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Crystal structure of perfluorononanoic acid, CoHF,7,0,
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The crystal structure of perfluorononanoic acid (PFNA) was solved via parallel tempering using syn-
chrotron powder diffraction data obtained from the Brockhouse X-ray Diffraction and Scattering
(BXDS) Wiggler Lower Energy (WLE) beamline at the Canadian Light Source. PFNA crystallizes
in monoclinic space group P2,/c (#14) with lattice parameters a =26.172(1) A, b=5.6345(2) A,
¢=10.9501(4) A, and B=98.752(2)°. The crystal structure is composed of dimers, with pairs of
PFNA molecules connected by hydrogen bonds via the carboxylic acid functional groups. The
Rietveld-refined structure was compared to a density functional theory-optimized structure, and the
root-mean-square Cartesian difference was larger than normally observed for correct powder struc-
tures. The powder data likely exhibited evidence of disorder which was not successfully modeled.
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I. INTRODUCTION

Perfluorononanoic acid (PFNA or CoHF;,0,, IUPAC
name: heptadecafluorononanoic acid) is a compound belong-
ing to the family of per- and polyfluoroalkyl substances
(PFAS), characterized by alkyl chains decorated by fluorine
atoms. Due to widespread industrial usage in diverse applica-
tions (surfactants, surface treatment agents for textiles,
fire-fighting foams, and production of other fluorinated
compounds, among others) and the strong nature of carbon-
fluorine bonds making the compounds highly resistant to
degradation, PFAS have become ubiquitous environmental
contaminants (Dadashi Firouzjaei et al., 2022; Evich et al.,
2022). PFAS have been implicated in numerous health
concerns such as liver and kidney disease, reproductive and
developmental issues, and cancer (Fenton et al., 2021), but
due to the variety of different compounds (numbering in the
thousands) and complexity of human population studies,
much still remains unknown about their health effects (Kirk
et al., 2018). PFNA is prominently included in a toxicology
literature database with 29 common PFAS compounds
(Pelch et al., 2022).

In this work, synchrotron powder X-ray diffraction
(PXRD) data were obtained for PFNA and used to solve the
crystal structure. Subsequent Rietveld refinement strongly
suggested the presence of disorder which we were unable to
model. A structureless Le Bail refinement was used to extract
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a complete Bragg reflection list unbiased by the structural

model for inclusion
(Kabekkodu et al., 2024).

TABLE L.
obtained for monoclinic PENA

in the Powder Diffraction File

The crystal data, data collection, and refinement parameters

Crystal data

Formula, Z

Molar mass

Symmetry, space group
Unit cell parameters

Volume
Den SIty (pcalc)
Data Collection
Beamline
Monochromator
Detectors

Specimen mounting

Collection mode

Wavelength

Refinement range
Refinement

Background correction

Number of data points

Number of restraints

Number of refined parameters

wR
R wp

Ry

CoHF,,0,, Z=4

464.07 g/mol

Monoclinic, P2 ,/c (#14)

a=26.172(1) A, b=5.6345(2) A,
c=10.9501(4) A, f=98.752(2)°

1596.0(1) A3

1.931 g/em®

CLS WLE
Si (111) single-bounce crystal
monochromator
8 Dectris Mythen2 X series 1 K strip
detectors
1.2 mm inner diameter glass capillary
Transmission
2=0.81906A
5°-40° (20)

16-term log interpolation function
14001

81

122

0.0314
0.0286
0.0170
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Il. EXPERIMENTAL

A specimen of PFNA (Sigma-Aldrich, 97% purity) was
lightly ground with a mortar and pestle, then inserted into a
1.2 mm inner diameter glass capillary for data collection.

PXRD data were collected using the Brockhouse X-ray
Diffraction and Scattering sector Wiggler Low Energy
(WLE) beamline (Leontowich et al., 2021) at the Canadian
Light Source (CLS). WLE is an in-vacuum wiggler beamline
which employs a Si (111) single-side bounce crystal mono-
chromator. Data were collected at a photon energy of
~15.14 keV (calibrated wavelength of 0.81906A), using a
series of eight Dectris Mythen2 X series 1K strip detectors
on the end of the goniometer arm (sample-detector distance
of 767 mm). The precise wavelength and instrument resolu-
tion function were determined using Rietveld refinement of
a pattern obtained from a lanthanum hexaboride (LaBg)

standard reference material (NIST SRM 660a LaBg) using
GSASII (Toby and Von Dreele, 2013). The sample was
spun at 2 Hz during data acquisition.

