ON BAD SUPERNILPOTENT RADICALS

H. FRANCE-JACKSON

(Received 10 May 2011)

Abstract

A supernilpotent radical α is called bad if the class $\pi(\alpha)$ of all prime and α -semisimple rings consists of the one-element ring 0 only. We construct infinitely many bad supernilpotent radicals which form a generalization of Ryabukhin's example of a supernilpotent nonspecial radical. We show that the family of all bad supernilpotent radicals is a sublattice of the lattice of all supernilpotent radicals and give examples of supernilpotent radicals that are not bad.

2010 Mathematics subject classification: primary 16N80.

Keywords and phrases: supernilpotent radical, special radical, prime radical, Boolean rings, prime essential rings.

1. Introduction

In this paper all rings are associative and all classes of rings are closed under isomorphisms and contain the one-element ring 0. A ring A is called Boolean if $a^2 = a$ for every $a \in A$. The fundamental definitions and properties of radicals can be found in [2] and [8]. A class μ of rings is called hereditary if μ is closed under ideals. If μ is a hereditary class of rings, $\mathcal{U}(\mu)$ denotes the upper radical generated by μ , that is, the class of all rings which have no nonzero homomorphic images in μ . For a radical α the class of all α -semisimple rings is denoted by $S(\alpha)$. Also, π denotes the class of all prime rings and $\beta = \mathcal{U}(\pi)$ the prime radical. An ideal I of a ring R is called essential if $I \cap J \neq 0$ for any nonzero ideal J of R. A hereditary class μ of prime rings is called special if μ is closed under essential extensions, that is, if $I \in \mu$ is an essential ideal of a ring R, then $R \in \mu$. The upper radical $\mathcal{U}(\mu)$ generated by a special class μ is called a *supernilpotent radical*. We call a supernilpotent radical that contains β is called a *supernilpotent radical*. We call a supernilpotent radical α that is not the class of all associative rings is called nontrivial. The α -radical of a ring R is denoted by $\alpha(R)$.

Since special radicals are hereditary and contain β , every special radical is supernilpotent. Therefore, Andrunakievich [1] asked whether every supernilpotent

^{© 2011} Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

radical is special. Examples of nonspecial supernilpotent radicals were given in [3, 4, 6, 7, 12, 14, 15]. Since a supernilpotent radical α is special if and only if $\alpha = \mathcal{U}(\pi(\alpha))$ [2, 8], nontrivial bad supernilpotent radicals provide the most natural counterexamples to Andrunakievich's question. The first such example was constructed by Ryabukhin [11] who showed that the upper radical generated by the class of all Boolean rings which do not contain an ideal which is a prime field with two elements is a supernilpotent but nonspecial radical. We will now give a generalization of Ryabukhin's construction which will allow us to build infinitely many nontrivial bad supernilpotent radicals. Moreover, we will show that the family of all bad supernilpotent radicals is a sublattice of the lattice of all supernilpotent radicals. Also, we will show that there exist supernilpotent radicals that are not bad.

2. Main results

Let ε denote the class of all *prime essential* rings [7], that is, semiprime rings R such that no nonzero ideal of R is a prime ring. Let * denote the class of all *-rings, that is, semiprime rings R such that $R/I \in \beta$ for every nonzero ideal I of R. A special class σ of rings is called *subdirectly closed* if $\pi(\mathcal{U}(\sigma)) = \sigma$. For example, for every natural number n and any finite field F, the class $\{F_n\} \subseteq *$ consisting of the ring F_n of all $n \times n$ matrices with entries from F is such a class [9].

THEOREM 1. For every nonzero subdirectly closed special class $\sigma \subseteq *$, the radical $\alpha = \mathcal{U}(S(\mathcal{U}(\sigma)) \cap \varepsilon)$, is a nontrivial bad supernilpotent radical. Thus α is not a special radical.

PROOF. To prove that α is nontrivial, it suffices to show that $\mathcal{S}(\mathcal{U}(\sigma)) \cap \varepsilon \neq \{0\}$. To build a nonzero ring in $\mathcal{S}(\mathcal{U}(\sigma)) \cap \varepsilon$, we will adopt the construction described in [7, Lemma 1, p. 234]. Let R be a nonzero element of σ , let κ be a cardinal number greater than the cardinality of R and let $W(\kappa)$ be the set of all finite words made from a (well-ordered) alphabet of cardinality κ , lexicographically ordered. Then $W(\kappa)$ is a semigroup with multiplication defined by $xy = \max\{x, y\}$ and it follows from [7] that the semigroup ring $A = R(W(\kappa))$ is prime essential and a subdirect sum of copies of $R \in \sigma$. Thus $0 \neq A \in \mathcal{S}(\mathcal{U}(\sigma)) \cap \varepsilon$, which shows that α is nontrivial.

