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SUMMAJtY
An infinite population practising a constant amount of selfing and

random mating is studied. The effects of the mating system on two linked
loci with an arbitrary number of neutral alleles are determined. Expressions
are obtained for the two-locus descent measure, and hence genotypic fre-
quencies and disequilibria functions, in any generation. The nature of
the equilibrium population is deduced. The special cases of pure selfing
or pure random mating and completely linked or completely unlinked
loci are considered separately.

I t is intended to illustrate further the evaluation and use of our recently intro-
duced two-locus descent measures (Cockerham & Weir, 1973, referred to throughout
as CW). Although several of the results derived for two-locus self and random mating
models are known, some of them, especially for non-equilibrium populations, are
new.

Considered separately, selfing or random mating lend themselves readily to
mathematical analysis and have featured often in the literature. Mixtures of the
two systems have also been considered, although discussion has generally been
confined to equilibrium populations. While we do not propose to review one-locus
theory, we can mention the paper of Garber (1951) which gave expressions for
genotypic frequencies in all generations with two alleles at a locus.

Bennett & Binet (1956) discussed two-locus equilibrium populations for mixed
self and random mating and gave expressions for genotypic frequencies. While
their results contained an error they did show the existence of identity disequilibrium
in the absence of linkage disequilibrium. Such a situation can occur whenever there
is variation of the inbreeding among individuals, as is always the case in natural
populations, and also for intermediate stages of inbreeding.

Equilibrium genotypic frequencies were given by Kimura (1958) for an arbitrary
number of alleles at each locus. For two alleles per locus, Binet et al. (1959) ex-
hibited some non-linear recurrence formulae which gave genotypic frequencies
quite easily, but they stated that they could not extend their method to several
alleles or to other mating schemes. By ignoring linkage Ghai (1964) showed how
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genotypic frequencies for two alleles per locus could be found, and (1966) found the
two-locus inbreeding coefficient in all generations.

The most comprehensive study to date has been given by Narain (1966). For
arbitrary linkage he found the two-loous inbreeding coefficient in all generations
and discussed the rate of inbreeding. For two alleles per locus he also discussed the
evaluation of genotypic frequencies. As was the case with Ghai, his expressions
for tth generation frequencies explicitly required frequencies for generations
0 ,1 , . . . . « - l .

Another brief discussion has been given by Karlin (1969) in his review of in-
breeding systems. He evaluated linkage disequilibrium and the difference in the
two double heterozygote frequencies for two alleles per locus.

In this present work we derive the two-locus descent measure (CW) for self and
random mating and so exhibit the descent structure of the system. Either explicit
expressions or simple linear transition equations are given for the eight summary
components of the measure. Genotypic frequencies are then written down, for an
arbitrary number, of alleles per locus, as functions of these components and the
initial gametic frequencies. All known results can be recovered from this theory.

1. MATING AND LINKAGE PARAMETERS

We are concerned with a population of individuals capable both of self-fertilization
and of outcrossing. We suppose that the population is infinite and that with prob-
ability s an individual chosen at random in one generation is the offspring of a single
individual in the previous generation. Consequently, with probability 1 — s it has
distinct parents. The probability s of selfing is supposed to be independent of
genotypes and of time.

The two loci under study may be denoted a and b with alleles ai and bp respectively.
They are linked to an extent A (0 ^ A < 1) so that an individual a1b1/a2b2 produces
the gametic array

1 + A 1 + A 1-A 1-A
« 6 + a + «fe +

Disturbing forces such as mutation, migration and selection are excluded from
consideration.

