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ACTION OF FINITE GROUPS ON REES ALGEBRAS AND
GORENSTEINNESS IN INVARIANT SUBRINGS

by SHIN-ICHIRO IAI
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Let G be a finite group of order N and assume that G acts on a Cohen-Macaulay local ring A as
automorphisms of rings. Let N be a unit in A. For a given G-stable ideal / in A we denote by 11(1) = ffi,>0/"
and Q(I) = ®n>qP/r+i the Rees algebra and the associated graded ring of /, respectively. Then G naturally
acts on 7l(J) and Q(I) too. In this paper the conditions under which the invariant subrings H(I)C of 11(1) are
Cohen-Macaulay and/or Gorenstein rings are described in connection with the corresponding ring-theoretic
properties of G(I)C and the a-invariants a(Q(I)c) of Q(t)c. Consequences and some applications are
discussed.

1991 Mathematics subject classification: Primary 13A30; Secondary 13H10.

1. Introduction

Let A be a commutative ring and G a finite group of order TV. We assume G acts
on A as automorphisms of rings. Let t be an indeterminable over A. For each ideal
/ (/ ^ A) in A we put

= A[It) c A[t],
11'(I) = A[It, r 1 ] c A[t, r 1 ] , and

and call them the Rees algebra, the extended Rees algebra, and the associated graded
ring of /, respectively. Now let us extend the action of G on A to that on the Laurent
polynomial ring B = A[t, t"1], letting a(t) = t for all a e G. Then if the ideal / is G-
stable that is a{I) c / for any a e G, the algebras TZ(l) and 1Z(I) remain stable in B
under this action of G, so that our group G naturally acts on the associated graded ring
G(T) too. In this paper we are interested in the question how and why certain ring-
theoretic properties of 72.(/)G are determined by those of Q{I)°'. And our starting point
for this research is the following.

Theorem 2.4. Let A be a Cohen-Macaulay local ring and let I (^ A) be a G-stable
ideal in A. Assume the order N of G is invertible in A. Then ifhtAI > 1 (resp. htAI > 2),
the following two conditions are equivalent.
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(1) 7Z(l)G is a Cohen-Macaulay (resp. Gorenstein) ring.

(2) G(I)G is a Cohen-Macaulay (resp. Gorenstein) ring and a(Q([)G) < 0 (resp.
a(G(I)G) = -2) .

Here a(Q(I)G) denotes the a-invariant ofQ(I)G.

Now let A be a Cohen-Macaulay local ring with maximal ideal m and
d = dim A > 2. We assume the order N of G is invertible in A. Then in general the ring
A contains numerous G-stable ideals and eventually our question is very subtle to
handle. Therefore to go farther, in this paper we would like to restrict our attention
mainly to the case where / = m. Let

U = n(m) and G = G(m).

And with this notation we have from Theorem 2.4 the following.

Theorem 3.4. Let Q be a Gorenstein ring and suppose that G trivially acts on the
residue class field k = A/m of A. Consider the following three conditions.

(1) "R.G is a Gorenstein ring.

(2) QG is a Gorenstein ring ofa(g°) = -2.

(3) u.g=

Then one has the implications (1) -o- (2) 4= (3). Furthermore, if a(G) < —2 or if Q is a
normal ring and the extension G/G° is divisorially unramified, then the above three
conditions are equivalent to each other.

We shall briefly recall in Section 3 the definition and some basic properties of the
canonical character x c g stated in condition (3) in Theorem 3.4. Instead let us note here
two consequences of Theorem 3.4.

Corollary 3.5. Assume that 1i is a Gorenstein ring and that G trivially acts on the
residue class field k = A/xn of A. Then the following two conditions are equivalent.

(1) TZG is a Gorenstein ring.

(2) lex = I-

Corollary 3.6. Suppose that A is a regular local ring and G trivially acts on the
residue class field k = A/m. Let p : G -> GL(m/m2) be the representation of G over k
which is induced from the action on A. Then the following two conditions are equivalent.

(1) TZa is a Gorenstein ring.

(2) dim/4 = 2 and p(G) c SL(m/m2).
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We will prove Theorem 2.4 in Section 2. The proof is directly based on the recent
progress [4] due to Goto and Nishida in the theory of Rees algebras associated to
filtrations of ideals. To check the implications stated in Theorem 3.4 we need a part of
the theory of canonical characters Xc.g> t n a t w e s n a n briefly recall in Section 3. The
proof of Theorem 3.4 and its consequences also shall be given in Section 3. In Section
4 we will explore a few examples to illustrate our theorems.

In what follows let G be a finite group of order N which acts on a commutative ring
A as automorphisms of rings. We extend the action of G to that on the Laurent
polynomial ring A[t, £"'] with o(t) = t for all a e G.

2. Proof of Theorem 2.4

Let / be a G-stable ideal in A. We put B = A[t, r 1 ] , U = 11(1), W = H'(I), and
Q = £(/). Then G acts on the rings B, H, W, and Q. For each i e Z let Ff = /" n A°. Then
the family T — {Fj}ieZ of ideals in AG satisfies the following.

