 2.5, we may assume that fn/rf onall of

A and use 4.1 to replace fn and f by A-measurable functions

A
on A. By 2.3(c), IA = fAh_>_ sup‘/Ahn = lim L.hn = lim _&fn.

To prove the converse inequality, suppose that lim jf.khn =g< jAh.

h_7h, with Job = Jif and [Ahnz jAfn. First, let h>h >0

As '/Ah = _[Ah is orthodox (for h > 0), 2.7(c) yields an elementary
function gLh with gq< Ags Lxh. Let A =A(h_>g),
n=1,2,... . Then A=U An’ {An} is increasing, and the sets
An are A-measurable (for so are the functions hn and g). But,
as we noted in §2, the indefinite integral § = fo is a measure on

o
such sets. Therefore lim j}; g = lim §An =5(yA )= SA = ng.
n
n

, h < h .
Also, as gghn on An ~we have f;\ngﬁkn n—fA n  Thus

. - TR . .
_‘f‘\g < lim j};.nhn q (contradiction!). Thus assertion (i) holds for
h > 0.
n=

In the general case, since {Lhn}T , no generality is lost
by assuming that fAhn > - for all n (instead of some n), and
that Lhn< +o (otherwise, -[ﬁ = j‘;h?_ sup’[‘s‘hn = 400, and all
is trivial). Thus, by 3.3(b), all hn are strictly integrable on
A. By 2.8 and 2.5, we may assume that all hn are finite on A.
Since 0< (hn -hi)/(h - hi) , we have, by what was proved above

and by 2.10,

4.2.1. JA(h—h1)=11rTL(hn-h1)=1%m '&hn-ff_\hi.
Now, if ‘/j;(h-hi)< +, then h-h1 is strictly integrable
1 = - - = - h
and so is h=(h hi) +h1 . We then have _/A(h hi) jj;_h »[A ¢
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and 4.2.1 yields lim [Ahn = [Ah, ie., Af = lim Afn. If

however fA(h—hi) = +0, then 4.2.1 yields Um [A.hn = +°O->-Ah’
while the converse inequality is obvious. Thus (i) is proved.
Assertion (ii) follows from (i) by 2.3(f), on noting that
f ~f implies -f _#-f. Q.E.D.
n n

NOTES. 1) The restriction L&fn > -w (resp. fAfn < +00)

is essential. Counterexample: Let A be the line interval (0,1),
f=4, f =-0 on (0,1/n) and f =1on[1/n,1), with m =
n n

Lebesgue measure; then fn/f, I&fn = - 00, but [&f =1 # -oc0.

2) Unless the functions f are integrable, (i) fails for
n

lower integrals and (ii) fails for upper integrals. Example:
Let A be the real axis and let Jl= {A, 9} . Define mA =1 and
m@ = 0, fn £1 on (-n,n) and fn =0 on A-(-n,n), so that

f »f=1 on A. Then m isameasureonﬂ,, ff = 0,
n JA'n

Afn =1 = fAf. Thus lim Lfn = Lf, but nm_fAfn ;é—fAf.

3) From 4.2 it follows thatif £ >0 on A then the upper
indefinite integral § = ff is a countably subadditive set function
(i.e. an outer measure) when restricted to subsets of A. Indeed

y

let E=| EngA. For each n define f =f on An= L_J Ek

d =0 -A . T E SE = =
an fn on S n hen f /rf on whence § fE

lim ‘&f = lim ./j;_ f=1lim s kLJ1 Ek and it remains to show that
n n

L_J1 Ek < Z §Ek . This however follows from 2.4114. Thus we
k=1

have obtained:

4.3. If E=J E andif >0 on E then
- w0 ks R —m— —  — —_—
f < zZ f . If further the sequence {Ek} is increasing,

k=1

then fE = l11m f;:k
-0

4.4 (Fatou). Given a sequence of functions f , let
==t

= inf f , = . Yy :
g, = 1 K hn sup fk Then for any ACS we have
f>n k>n
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(a) A(lim fn)_<_hm Lfnf_ sup ‘[an if _&gn> -w for
some n;

(6) f, (im fn)zﬁr?l_fAfn?_inf_fAfn if _[Ahn< +w for

some n.
Proof. Since {gn}f and IAgn>-w’ 4.2 yields

j;& lim g = lim Lgng lim Lfn (for gn_<_ fn). As lim g = 1imfn,

(a) follows. Similarly for part (b). Q.E.D.

4.5 (Lebesgue). If the functions fn are integrable on A
and if fn—>f (a.e.) on A, then f&f:_fA = i_n;r; JAfn'

provided that there is a function g, with ng <+ and g > [fnf,

n=1,2,..., on A.