2. DESCENT MEASURES

The tTwo-locus individual descent measure (CW) F(o6, a'b') is denned for the two
gametes ab and a'b' received by the individual, and it gives the probabilities of the
various arrangements of a, a', b and b' on gametes in a specified initial population.
For any two genes x and y we define a delta function 8(xy) such that 8(xy) = 1 when
x and y are copies of genes on one initial gamete and S(xy) = 0 otherwise. The com-
ponents of the vector F(ab, a'b') are then written as mnFfp where

i = S(aa') k = 8(ab) m = S(ab'),

= S(bb') I = S(a'b') n = S(a'b)
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and the probabilities of the fifteen possible initial arrangements of the four genes are

* = ( l l -^ l l> 00^11> 00"^00> 11-^00' 01-^ 10) 10^ 10' 1 0 ^ 01' Ol-*' 01» 0 0 ^ 10>

poo pio poi poo poo poo\
OO-77 0 1 ' 00-^ 0 0 ' OO^7 0 0 ' 1 0 ^ 0 0 ' 0 1 J 0 0 ' 00"^ 00^-

There is no reason why one of the gametes received by an individual should be
labelled ab and the other a'b' instead of vice versa, so we have the following
equivalences:

oi-* 10 = l o ^ i o = i o ^ o i = OI-M>I> oo^io = oo-^oi' oo^oo = oo-*'oo> 10-^oo = oi-^oo»

and the number of distinct components of F is seen to be nine. These nine sum to 1.
For purposes of evaluating the descent measure it was found (CW) easier to work
with the eight summary components

The expression of the original nine components in terms of these eight summary
components has been given (CW).

In evaluating F it is necessary to trace the four genes ab, a'b' for which F is
defined back a generation when they may no longer be located on two uniting
gametes. Accordingly a general descent measure X(a&, a'b') is defined for any four
genes a, b, a' and b' and four classes of the measure are identified

F^ = X(a&, a'b': ab, a'b' located on two distinct gametes which unite to
form individual A),

9BC = X(a6, a'b': ab, a'b' located on two distinct gametes from individuals
B and C respectively),

YB.CD = X(o6, a'b':ab, a', b' located on three distinct gametes from individuals
B, C and D respectively),

8BC> DE = X(a6, a'b' :a,b,a',b' located on four distinct gametes from individuals
B, C, D and E respectively).

3. TRANSITION EQUATIONS

Evaluation of the two-locus individual descent measure now proceeds according
to the general algorithm established earner (0W). Suppose A is a random member
of generation (t+ 1) and that B, B', B" and B'" are distinct random members of
generation t. Then with probability s, A has a single parent, say B, and with
probability 1 — s it has two parents, say B and B'. In all the following discussion
the initial population is supposed to be an infinite random mating one so that
oô oo = 1 initially and all other components are zero. This gives Fn = F1 = 1 and
all other summary components zero initially.
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We start with the digenic summary components. The equation for the one-locus
inbreeding coefficient Fx is well known to be

(1)
Ad

so that ^ - - £ - { 1 - ( I ) * } . (2)

The parental and recombinant descent coefficients, F1 and XF respectively, need
to be considered together. Note that F1 is the probability that genes a, b on a gamete
are copies of genes on one initial gamete, while -J? is the probability that genes a, b,
one on each of two uniting gametes, are copies of genes on one initial gamete. We
first have the usual relation (CW)

(3)

and then apply the algorithm to get

or i*Wi> = §*w + |i*e)- (4)

Equations (3) and (4) are related to those given by Bennett & Binet (1956) and
by Karlin (1969) and have as solutions

where
1+A-M

D

Behaviour of F1 and XF is governed by rx and r2, which are symmetric in A and s.
The cases A = 1 and 5 = 1 must be considered separately, and throughout the dis-
cussion we will make separate mention of these cases of one locus and pure selfing
respectively. For A = 1, rx = 1, r2 = £s and FJt) = 1, ^^ = F1(t) for all t. When
s = 1, rx = 1, r2 = JA and

When A + 1, « + 1:

— < r2 < mmin I - , -1 < \ < rx < 1 and rx > max (s, A).
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The trigenic component ^\ is the probability that any three of the four genes,
a, b, a' and b' on two uniting gametes are copies of genes on one initial gamete. We
have

1F\A = s
which (CW) gives

so that i-#Vn) = 2i-Fi(t) + 5~T~-F(t) + s V<0- (8)