Lemma 2.1. (1) Ft = AG for i < 0.
(2) FtFjQF^foralliJeZ.

We put -RiF) = D M V 2 A°[t] and H'(F) = E t ez f i t ' ^ A°^' r ' l - T^1 1 ^ ( - ^ a n d

are graded /lc-subalgebras of A% r 1 ] . Let 1

Proposition 2.2. (1) ft0 = VAT) and 1l'G = K{F) as graded AG-algebras.
(2) Suppose that N is invertible in A. Then there is a natural isomorphism

of graded AG-algebras.

Proof. (1) This follows from the fact that TZG = U D AG[t] and Tl'G = TZ'n AG[t, r 1 ] .

(2) Since N is invertible in A, from the exact sequence 0 -»• VJ{\) •?-+K' A- G-^ 0
of graded 7£'-modules we get the exact sequence

0 -> ft'c(l) -L!> 7i'c 4- 0° -»> 0

of graded 7£'c-modules, where e denotes the canonical epimorphism. (For x € 72.' let
x' = x mod r ' f t ' . Then for each x" aG° the element [£a6G a{x)]/N of ft'G is chosen to
be the inverse image of x*.) Hence G° s Tl'iFj/t^ilXF) = Q{T) by (1).

= htAdG.

Lemma 2.3. (1) ,4 ih integral over AG. Hence dim A = dim 4C a/jrf if A is a local ring,
then so is Ac.

(2) Let A be a Cohen-Macaulay local ring and assume that N is invertible in A. Then
tA

G
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Proof. (1) For each a e A let fa(t) = ]~[ff€C(t - a(a)). Then fa(t) e AG[t] and fa(a) = 0.
Hence A is integral over AG and so dim A = dim A°. See [2, (5.8)] for the second
assertion.

(2) By [8, Proposition 13] the ring A° is Cohen-Macaulay. Since our ideal / is G-
stable, the group G acts on the local ring A/I as automorphisms of rings. We have
(A/Vf s* AG/Ia, because N is invertible in A. Hence

dim A = dim AG and dim A/1 = dim(A/I)G = dim AG/IG

by (1). On the other hand, since both the local rings A and AG are Cohen-Macaulay,
we get

ht^/ and dimAG = dim AG/IG

Thus htj = htAdG.

The next result plays a key role in this paper.

Theorem 2.4. Let A be a Cohen-Macaulay local ring and I (j£ A) a G-stable ideal of
A. Assume the order N of G is invertible in A. Then if htAl > 1 (resp. htAI > 2), the
following conditions are equivalent.

(1) "R.° is a Cohen-Macaulay (resp. Gorenstein) ring.

(2) g° is a Cohen-Macaulay (resp. Gorenstein) ring of 0(0°) < 0 (resp. a(QG) = -2).

Here a(</°) denotes the a-invariant ofQ0.

Proof. By [8, Proposition 13] and (2.3) AG is a Cohen-Macaulay local ring and
htj = htAoIG. Since F, = IG, we get ht^cF, > 1 (resp. ht^cF, > 2) if htAI > 1 (resp.
htAI > 2). Therefore by [4, Part II, (1.2) and (1.4)], provided htAI > 1 (resp. htAI > 2),
V,(!F) is a Cohen-Macaulay (resp. Gorenstein) ring if and only if Q(T) is a Cohen-
Macaulay (resp. Gorenstein) ring and a(G(F)) < 0 (resp. a(Q(!F)) = —2). Hence the
required equivalence follows, since ~R.(T) = TtG and Q(T) ^ G0 by (2.2).

3. The case where / = m

We begin with a survey on canonical characters [3]. For a while let G be a finite
group of order N and let k be a field. Let R = @ni0Rn be a Noetherian graded ring with
RQ = k. We assume the following three conditions.

(i) R is a Gorenstein ring.

(ii) G acts on R as automorphisms of graded fc-algebras.

(iii) N ^ 0 in k.

https://doi.org/10.1017/S0013091500020320 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020320


ACTION OF FINITE GROUPS ON REES ALGEBRAS 397

Then by (iii) the graded fe-algebra RG is a Cohen-Macaulay ring. Let KR and KRG
denote respectively the canonical modules of R and RG (cf. [6, Sect. 2]). Since the
extension R/RG is module-finite, we have an isomorphism KR = Hom8e(/?, KRG) of
graded R-modules (cf. [6, (2.2.9)]). Therefore R(a) s HomRc(R, KRc), because
KR — R(a) by assumption (i) (here a — a(R) denotes the a-invariant of R (cf. [6,
(3.1.4)])). Let L = HomRc(R, KRc) and let £ e L_a be a generator for the R-module L.
Let the group G act on L, setting ff(/)=/o<r"' for a e G and f e L. Choose a
character *P of G over fc satisfying the equality

ff(£) = ^(o-K for all i reG.

Then if one defines the action * of G on KR — R(a) so that a * x = T^o^x) for
x € KR = R(a) and a e G, any isomorphism KR ^ Homsc(R, KRc) of graded R-modules
is compatible also with G-action. Hence this character *P is independent of the choice
of the elements £, € L_a.