Indexing of the PFNA pattern with DICVOLO06 (Boultif
and Louér, 2004) suggested a monoclinic unit cell with lattice
parameters a=26.1585 10\, b=5.6307 A, ¢=10.9423 A,
B=98.759°, and a cell volume of 1592.9 A% (M,,=77.9,
F>,=418.7). The cell volume was suitable for four formula
units and space group determination with ChekCell (Laugier
and Bochu, 2000) suggested P2,/c as the most likely space
group. A PFNA molecule (minus the hydrogen atom) was
obtained from the Cambridge Structural Database (Groom
et al., 2016) entry KATVUY (Motreff et al., 2012), and then
converted to a Fenske-Hall Z-matrix with Open Babel
(O’Boyle et al., 2011). The Fenske—Hall Z-matrix with the
PFNA molecule was uploaded into FOX (Favre-Nicolin and
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Figure 1. Plots illustrating the final Rietveld refinement (wR = 3.14%, top) and Le Bail refinement (wR = 1.24%, bottom) obtained for PFNA with GSASII. The

region above 12° is magnified by 6x for each refinement to aid visualization.
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Figure 2. A comparison of the Rietveld-refined (red) and the DFT-optimized (blue) structures of PFNA, viewed along the b-axis (top) and the c-axis (bottom).

The figure was prepared with Mercury (Macrae et al., 2008).

éemy, 2002) for structure solution with parallel tempering.
Initial parallel tempering sets employing least-squares refine-
ment every 250 000 trials were observed to significantly dis-
tort the PFNA molecule into unrealistic configurations.
Subsequent parallel tempering sets employed rigid body con-
straints on the molecule without least-squares refinements, in
order to find possible molecular packing arrangements with-
out distorting the molecule. A number of different structures,
including both dimers and columnar structures supporting zig-
zag chains of hydrogen bonds, were investigated with Rietveld
refinement. Ultimately, a dimer structure was chosen based on
the best fit to the data.

Rietveld refinement of the crystal structures was per-
formed with the GSASII program (Toby and Von Dreele,

Figure 3. A comparison of the molecular overlay of the Rietveld-refined
(red) and the DFT-optimized (blue) structures of PFNA obtained with
Mercury (Macrae et al., 2008).
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2013) using a Thompson—Cox—Hastings modified pseudo-
Voigt peak shape function (Thompson et al., 1987). The
background was modeled using a 16-term log interpolation
function. Positional parameters were refined with restraints on
bond distances and angles for all non-hydrogen atoms in the
PFNA molecule obtained using Mogul (Bruno et al., 2004),
with the mean and standard deviation quantities used to prepare
the restraints. Individual isotropic displacement parameters
were constrained to be the same for each element, with the
value for the hydrogen atom constrained to be 1.3 times the
value of the oxygen atoms. A fourth-order spherical harmonic
texture model (Von Dreele, 1997) was used to correct for
preferred orientation (PO), utilizing eight refined parameters.

The crystal data, data collection, and refinement details
are summarized in Table I.

Density functional theory (DFT) geometry optimization
was performed starting from the Rietveld-refined PENA struc-
ture using CRYSTAL17 (Dovesi et al., 2018). Basis sets were
obtained from the literature for the C, H, O (Gatti et al., 1994),
and F atoms (Vilela Oliveira et al., 2019). The calculations
used the B3LYP functional (Becke, 1993) and D3 dispersion
correction (Grimme et al., 2010) with eight k-points.

lll. RESULTS AND DISCUSSION

The final Rietveld refinement obtained for the PFNA pat-
tern is illustrated in Figure 1 (top), with the final Le Bail
refinement (Figure 1, bottom) plotted below for comparison.
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Rietveld

DFT

Figure 4. The Rietveld-refined (top) and DFT-optimized (bottom) crystal structure of PENA, viewed along the b-axis. The atom types can be identified by color
including carbon (black), fluorine (green), oxygen (red), and hydrogen (pink). Hydrogen bonds are represented by the dotted lines. The unit cell is outlined in

black. The figure was prepared with VESTA (Momma and Izumi, 2011).