For A = 1, x îct) = FM) for all t. In all other cases

<> /v\t+i

Among the quadrigenic summary components, methods for calculating the two-
locus inbreeding coefl&cient Fu for mating schemes such as mixed self and random
mating were given by Weir & Cockerham (1969). From there we see that

llith (10)

which, for all values of A and s leads to

J>im- ( 2 - S ) { 4 -

agreeing with Narain (1966).
Writing the remaining three quadrigenio summary components as a vector

where the infinite population size gives d'BB. = [0 ,^ B - ,0] . The relation between
0BB and FB has been given previously (CW) and leads to

(12)

(14)

where Ofa = J(l + A)2. From these equations we see that F{{, the probability that all
four genes a, b, a' and V received by the individual are copies of genes on one initial
gamete, may be treated separately. For A = 1, ^ii(t) = F^ for all t, while in all
other cases:

(|jt ^i±^y, (15)
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where {(1 + A) [2a(i-A) + l +A]r1-2aA},

Notice that setting s = 1 gives

(16)

For A = 1, 0$ = 1 for all £ so that F}^ = 1, uF(t) = Fi(t)for a111- N o t e t n a t w l i e n «&
and a'b' are the two gametes received by an individual, F11 is the probability that
a and b are copies of genes on one original gamete and so are a' and b', while j ^ is
the probability that a' and b are copies of genes on one original gamete as are a and b'.
In other words F11 and j^-F are the two-locus parental and recombinant descent
coefficients respectively. For s = 1, d11 is not needed in the evaluation of these two
coefficients and

(17)

For all other values of A and s we set 0") = ^AB'> 7?O =
 TB.B'B'

 a n ( i ^w =
 ^BB.B'B'-

Noting that J^B'B"' ^B.B'B"
 a n d 8B1B:B"B'"

 a r e z e r o i n *^e Present case, the usual
algorithms (CW) give

(t+1)

J(t+1)

with

In all generations then

•(1

1

+ A)2

4

+ A
4

1

4

2
s
2
s
2

and

4

, 1 - A 7ft (18)

From equations (13), (14) and (19) then we see that
of the tth powers of

1 + A2 sA

(19)

and irF(t) are combinations

r\-

https://doi.org/10.1017/S0016672300013446 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300013446


Mixed self and random mating at two loci 253

As a matter of interest we note that the difference between these two coefficients
may be expressed as

so that F11 is never less than nF, and

(20)

where U = V =

As for computing numerical values of the descent measure, the linear transition
equations (1), (3), (4), (8), (10), (12), (13), (14) and (18) together with initial values
are the most useful. For (s, A) = (0-0,0-0), (0-5,0-5), (0-5,0-9), (0-9,0-5), (0-9,0-9) and

s=00, A=00

0 - 8 -

0 - 6 -

0 -4 -

0 - 2 -

0-0

/ .-ft

i i i i

p-

F11

11

—I—

- — . .

F>F\\

1—I—I—r

Ft

» _

I I

5=0-5,1=0-9

- F " - • " ^

i l i i i i i i i

iO-^F-

0-8-

J=0-9,A=0-9

00 ' , , , , , , , , , , , , i , , , , i , i

i>=^=i.o , = 1 . M = ; . O

Fl=Fn=lF=llF=lF\=Fil

5 10 15 20 0

Generation

i—i—i—i—r~i—i—i—i—r—i—i—i—i—i—i—i—i—i—i

5 10 15 20

Generation

Fig. 1. Summary descent measures during the first 20 generations for (a, A) = (0-0,0-0),
(0-5, 0-5), (0-5, 0-9), (0-9, 0-5), (0-9, 0-9), (1-0, 1-0).
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(1-0,1-0), values of the eight summary components of F for the first 20 generations
are shown in Fig. 1. The explicit solutions such as those given in equations (2), (5),
(6), (9), (11), (15), (19) and (20) allow such things as equilibrium values to be deduced
quickly. We now apply these measures to the expression of genotypic frequencies.