Proof. As -g gfns_ g, we have (with g hn as in 4.4)

gn_>_-g, hnSg. Thus;fAhnf_;ng<+eo, IAgn?- _[A(-g)z-;?;_&g>-oo.
As »[f&fn:_fAfn’ and h_mfnszn=i (a.e.) on A, we have

by 4. 4: li_rELfnZ_ _/A_l_irﬁfn=‘£xfz IX =fA1"{r‘nfn_>_1_irT1 L\fn.
Q.E.D. -

REMARKS. 1) As is well known, every measurable
function f > 0 is the pointwise limit of a non-decreasing sequence

of simple functions f >0 (cf. [5], p.155) so that fAf = 1im/1;fn,

by 4.2(a). Now, [A.fn as given in 2.4 coincides with the ordinary
Lebesgue integral of f.ny and it follows that this is the case for

any Lebesgue integrabie function f > 0. By 2.2, this extends

to arbitrary Lebesgue integrable functions: any such function is
also integrable in the sense of § 2, and its Lebesgue integral
coincides with its Pierpont integral.

2} The approximation by simple functions {{rom below)
applies also to non-negative A-measurable functions. By 4.2 and

3.4, we thus have J‘;f = sup Lg, with g ranging over simple

functions (0< g<f) on A, even when f is not A-measurable.
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It follows that Proposition 2.7, for lower integrals of non-
negative functions, holds also with elementary functions replaced
by simple functions. This argument fails for upper integrals
because an approximation by simple functions from above fails in
general to preserve the restriction [‘kfn < +ow contained in 4.2(b).

However, this is certainly possible for bounded functions on sets
of finite measure. This is why theories of integration based on
simple functions (or on finite partitions) usually confine them-
selves to lower integrals of measurable functions or use some
kind of "multi-stage' approach (starting with bounded functions).
These complications do not occur in our theory.

§5. UNIFORM AND ALMOST UNIFORM CONVERGENCE
We shall now show that Theorem 4.2 holds also with upper

and lower integrals interchanged, if the convergence of the
functions fn to f is uniform or '"almost uniform'. We say

that fn-> f almost uniformly (a.unif.) on A if for every &€ >0
there is an A-measurable set D (m*D < &) such that fn-> f
uniformly on B = A-D, i.e., fn — f (unif.) in the ordinary sense
on B( lf’ < +o0) and fn - + o (unif.) in a self-evident sense on

B(f = + w). This is tantamount to uniform convergence on B,
with E* suitably metrized (cf. e.g. [1], 3.3.2). We say thata
set CC A is Acg-finite if C =UAn for some sequence of

A-measurable sets An with m*An< +0, n=1,2,... . Then,
as follows from 3.1, the An can also be chosen disjoint and

separated from each other.

5.4. LEMMA. I [f<+w and £>0 on A, then
f=0 on A-C for some Ac-finite C.
Indeed, with the notation of the proof of 2.8, we see that
none of the numbers mA can be infinite unless hn = a.n =0
n
on An (otherwise Lh = +4+0). As h>f>0, f too mustvanish,

except on some sets A with mAn< +0. Q.E.D.
n

5.2. LEMMA. If £~0 (unif.) on A, with jf < 4o,
) — n A n
then Afn\o.
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Proof. By 5.1, fnio on A-Cn (n=1,2,...) for some
Ao -finite sets Cn. Thus all fn vanish on the set A.O = A-C
where C = Cn is Ac-finite so that C =UAn (mAn< +0) for
some disjoint separated A-measurable sets A.n. As fn 20 on

A (for all n), lim f f =0, and it remains to show that
o _ AO n

lim fon = 0 as well. Here we may discard all An with 1'1’1An = 0;
thus we assume 0 < mA_ < +w. Clearly, lim f f > 0. Seeking
n Cn—
a contradiction, we suppose that limfcfn = q>0. Then define an
n+1
elementary function h on C, setting h = an = q/(2 mA.n) on
A,n=1,2,... . Obviously h> 0 (strictly) on C and, by
n
nt+i n+i

= A =X q/2 < q. Note that we
2.6(a), fch Z (a/2 mA )mA_ a/ q
can make fch less than any prescribed g > 0 by this method.

The rest of the argument proceeds exactly as in the proof of 5.3
below, so we omit it here.

5.3. If in 4.2 the convergence of the functions fn to £

is uniform or almost uniform, then:

(a) Part (i) of 4.2 holds also for lower integrals pro-

vided that ]Af is orthodox;

(b) Part (ii) of 4.2 holds for upper integrals (always).