While the weighted R-factor is relatively low (wR=3.14%,
which includes contributions of both the raw data points and
the restraints) and the main features of the pattern are well
described, discrepancies between observed and calculated
peak intensities can be observed in the minor Bragg reflec-
tions. The weighted R-factor for the Le Bail refinement (wR
=1.24%) is significantly lower, and visually the Le Bail fit
is superior. The spherical harmonic PO correction yielded a
texture index of 1.201(4) and improved the fit, but did not
eliminate the discrepancies between the observed and calcu-
lated peak intensities in the Rietveld refinement.

The final Rietveld-refined structure (red) is compared to
the DFT-optimized structure (blue) for PFNA in Figure 2.
The structures are dimers where the carboxylic acid groups
form pairs of hydrogen bonds between molecules. The funda-
mental dimer structure, monoclinic unit cell, and space group
are reasonably consistent with the hydrogenated analog of

266 Powder Diffr., Vol. 39, No. 4, December 2024

https://doi.org/10.1017/50885715624000356 Published online by Cambridge University Press

PFNA, nonanoic acid (CoH;30,), which was previously deter-
mined using single crystal data (Bond, 2004). While the
Rietveld-refined and DFT-optimized structures are similar,
there is clearly a shift in the position of the DFT-optimized
molecule, which is more pronounced toward the trifluoro-
methyl end. The root-mean-squared (RMS) Cartesian dis-
placement between the Rietveld-refined and the DFT-
optimized structures for the non-hydrogen atoms is 1.12 A,
which falls outside the range generally expected for correct
crystal structures using powder diffraction data (Van de
Streek and Neumann, 2014). The RMS displacement obtained
using the molecular overlay function of Mercury (Macrae
et al., 2008) is 0.515 A. Mercury performs a least-squares
alignment of the two molecules, resulting in the improved
agreement compared with the absolute Cartesian displace-
ment. The molecular overlay of the Rietveld-refined and
DFT-optimized molecules is illustrated in Figure 3 and
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TABLE II. The Rietveld-refined crystal structure of PFNA with lattice
parameters a = 26.172(1) A, b=5.6345(2) A, ¢=10.9501(4) A, and
B=98.752(2)°.

Atom xla /b Zc Usso (A2
01 0.45854(27) —0.2198(22) —0.0049(13) 0.236(7)
02 0.44594(30) 0.1749(21) 0.0182(14) 0.236(7)
C3 0.43261(17) —0.0196(18) —0.0267(7) 0.192(5)
C4 0.37424(17) —0.0692(12) —0.0516(5) 0.192(5)
F5 0.3643(3) —0.3115(14) —0.0634(11)  0.2189(25)
F6 0.35297(30) 0.0472(20) —0.1590(7) 0.2189(25)
7 0.34734(21) 0.0201(12) 0.0528(5) 0.192(5)
F8 0.3692(4) 0.2240(16) 0.0885(9) 0.2189(25)
F9 0.3567(4) —0.1357(20) 0.1489(8) 0.2189(25)
C10 0.28893(22) 0.0641(13) 0.0215(5) 0.192(5)
Fl1 0.2796(4) 0.2963(15) 0.0373(9) 0.2189(25)
F12 0.2704(4) —0.0062(20) —0.0967(7) 0.2189(25)
C13 0.25679(23) —0.0594(14) 0.1018(5) 0.192(5)
Fl4 0.2723(4) 0.0217(22) 0.2139(7) 0.2189(25)
F15 0.2674(4) —0.2938(16) 0.1008(9) 0.2189(25)
Cl16 0.19973(24) —0.0043(13) 0.0629(5) 0.192(5)
F17 0.1804(4) —0.0990(18) —0.0467(7) 0.2189(25)
F18 0.1978(4) 0.2268(15) 0.0512(9) 0.2189(25)
C19 0.16399(24) —0.0726(12) 0.1517(6) 0.192(5)
F20 0.1631(4) —0.3176(14) 0.1538(9) 0.2189(25)
F21 0.1868(4) 0.0243(18) 0.2623(7) 0.2189(25)
Cc22 0.10816(23) 0.0234(13) 0.1185(6) 0.192(5)
F23 0.1144(4) 0.2502(14) 0.0979(10)  0.2189(25)
F24 0.0867(4) —0.0565(18) 0.0076(7) 0.2189(25)
C25 0.06970(23) 0.0085(14) 0.2142(5) 0.192(5)
F26 0.0447(4) —0.1903(16) 0.2127(9) 0.2189(25)
F27 0.0342(4) 0.1793(17) 0.2005(9) 0.2189(25)
F28 0.0952(4) 0.0281(19) 0.3265(7) 0.2189(25)
H29 0.49617 —0.2022 —0.0102 0.307(9)