4. GENOTYPIC FREQUENCIES

In our earlier discussion (CW) genotypic frequencies at two loci were expressed
as functions of the descent measures and the conditions assumed for the initial
ancestors. For digametic initial frequencies we used SPgi to denote the frequency with
which a random pair of gametes was at bj for the first gamete and ak b{ for the second,

Table 1. Genotypic frequencies as functions of the general inbreeding measure
M l fflOO 77*11 S^O d. P10

11 11 00-* 11 00-1- 00 11 00 ^Ol-4 10
r u Pu Pill Pu

P't'i 0 0 piiPil

P'ki ° ° PuPki PuPki iiPuPk+PkiPi)

P'k{ 0 0 piiPkl pilPkj 0

o Tpoo o 77* -̂̂  2 7pQ® poo
00 10 00 00 10"̂  00 00"̂  00

PuPiii PiiPiii p\i)

tei(PnPk+PkiPi) PtPki)

h(PuPk<li+PkiPi<li)

with 0i%x = SPfj. For an individual in generation t, characterized by descent measure
F(t), the corresponding frequency is written Pj$(t). For ait ak, 63- and bt not alike in
state, as implied by the different subscripts, four distinct initial genes are involved
and these may have been arranged on two, three or four gametes. With probability
n-̂ oo(t) they were arranged a^, and akbj so that the genotypic frequency includes the
term ^k\ nî oott)- With this kind of argument a table (table 4 of CW) can be con-
structed for double homozygotes, single and double heterozygotes. Use is made also
of trigametic and quadrigametic initial frequencies.

Such initial frequencies are easily found for the present case of an initial infinite
random mating population (and follow from setting N = oo in table 3 of CW). If the
initial frequency of gamete a^bj is#i;-then, for example, £?% = p^p^. For convenience
we display each class of two-locus genotypic frequency as a function of the in-
dividual descent measure and the initial gametic frequencies in Table 1. Initial
allelic frequencies for at and bj are written as pt and q} respectively, where

Pi = Sl»«. Qj = XPv
j i

These allelic frequencies are constant over time.
As we have computed the marginal components of the individual descent measure

we find it more convenient to express genotypic frequencies as functions of these
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marginal components. This will aid in deducing the behaviour of frequencies over
time. The following expressions involve the initial linkage disequilibria Ai3-, denned
as the deviation of initial gametic frequencies from the products of corresponding
allelic frequencies:

Genotypic frequencies and descent measures are understood to refer to the same
(<th) generation, although we often omit the t subscript.

(21)

(22)

x{qiF(l)+F(2)} + AijAkjF(3), (23)

(24)

(25)
where

F(la) =F1-21F\ + F{{, F(lb) = ^ - 2 ^ + ̂ , F(l) = F(la)

= F11-F{\, F(3b) = nF-FW, F(3) = F(3a)+F(3b),

By taking appropriate sums of these quantities, we obtain the usual expressions
for one-locus frequencies,

F^ (26)

where dots denote summation over those suffices. I t may be noted that the first
terms in the genotypic frequencies (21)-(25) are products of these marginal locus
frequencies. The usual (CW) other digenic marginal frequencies are

(27)

(28)

5. DISEQUILIBRIA FUNCTIONS

With descent measures and genotypic frequencies specified, we can now give
expressions for various disequilibria functions. The deviations of digenic frequencies
from products of corresponding allelic frequencies in any generation can be deduced
from equations (26)-(28) and the digenic summary components in (2), (5) and (6).
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In particular the linkage disequilibrium is seen to a constant multiple (its initial
value) of F1 and so behaves like this parental descent coefficient. The difference
between the two two-gene non-allelic frequencies

^ (29)

is always positive and disappears in time. So also does the difference in frequencies
of double heterozygotes which from equation (28) we see is

ii*ft>} (30)

with values of F\t) — ^F^ and F}^ - nF(t) specified by equations (29) and (20). I t will,
of course, be non-zero for a time whenever there is initial linkage disequilibrium.
The term (AyAw —AiZAw) is zero for only two alleles per locus.