Proof. We first consider the case fn\f (unif.), with all
fn >0 on A and j;xfs I&fn< + w0 . Clearly, Jl;‘fg lim fAfn =q.
Suppose that jj;f < q. Then 2.7 yields an elementary function

hJ>f>0 on A suchthat h>{ (strictly) except on A(h =1f{ = 0)
and -}Ah <qg. Asin5:2, we may discard the set AO on which

all fn and h wvanish, and then are left with an Aoc-finite set
CC A on which still }1 = f = 0. Note that Ao and C can be

made A-measurable because h is elementary. Proceeding as

in 5.2, we can re-define h on C so as to make h strictly > 0,

i.e., h>f on C as well, with h < lim f . Moreover,
fC fC n

we can make fCh so small that [‘Xh = _/A_ Ch + -[Ch <qg-=
lim L\fn . Let h-= ck on Ak (k =1,2,...) for some measurable
partition {Ak} of A. By the Note to 2.7, we may assume that
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h > sup {[ Ak] on A . Then the uniform convergence fn\f

(n, >n

(o k-1) such that

yields for each Ak a positive integer n

fn< ) = h on :\k for n > n, - By 2.4 and 2. 3(c) we have, for
n>mn,
© nk-i © nk-i w
Mot B b B A E heE AE AN

0
(5.3.1) Q< = Iﬁlh + I Afi.
1=1 i 1=nk i

00 0
Now, as .Z fA_f1 = L‘f < +0, we have lim .Z [A,fi = 0.
i=1 i k=00 i=n i

k

Thus, with k= +ow, (5.3.1) yields gq< Lh, contrary to Iﬁh < q.
This proves (b) for the case 0 S_fn\f (unif.). Similarly (but

without having to use Lemma 5.2) one proves (a) for the case
O_<_fn/vf (unif.). Replacing fn and f by -fn and -f, and

using 2. 3(f), one reduces the case fns 0 to the positive case.
Finally, if fn and f are sign-changing, we use 2.2 to infer that

fnzf (unif.) implies
+ = - +  7-
_fAfn =_fAfn AN /_fAf - LE - _fAf

The passage to the limit is legitimate here because fAf is

orthodox, by assumption. Thus (a) is proved for uniform con-
vergence. Similarly for (b), noting that here orthodoxy need not
be assumed since it follows from the fact that ‘Lf < Afn< +o0 .
Next assume that fn/rf (a.unif.) only. Then, for each
integer k > 0, there is an A-measurable set Ek C A such that
m(A- Ek) < 1/k and fn/yf (unif.) on Ek. As mi(A - UEi) <

m(A-Ek) < 1/k for all k, we have m(A -U Ei) = 0. Thus,

328

https://doi.org/10.4153/CMB-1966-040-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1966-040-5

by 2.5, we may assume that A = Ek . We may also assume
k
that the Ek are mutually disjoint [otherwise replace Ek by

k-1
E - (J E. for k>1]. Thenthe E are also mutually
k s i k
separated (being A-measurable), with fn/7f (unif.) on each E .
k

Hence lim fE fn = fE f, =1,2,3,..., by what was proved
n—w — k -k

above. Now, by 2.4 and 2.3(c) we have for any integers n,p > 0

0 [ o]

P © p
f =3 f == f + = f >= f + = f .
-IA Tok=t —fEk S —fEk % k=p+t —f K n—kzi—fEk n k=p+1—fEk !

Keeping p fixed, we let n— +00 to obtain

0 p >}
lim [f > (im [ f)+ T [ f == £+ = [Li.
A —
no S P T kel meo <Pk P keptt Tk 1 ket “Fk kept1=Dy !

Next, letting p - +o and noting that lim = f f =0, we
p—~w k=p+l —k
find:

p [ o]
lim f > lim =T f= = f
n— —fAn © p—ow k=1 —fEk k=1 -[Ek = Juf-

Since the converse inequality is obvious the proof of (a)
is complete; (b) follows dually by 2.3(f). Q.E.D.

5.4. Let f :S— E* be arbitrary (not necessarily
- n

measurable or integrable) functions with fn - f (a.unif.) on a

set ACS. Then:

(a) lim Lfn = Af and (b) lim f R / K
> oo — =
provided, in both cases, that lfnl <g, n=1,2,..., on A for

some function g with Lg < +o00.

Proof. Define g, and hn as in 4.4. Then, since

f - £ (a.unif.), it easily follows that the convergences gn/vf
n
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and h ~f are likewise almost uniform on A. Hence by 5.3
n

the proof of Fatou's theorem 4.4 works also with upper and lower
integrals interchanged. Therefore also 4.5 can be proved
separately for upper and lower integrals without assuming
integrability (the latter was only needed to replace lower integrals
by the upper ones). This yields 5.4.

In conclusion we note that the upper integral 'behaves' in
many respects better than the lower one [cf. 2.3(g,i), 2.7, 2.8,
2.9, 2.11, 4.3, 3.4, 5.3]. It emerges as a convex (sublinear)
functional on all extended real functions and becomes linear when
restricted to strictly integrable functions. It seems to us that
the above exposition is so simple that it can be easily adapted to
any course in measure theory and that there is no necessity to
limit the theory of integration to measurable functions.
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