It follows from [7] that ε is a weakly special class. But, since $\mathcal{U}(\sigma)$ is a special (and so supernilpotent) radical, it follows that $\mathcal{S}(\mathcal{U}(\sigma))$ is a weakly special class, too. Thus $\mathcal{S}(\mathcal{U}(\sigma)) \cap \varepsilon$ is a weakly special class. Therefore the radical $\alpha = \mathcal{U}(\mathcal{S}(\mathcal{U}(\sigma)) \cap \varepsilon)$ is a supernilpotent radical.

We will now show that α is bad. Suppose that it is not and let R be a nonzero ring in $\pi(\alpha)$. Then R is α -semisimple and, since α is a supernilpotent radical determined by the weakly special class $\mathcal{S}(\mathcal{U}(\sigma)) \cap \varepsilon$, it follows that R is a subdirect sum of rings $R_{\lambda} \in \mathcal{S}(\mathcal{U}(\sigma)) \cap \varepsilon \subseteq \mathcal{S}(\mathcal{U}(\sigma))$. But, being a semisimple class, $\mathcal{S}(\mathcal{U}(\sigma))$ is closed under subdirect sums. Thus $R \in \mathcal{S}(\mathcal{U}(\sigma)) \cap \pi = \sigma$. But, as $\sigma \subseteq *$, it follows that R is a *-ring. On the other hand, since R is a subdirect sum of the rings R_{λ} , there exists an ideal I_{λ} of R such that $I_{\lambda} \neq R$ and $R/I_{\lambda} \cong R_{\lambda} \in \mathcal{S}(\mathcal{U}(\sigma)) \cap \varepsilon \subseteq \mathcal{S}(\beta)$. But, since R is a *-ring,

we then must have $I_{\lambda} = 0$ which implies that $R \in \varepsilon \cap \pi = \{0\}$, a contradiction. Thus $\pi(\alpha) = \{0\}$, which means that α is bad.

Since $\pi(\alpha) = \{0\}$, $\mathcal{U}(\pi(\alpha))$ is a trivial radical. But α is not, so $\alpha \neq \mathcal{U}(\pi(\alpha))$, which implies that α is not a special radical.

PROPOSITION 2. For every natural number n and every finite field F the class $S(\mathcal{U}(\{F_n\})) \cap \varepsilon$ consists precisely of rings that do not contain ideals isomorphic to F_n and are subdirect sums of copies of F_n .

PROOF. Let $R \in \mathcal{S}(\mathcal{U}(\{F_n\})) \cap \varepsilon$. Then $R \in \mathcal{S}(\mathcal{U}(\{F_n\}))$ and so R is isomorphic to a subdirect sum of copies of F_n . But we also have that $R \in \varepsilon$ so, since $F_n \in \pi$, R cannot contain an ideal isomorphic to F_n . Conversely, suppose that R is isomorphic to a subdirect sum of copies of F_n and does not contain ideals isomorphic to F_n . Then $R \in \mathcal{S}(\mathcal{U}(\{F_n\}))$. If R contained a nonzero ideal $I \in \pi$, then I would be a member of $\mathcal{S}(\mathcal{U}(\{F_n\})) \cap \pi = \{F_n\}$ because $\mathcal{S}(\mathcal{U}(\{F_n\}))$, being a semisimple class, is hereditary. This gives a contradiction. Thus R is prime essential, which implies that $R \in \mathcal{S}(\mathcal{U}(\{F_n\})) \cap \varepsilon$.

It is well known [10, Theorem 3.16, p. 58] that a ring A is Boolean if and only if A is a subdirect sum of copies of the two-element field \mathbb{Z}_2 . Thus, taking $\sigma = {\mathbb{Z}_2}$ in Theorem 1, we have the following corollary.

Corollary 3 [11]. The upper radical generated by the class of all Boolean rings which do not contain an ideal which is a prime field with two elements is a supernilpotent but nonspecial radical.

It is well known [13] that the family \mathbb{K} of all supernilpotent radicals is a lattice with respect to inclusion. Minimal elements of \mathbb{K} are called *supernilpotent atoms*. Examples of supernilpotent atoms can be found in [5]. We have the following theorem.

THEOREM 4. The family \mathbb{B} of all bad supernilpotent radicals is a sublattice of \mathbb{K} .

PROOF. Let $\alpha, \gamma \in \mathbb{B}$. Then $\pi(\alpha) = \{0\}$ and $\pi(\gamma) = \{0\}$. Then, since $S(\alpha \vee \gamma) = S(\alpha) \cap S(\gamma)$, it follows that $\pi(\alpha \vee \gamma) = \{0\}$, which means that $\alpha \vee \gamma \in \mathbb{B}$.