Deviations of genotypic frequencies from products of one-locus frequencies,
gametic frequencies or recombinant frequencies are also of interest. The deviations
from the one-locus frequencies are given by the removal of the first term in the
right-hand sides of equations (21)-(25). Deviations from gametic or recombinant
frequencies are illustrated for double homozygotes:

-1*) + 2{pt + q,) F(2)} + A | ^ ( 3 ) - (F^}, (31)

+ (l -Pt) (1 -qi)Fu}

+ A^FH + 2piqi(F(l) - J) + 2{p, + qf) F(2)} + A ^ ( 3 ) - 1F^}. (32)

6. SPECIAL CASES

As an aid to later discussion we now consider four special cases.

(i) Pure selfing (s = 1)

In discussing the evaluation of the descent measures we made mention of the
effect of setting s = 1 on each component, and we have previously (CW) given
genotypic frequencies and disequilibria functions for this case. For completeness
we give the summary components of the individual descent measure for this case of
self mating, for all t:

I-A/A\*

1 1 /A\* / 1 \ * . /1 + A*\* F i 1 , 1-A/A\*
= 2TA~ 2^A \2) ~ \2) + \~^~) ' F™ = 2^A + 2^A (2) '

(33)
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(ii) Random mating (s = 0)

When mating is entirely at random (s = 0), only F11 and F1 among the marginal
components of F are non-zero. For all t they are given by

(34)

Gametic frequencies are given by

Two-locus genotypic frequencies are products of corresponding gametic frequencies,
but differ from the product of one-locus frequencies. For example,

. . (35)

(iii) Complete linkage (A = 1)

One-locus models follow from setting A = 1. We pointed out the effects of this
on the descent measures above: F11 = F1 = 1 for all t, while all other summary
components have the value of

Genotypic frequencies follow from equations (26).

(iv) No linkage (A = 0)

For free recombination we set A = 0 and present the individual descent measures
for all generations after the initial one (t ^ 1): .

_8{l + 28)(l+8\*. J8\* 3S (8\*
- 2(2 ) \~2~j ~S\2) +2(2 )U/2(2 + 5)

28 (8\* 35 (8\*

= S(1 + 2S) n+8\* _ (SV
w 2(2 + s) \ 2 / \2)

+:

(1 I o\ t / o \ v o/7 I 7 Q -1- 4.JO*\ / JO \ * Q^ 1 — Q\

~2~J ~ 5 \2 / ''

W-

(36)
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To evaluate genotypic frequencies we use the quantities

t+1

s{2+s) (s\\ 1~S (1+s\2t

7. EQUILIBRIUM POPULATION

It is now a straightforward matter to present the structure of a mixed self and
random mating population which has been established a long time and equilibrium
reached.

In the situation where neither A nor s is 1 or 0, equations (2), (5), (6), (9), (11), (13),
(14), (15) and (19) yield

4s(ls){l+A(ls)}
/ n ( 2 s ) 2 { 4 s ( l + A 2 ) } ' ^ ;p p __

11 (2-s){4-s(l+A2)} ' x 2-s'
where hats denote equilibrium values, and all other summary components are zero.
The contribution of initial linkage disequilibrium to genotypic frequencies dis-
appears and equations (21)-(24) reduce to those given by Kimura (1958). Devia-
tions of the two-locus frequencies from products of one-locus frequencies are
multiples of ^lt, and are given by the second terms in equations (21)-(24).

For s = l equations (33) yield:
P11 = P1=1; #ii = #ii = xxf = xfi = #i = J> = 1/(2 -A). (38)

Only double homozygotes remain in this case of self mating, and have frequency

For 5 = 0, equations (37) hold and all genotypic frequencies reduce to the products
of corresponding allelic frequencies.

For A = 1, from above:

Ai = A = 2li; $?1 = P1 = 1J' = A = fr = J'=l. (39)

Genotypic frequencies in this one-locus case are given by

Hi =

https://doi.org/10.1017/S0016672300013446 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300013446


Mixed self and random mating at two loci 259

For A = 0, equations (37) are relevant and genotypic frequencies follow from
equations (21)-(24). The final identity disequilibrium now has the value of

for free recombination.