All atoms belong on Wyckoff 4e sites and were refined with fixed site
occupancies of 1.

differences are observed, particularly with respect to the tri-
fluoromethyl and carboxylic acid orientations at the ends of
the molecules. Despite restraints, the intermolecular hydrogen
bonds formed between the carboxylic acid groups are shorter
in the Rietveld-refined structure (H29---02 = 1.539(6) A) than
in the DFT-optimized structure (H29---O2=1.60 A). The
eight-atom ring formed by the two hydrogen-bonded carbox-
ylic acid groups is also perfectly planar in the DFT-optimized
structure, but slightly irregular in the Rietveld-refined struc-
ture, as illustrated in Figure 4. Arguably, the most unusual fea-
tures of the experimental structure are the torsion angles about

the C7-C10 axis (four torsion angles based on two fluorine
atoms per carbon atom). These torsion angles fall outside
the distributions given by Mogul for similar geometries.
Calculation of the powder pattern using the DFT-optimized
structure results in significantly different pattern intensities
than the experimental pattern, suggesting it is somewhat
different than the true experimental structure. The Rietveld-
refined atomic coordinates are given in Table II, and the
atomic labels used in the refinement are illustrated in
Figure 5. The largest peak and hole in the difference Fourier
map for the Rietveld-refined structure were 0.67 and
—0.83 eA, respectively.

Given the plausibility of the refined structure and the rel-
atively large isotropic displacement parameters observed (see
Table II), disorder was considered as a possible reason for the
discrepancies between the Rietveld and Le Bail refinements.
Disorder can be observed in long-chain molecular structures;
for example, the structure of Teflon, (C,F,),, can be disor-
dered (Sprik et al., 1999). In an (unsuccessful) attempt to
model the disorder, a structure solution was performed with
FOX using two PFNA molecules with half occupancy to
ascertain if a plausible overlapping structure with partial occu-
pancies could be found. Despite running over 50 sets of par-
allel tempering, no plausible structures were observed with
this approach, but this may be asking too much of the data.

In addition to the dimer structure, Rietveld refinement was
performed on a columnar structure composed of double col-
umns of PFNA molecules running parallel to the b-axis,
with the molecules oriented perpendicular to the b-axis. The
double columns were held together by a zig-zag ladder of
hydrogen bonds. While the structure appeared plausible, the
refinement was inferior to that obtained for the final dimer
structure, and a DFT-optimization of the Rietveld-refined
columnar structure failed to converge.

The most similar-length fluorinated compound to PFNA
observed in the Cambridge Structural Database (CSD) is per-
fluorooctanoic acid (PFOA or CgHF;50,) contained in CSD
entry KEQREG (Omorodion et al., 2018). PFOA crystallizes
in a significantly different structure with triclinic symmetry,
composed of single columns of PFOA molecules running par-
allel to the a-axis. Each column is held together by a chain of
hydrogen bonds connecting carboxylic acid groups of adja-
cent molecules in the column.

The Hirshfeld surface (Hirshfeld, 1977; Spackman and
Byrom, 1997) of the PFNA molecule obtained using Crystal

The atom labels used for the PFNA structure.

Figure 5.
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Figure 6. The Hirshfeld surface of PENA. Regions in red represent intermolecular contacts shorter than the sum of the van der Waals radii, while regions in blue
represent longer contacts and regions in white represent contacts equal to the sum of the van der Waal radii. The figure was prepared with Crystal Explorer

(Spackman et al., 2021).

Explorer (Spackman et al., 2021) is illustrated in Figure 6. The
volume enclosed within the Hirshfeld surface (395.08 A%) rep-
resents 99.0% of one-fourth of the unit cell volume, suggest-
ing that the molecules are not tightly packed.

A Bragg reflection list for PFNA based on Le Bail refine-
ment was prepared by summing reflections closer than 0.02°,
26 as multiple reflections and assigning a weighted average
reflection position, then including all reflections with relative
integrated intensities of 0.2% or greater, up to 25° in 26.

IV. DEPOSITED DATA

Individual Crystallographic Information Framework
(CIF) files containing the results of the final Rietveld refine-
ment (crystal structure), Le Bail refinement (raw data and
Bragg reflection list), and DFT-optimized structure were
deposited with ICDD. The data can be requested at
pdj@icdd.com.
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