To show that $\alpha \land \gamma \in \mathbb{B}$, suppose that $0 \neq R \in \pi(\alpha \land \gamma)$. If $\alpha(R) = 0$ then, since $R \in \pi$, it follows that $R \in \pi(\alpha)$, which is impossible since $\pi(\alpha) = \{0\}$. Thus $\alpha(R)$ is a nonzero ideal of R. Similarly, $\gamma(R)$ is a nonzero ideal of R. So, since $R \in \pi$, it follows that $\alpha(R)\gamma(R)$ is a nonzero ideal of R. Moreover, since both α and γ are hereditary radicals, it follows that $\alpha(R)\gamma(R) \in \alpha \land \gamma$, which contradicts the fact that $R \in S(\alpha \land \gamma)$. Thus $\pi(\alpha \land \gamma) = \{0\}$, which means that $\alpha \land \gamma \in \mathbb{B}$.

We do not know whether \mathbb{B} is a complete sublattice of \mathbb{K} . To answer this question in the negative, it would suffice to show that $\wedge \alpha_p \notin \mathbb{B}$, where p is a prime, $\alpha_p = \mathcal{U}(S(\mathcal{U}(\{\mathbb{Z}_p\})) \cap \varepsilon)$ and \mathbb{Z}_p is the p-element field.

Our final result shows examples of supernilpotent radicals which are not bad.

THEOREM 5. If α is a supernilpotent atom, then α is not bad.

PROOF. Let S be a nonzero simple prime ring. Then either $S \in S(\alpha)$ or $S \in \alpha$. In the first case $S \in \pi(\alpha)$, which makes α not bad. In the second case we have $\beta \subseteq \overline{l}_A \subseteq \alpha$, where \overline{l}_A denotes the smallest supernilpotent radical containing A. So, since α is a supernilpotent atom, we must have $\alpha = \overline{l}_A$. But then every nonzero simple prime ring R which is not isomorphic to S is in $\pi(\alpha)$, which shows that α is not bad.

References

- [1] V. A. Andrunakievich, 'Radicals of associative rings I', Mat. Sb. 44 (1958), 179–212 (in Russian).
- [2] V. A. Andrunakievich and Yu. M. Ryabukhin, *Radicals of Algebras and Structure Theory* (Nauka, Moscow, 1979), (in Russian).
- [3] K. I. Beidar and K. Salavova, 'Some examples of supernilpotent nonspecial radicals', *Acta Math. Hungar.* **40** (1982), 109–112.
- [4] K. I. Beidar and R. Wiegandt, 'Radicals induced by the total of rings', *Beiträge Algebra Geom.* **38** (1997), 149–159.
- [5] H. France-Jackson, 'On atoms of the lattice of supernilpotent radicals', Quaest. Math. 10 (1987), 251–256.
- [6] H. France-Jackson, 'On prime essential rings', Bull. Aust. Math. Soc. 47 (1993), 287–290.
- [7] B. J. Gardner and P. N. Stewart, 'Prime essential rings', Proc. Edinb. Math. Soc. 34 (1991), 241–250.
- [8] B. J. Gardner and R. Wiegandt, *Radical Theory of Rings* (Marcel Dekker, New York, 2004).
- [9] K. K. Krachilov, 'Coatoms of the lattice of special radicals', Mat. Issled. Kishinev 49 (1979), 80–86 (in Russian).
- [10] N. H. McCoy, *The Theory of Rings* (Chelsea, New York, 1973).
- [11] Yu. M. Ryabukhin, 'On overnilpotent and special radicals', *Issled. Alg. Mat. Anal., Kishinev* (1965), 65–72 (in Russian).
- [12] Yu. M. Ryabukhin, 'Supernilpotent and special radicals', Mat. Issled. Kishinev 48 (1978), 80–83 (in Russian).
- [13] R. L. Snider, 'Lattices of radicals', Pac. J. Math. 40 (1972), 207–220.
- [14] S. Tumurbat, 'Some issues in the theory of supernilpotent radicals', *Bul. Acad. Stiinte Rep. Mold.* **1**(38) (2002), 3–43.
- [15] L. C. A. van Leeuwen and T. L Jenkins, 'A supernilpotent non-special radical class', Bull. Aust. Math. Soc. 9 (1973), 343–348.

H. FRANCE-JACKSON, Department of Mathematics and Applied Mathematics, Nelson Mandela Metropolitan University, Summerstrand Campus (South), PO Box 77000, Port Elizabeth 6031, South Africa e-mail: cbf@easterncape.co.uk