8. DISCUSSION

By employing two-locus descent measures (GW) we have been able to find the
descent relations in an infinite population undergoing mixed self and random mating.
The two-locus structure of the population as shown by genotypic frequencies and
disequilibria functions follows from the descent measures.

For each of the eight summary components of the individual descent measure
a linear difference equation was found. When the equation is of order k, the com-
ponent can be expressed as the sum of the tth powers of the k roots of the corre-
sponding complementary equation in the rth generation. Treating the eight
components in turn:

Fx order 1, root | s ,

F1, XF order 2, roots rx > r2,

XF{ order 3, roots rx> \s ^ r2,

Fxx order 2, roots %s ^ \s{l + A2),

F\\ order 4, roots rx>\s> \s{\ + A2) > r2>

F11,1XF order 7, roots rx>r\>\s> \s(\ + A2) Js r2 Ss rxr2 > r\.

These relations between the roots are of particular help in explaining the long-term
behaviour of the components. The two inbreeding components Fx and Fxx soon act
like a function of \s only. As this quantity has an upper bound of 0-5 we can deduce
that inbreeding equilibrium will be reached in a few generations—certainly Fx, Fxx

will be less than 0-001 from their final values after ten generations. The remaining
eix summary components all have long-term behaviour determined by r\. For s and A
large but not equal to 1-0, rx can be very close to 1-0 so that decay to equilibrium
values of zero can be extremely slow. These trends are illustrated in Fig. 1. After
about ten generations Fx and Fxx have reached their final values and the other six
curves have a common slope of —rx. For A = 1-0 or s = 1-0, rx = 1-0 and transient
behaviour is determined by \s or \X for every component, so that equilibrium is
reached quickly.

Early behaviour of the components is quite complex, as suggested by the high
order of some of them and as shown by Fig. 1. The figure does show that

Fx > Fxx >XF> XF\ > X1F > F\\

and that F11 > XXF, F1 > XF.

Until equilibrium then, even with free recombination, parental gametes remain
more frequent than recombinant gametes (F1 > XF) while for non-gametic genes,
alleles are more likely to have been on one original gamete than are non-alleles
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(F± > XF). For A =# 1-0 the parental descent coefficients F1, F11 drop down below the
values of the inbreeding coefficients Fx, F1X at a time which increases with increasing
outcrossing and linkage. Although F1 drops monotonically from 1-0-0-0, F11 has
complex behaviour in the first few generations. For s =j= 1, A 4= 1 original linkage
blocks are finally broken up (Geiringer, 1944), while for s = 1 any two non-allelic
genes received by an individual have probability 1/(2 — A) of having been on the
same gamete originally. Original gametes remain intact of course for A = 1.

For any particular generation then, each summary component of the individual
descent measure is an increasing function of both s and A. For any particular s and
A the behaviour over time requires more careful statements.

The equilibrium population has been discussed by many authors previously.
Most of the characteristics of this population are related to the final value ifn of the
identity disequilibrium, which we might also term the equilibrium constant. From
definition it relates the two-locus inbreeding coefficient to the square of the one-locus
coefficient, and from equations (21)-(24) it relates two-locus genotypic frequencies
to products of one-locus frequencies. Discussion of the behaviour of the equilibrium
constant as s and A vary is aided by the following subdivision of fjxl into two com-
ponents.

