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Abstract

A supernilpotent radical α is called bad if the class π(α) of all prime and α-semisimple rings consists
of the one-element ring 0 only. We construct infinitely many bad supernilpotent radicals which form a
generalization of Ryabukhin’s example of a supernilpotent nonspecial radical. We show that the family of
all bad supernilpotent radicals is a sublattice of the lattice of all supernilpotent radicals and give examples
of supernilpotent radicals that are not bad.
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1. Introduction

In this paper all rings are associative and all classes of rings are closed under
isomorphisms and contain the one-element ring 0. A ring A is called Boolean if a2 = a
for every a ∈ A. The fundamental definitions and properties of radicals can be found
in [2] and [8]. A class µ of rings is called hereditary if µ is closed under ideals. If µ
is a hereditary class of rings, U(µ) denotes the upper radical generated by µ, that is,
the class of all rings which have no nonzero homomorphic images in µ. For a radical
α the class of all α-semisimple rings is denoted by S(α). Also, π denotes the class
of all prime rings and β =U(π) the prime radical. An ideal I of a ring R is called
essential if I ∩ J , 0 for any nonzero ideal J of R. A hereditary class µ of prime rings
is called special if µ is closed under essential extensions, that is, if I ∈ µ is an essential
ideal of a ring R, then R ∈ µ. The upper radicalU(µ) generated by a special class µ is
called a special radical. A hereditary radical that contains β is called a supernilpotent
radical. We call a supernilpotent radical α bad if the class π(α) = π ∩ S(α) consists of
the one-element ring 0 only. A radical α that is not the class of all associative rings is
called nontrivial. The α-radical of a ring R is denoted by α(R).

Since special radicals are hereditary and contain β, every special radical is
supernilpotent. Therefore, Andrunakievich [1] asked whether every supernilpotent
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radical is special. Examples of nonspecial supernilpotent radicals were given
in [3, 4, 6, 7, 12, 14, 15]. Since a supernilpotent radical α is special if and
only if α =U(π(α)) [2, 8], nontrivial bad supernilpotent radicals provide the most
natural counterexamples to Andrunakievich’s question. The first such example was
constructed by Ryabukhin [11] who showed that the upper radical generated by the
class of all Boolean rings which do not contain an ideal which is a prime field with two
elements is a supernilpotent but nonspecial radical. We will now give a generalization
of Ryabukhin’s construction which will allow us to build infinitely many nontrivial
bad supernilpotent radicals. Moreover, we will show that the family of all bad
supernilpotent radicals is a sublattice of the lattice of all supernilpotent radicals. Also,
we will show that there exist supernilpotent radicals that are not bad.

2. Main results

Let ε denote the class of all prime essential rings [7], that is, semiprime rings R
such that no nonzero ideal of R is a prime ring. Let ∗ denote the class of all ∗-rings,
that is, semiprime rings R such that R/I ∈ β for every nonzero ideal I of R. A special
class σ of rings is called subdirectly closed if π(U(σ)) = σ. For example, for every
natural number n and any finite field F, the class {Fn} ⊆ ∗ consisting of the ring Fn of
all n × n matrices with entries from F is such a class [9].

T 1. For every nonzero subdirectly closed special class σ ⊆ ∗, the radical
α =U(S(U(σ)) ∩ ε), is a nontrivial bad supernilpotent radical. Thus α is not a
special radical.

P. To prove that α is nontrivial, it suffices to show that S(U(σ)) ∩ ε , {0}. To
build a nonzero ring in S(U(σ)) ∩ ε, we will adopt the construction described in
[7, Lemma 1, p. 234]. Let R be a nonzero element of σ, let κ be a cardinal number
greater than the cardinality of R and let W(κ) be the set of all finite words made from
a (well-ordered) alphabet of cardinality κ, lexicographically ordered. Then W(κ) is a
semigroup with multiplication defined by xy = max{x, y} and it follows from [7] that
the semigroup ring A = R(W(κ)) is prime essential and a subdirect sum of copies of
R ∈ σ. Thus 0 , A ∈ S(U(σ)) ∩ ε, which shows that α is nontrivial.

It follows from [7] that ε is a weakly special class. But, sinceU(σ) is a special (and
so supernilpotent) radical, it follows that S(U(σ)) is a weakly special class, too. Thus
S(U(σ)) ∩ ε is a weakly special class. Therefore the radical α =U(S(U(σ)) ∩ ε) is
a supernilpotent radical.