In all of the present work, arguments have applied to individuals chosen at random
from a generation. Although the history of each particular individual in the equi-
librium population is unknown, the value ^ u applies to a random member of that
population, and consequently for any class of individuals. From other work in-
volving selection (Cockerham & Rawlings, 1967) it wasfound useful to consider the
population subdivided into classes according to the number of generations of self-
fertilization. At equilibrium the frequency of individuals resulting from i generations
of self-fertilization is (1 — s) si (i = 0,1,2,..., oo), for which

+AV ny
—Hi)-

The average identity disequilibrium over classes

4s(l-s)A2

7/11

can be alternatively formulated as.

which is the average of the two-locus inbreeding coefficient over classes minus the
average of the square of the one-locus coefficients. By contrast

so that fjn = ^

The variance among the Fu'8, a%t = (Ff) - ($1Y given by

2 _
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is independent of linkage of course. Thus the equilibrium constant can be divided
into two parts, one due entirely to the variation among Fx's and the other sum-
marizing the effects of linkage. The application to genotypic frequencies is direct
and points up a general phenomenon. When a population is structured into classes or
subdivisions there will be genotypic disequilibrium in the population as a whole
although there is none within each class.

It is now evident that the equilibrium constant is an increasing function of A,
with a maximum effect of linkage

Vll (A = 0) 2

of something less than doubling it. For any particular A, there is an amount of
selfing which maximizes $ u . This value of s varies within very narrow bounds of
0-6946 for A = 0 and 0-6667 for A = 1. The corresponding maximum equilibrium
constants are 0-1506 and 0-2500.

Final values of all disequilibrium functions considered here depend entirely on
the inbreeding coefficients, generally via ^n. Because of the presence of other sum-
mary components of the descent measure though, the rate of approach to these
final values can be quite slow. In particular, for tightly linked loci in highly self-
fertilizing species, final values of disequilibria will be attained very slowly.

This study provides a basis for the study of many natural and experimental
plant populations. Departures from these results will indicate the presence of some
disturbing forces.

In order that an investigator can make use of these results he must have in-
dependent knowledge of the two parameters, s and A, used. There are standard
methods for estimating these. For natural populations which are assumed to be in
equilibrium then, observed genotypic frequencies can be compared to the equi-
librium values given in this paper. Two-locus frequencies will differ from products
of one-locus frequencies by the second terms in equations (21)-(24) if the assump-
tions made in this paper hold. There should be no linkage disequilibrium and, if
they can be identified, both types of double heterozygote should be equally frequent.

For experimental or other non-equilibrium populations, this paper will be of
most help when the investigator knows the nature of the initial population, and
the number of generations since that initial population, or better yet, has information
over time. In such a case he can again compare observed genotypic frequencies and/
or their changes over time with those predicted in equations (21)-(24). In the absence
of such knowledge, this paper offers only a qualitative guide to the behaviour of
populations in the absence of disturbing forces. While inbreeding coefficients, and
consequently homozygosity, reach final values quickly we have shown that descent
measures, and consequently disequilibria, may reach final values very slowly. Dis-
equilibria of various types may be observed then even in the absence of disturbing
forces.

Methods of identifying disturbing forces are needed. It is to be stressed that results
in this paper are for neutral genes at two loci in a population for which all other gene
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variation is neutral. I t does not follow that the changes in frequencies of identifiable
genes or of disequilibria functions among them guarantee that these genes are the
causes of the changes. For recently constituted populations selection is the most
likely candidate for effecting any changes but selection operates to affect the
frequencies of all genes. While population (census) size may be very large, selection
would tend to make the population in time stem from a few, even one maybe,
initial founders when there is a high degree of self-fertilization. Consequently, all
identifiable genes would be expected to have changes in frequencies whether they
played any role in selection or not. Further, as shown by Cockerham & Rawlings
(1967), selection affects genotypic proportions at all loci including neutral genes.
If the net effects of all genes undergoing selection is to produce an inbreeding
depression then the frequencies of all heterozygotes are greater than that expected
on the basis of neutral theory. Such would be the case for partially to completely
recessive deleterious genes in mutation selection balance, with a concomitant effect
on all genes including neutral ones.

The problem of distinguishing between real and apparent selection effects or
between real and apparent heterotic effects must be solved before we can conclude
anything about the role of identifiable genes from frequency data on primarily self-
fertilizing species.

Paper no. 3901 of the Journal Series of the North Carolina State University Agricultural
Experiment Station, Raleigh, North Carolina. This investigation was supported in part by
Public Health Service Grant GM 11546 from the Division of General Medical Sciences.
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