We will now show that α is bad. Suppose that it is not and let R be a nonzero ring
in π(α). Then R is α -semisimple and, since α is a supernilpotent radical determined
by the weakly special class S(U(σ)) ∩ ε, it follows that R is a subdirect sum of rings
Rλ ∈ S(U(σ)) ∩ ε ⊆ S(U(σ)). But, being a semisimple class, S(U(σ)) is closed under
subdirect sums. Thus R ∈ S(U(σ)) ∩ π = σ. But, as σ ⊆ ∗, it follows that R is a ∗-ring.
On the other hand, since R is a subdirect sum of the rings Rλ, there exists an ideal Iλ
of R such that Iλ , R and R/Iλ � Rλ ∈ S(U(σ)) ∩ ε ⊆ S(β). But, since R is a ∗-ring,
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we then must have Iλ = 0 which implies that R ∈ ε ∩ π = {0}, a contradiction. Thus
π(α) = {0}, which means that α is bad.

Since π(α) = {0}, U(π(α)) is a trivial radical. But α is not, so α ,U(π(α)), which
implies that α is not a special radical. �

P 2. For every natural number n and every finite field F the class
S(U({Fn})) ∩ ε consists precisely of rings that do not contain ideals isomorphic to
Fn and are subdirect sums of copies of Fn.

P. Let R ∈ S(U({Fn})) ∩ ε. Then R ∈ S(U({Fn})) and so R is isomorphic to a
subdirect sum of copies of Fn. But we also have that R ∈ ε so, since Fn ∈ π, R
cannot contain an ideal isomorphic to Fn. Conversely, suppose that R is isomorphic
to a subdirect sum of copies of Fn and does not contain ideals isomorphic to Fn.
Then R ∈ S(U({Fn})). If R contained a nonzero ideal I ∈ π, then I would be a
member of S(U({Fn})) ∩ π = {Fn} because S(U({Fn})), being a semisimple class, is
hereditary. This gives a contradiction. Thus R is prime essential, which implies that
R ∈ S(U({Fn})) ∩ ε. �

It is well known [10, Theorem 3.16, p. 58] that a ring A is Boolean if and only if
A is a subdirect sum of copies of the two-element field Z2. Thus, taking σ = {Z2} in
Theorem 1, we have the following corollary.

C 3 [11]. The upper radical generated by the class of all Boolean rings
which do not contain an ideal which is a prime field with two elements is a
supernilpotent but nonspecial radical.

It is well known [13] that the family K of all supernilpotent radicals is a lattice
with respect to inclusion. Minimal elements of K are called supernilpotent atoms.
Examples of supernilpotent atoms can be found in [5]. We have the following theorem.

T 4. The family B of all bad supernilpotent radicals is a sublattice of K.

P. Let α, γ ∈ B. Then π(α) = {0} and π(γ) = {0}. Then, since S(α ∨ γ) = S(α) ∩
S(γ), it follows that π(α ∨ γ) = {0}, which means that α ∨ γ ∈ B.

To show that α ∧ γ ∈ B, suppose that 0 , R ∈ π(α ∧ γ). If α(R) = 0 then, since R ∈ π,
it follows that R ∈ π(α), which is impossible since π(α) = {0}. Thus α(R) is a nonzero
ideal of R. Similarly, γ(R) is a nonzero ideal of R. So, since R ∈ π, it follows that
α(R)γ(R) is a nonzero ideal of R. Moreover, since both α and γ are hereditary radicals,
it follows that α(R)γ(R) ∈ α ∧ γ, which contradicts the fact that R ∈ S(α ∧ γ). Thus
π(α ∧ γ) = {0}, which means that α ∧ γ ∈ B. �

We do not know whether B is a complete sublattice of K. To answer this question
in the negative, it would suffice to show that ∧αp < B, where p is a prime, αp =

U(S(U({Zp})) ∩ ε) and Zp is the p-element field.
Our final result shows examples of supernilpotent radicals which are not bad.

T 5. If α is a supernilpotent atom, then α is not bad.
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P. Let S be a nonzero simple prime ring. Then either S ∈ S(α) or S ∈ α. In the
first case S ∈ π(α), which makes α not bad. In the second case we have β ( lA ⊆ α,
where lA denotes the smallest supernilpotent radical containing A. So, since α is a
supernilpotent atom, we must have α = lA. But then every nonzero simple prime ring
R which is not isomorphic to S is in π(α), which shows that α is not bad. �

References

[1] V. A. Andrunakievich, ‘Radicals of associative rings I’, Mat. Sb. 44 (1958), 179–212 (in Russian).
[2] V. A. Andrunakievich and Yu. M. Ryabukhin, Radicals of Algebras and Structure Theory (Nauka,

Moscow, 1979), (in Russian).
[3] K. I. Beidar and K. Salavova, ‘Some examples of supernilpotent nonspecial radicals’, Acta Math.

Hungar. 40 (1982), 109–112.
[4] K. I. Beidar and R. Wiegandt, ‘Radicals induced by the total of rings’, Beiträge Algebra Geom. 38
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