Definition 3.1. We put XC.R ~ ^ ' a n ( l c a ^ it t n e canonical character of G with
respect to the action on R.

Let us summarize below some basic results in [3] on canonical characters. The proof
is standard and follows from the fact that any isomorphism KR ^ HomRc(R, KRc) of
graded R-modules is compatible with G-action.

Proposition 3.2 ([3]). Let a = a(R).

(1) KRo s R^da) as graded RG-modules, where R^ ={f<=R\o(f) = XcA°)f
for all a e G} denotes the semi-invariants in R of weight

(2) a > a(RG).

(3) XG.R = 1 if and only ifa(RG) = a. When this is the case, RG is a Gorenstein ring.

(4) Letf € [Rc]n (n > 0) be R-regular. Then xaMfR = XG.R-

Proposition 3.3 ([10]). Assume R = k[XuX2 Xd](d> I) is a polynomial ring
with deg Xi = 1 for all 1 < i < d. Let V = K, and let p : G -»• GL(V) denote the
representation ofG induced from the action on R. Then

for all a G G.

Now we assume that A is a Cohen-Macaulay local ring with maximal ideal m and
d = dim A > 2. Let the order N of G be invertible in A and assume G trivially acts on
the residue class field k = A/m of A. We put 11 = H(m) and Q = £(tn).

Firstly we shall prove the following, in which the equivalence of conditions (1) and
(2) directly follows from Theorem 2.4.
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Theorem 3.4. Let Q be a Gorenstein ring. Consider the following three conditions:

(1) 11° is a Gorenstein ring.

(2) Q° is a Gorenstein ring ofa^Q6) = -2 .

(3) Xcs=

Then one has the implications (1) •<*• (2) •$= (3). Furthermore, if a(Q) < - 2 or if Q is a
normal ring and the extension Q/Q6 is divisorially unramified, the above three conditions
are equivalent to each other.

Proof. (3) =*• (2). If xGg = 1, by (3.2) (3) 0° is a Gorenstein ring with a{(f) = a(G).
Hence a(£G) = - 2 .

(2) =>• (3). Firstly assume that a(£) < - 2 . Then as a(£) > a(^°) by (3.2) (2), we get
a(Q) = a(QG) = —2 whence XG.S = 1 by (3.2) (3). Therefore condition (3) is satisfied.
Assume that Q is a normal ring and Q is divisorially unramified over 0°. Then XG.Q — 1
because Q° is a Gorenstein ring (see the proof of [11, Theorem 2]), so that
a(g) = a(gG) = -2 by (3.2) (3).

Corollary 3.5. Suppose that 1Z is a Gorenstein ring. Then the following two conditions
are equivalent.

(1) 1Za is a Gorenstein ring.

(2) Xo.S = I-

Proof. Since A is Cohen-Macaulay and 11 is Gorenstein, by [9, (3.6)] Q is a
Gorenstein ring with a(ff) = -2, whence the equivalence follows from (3.4).

Let p : G -*• GL(m/m2) be the representation of G induced from the G-action on A.

Corollary 3.6. Assume that A is a regular local ring. Then the following two
conditions are equivalent.

(1) 7?.° is a Gorenstein ring.

(2) dim A = 2 and p(G) c SL(m/m2).

Proof. Let d = dim A{> 2). Then since A is a regular local ring, Q = Q(m) is a
polynomial ring in d variables over k = A/m. Therefore a(Q) = -d < -2 ([6, (3.1.6)]).
Consequently by (3.4) 72° is a Gorenstein ring if and only if d = 2 and XG,S = 1-
According to (3.3), the later condition XGQ = 1 is equivalent to saying that

c SL(m/m2).
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4. Examples

In what follows, let k be a field and let R = k[Xlt X2,..., Xn] (n > 1) be the
polynomial ring in n variables over k. We consider R to be a graded ring with Rg = k
and deg Xt = 1 for all 1 < i < n. Let G be a finite group of order N with N ^ 0 in k
and assume that G acts on R as automorphisms of graded fe-algebras. Let a(o ̂  R) be
a G-stable graded ideal in R. We put R' = R/a and 501 = [R*]+. Let A = R& and
m = SRR ,̂. Then the group G acts on A as automorphisms of rings, because the ideal
SR is G-stable. We have

Lemma 4.1. The natural isomorphisms R" = G($R) = G(jn) are compatible with G-
actions. Hence R*G = £7(m)G as graded k-algebras.

Thanks to (4.1) we may apply Theorem 2.4 to the local ring {A, m) and get

Proposition 4.2. Assume that R* is a Cohen-Macaulay ring ofd = dimR* > 1. Then

(1) 7£(m)G (resp. TZ(m)) is a Cohen-Macaulay ring if and only if a(R*G) < 0 (resp.
a(R') < 0).

(2) Let d > 2. Then H(m)G (resp. Tl(m)) is a Gorenstein ring if and only if R*G (resp.
R') is a Gorenstein ring with a(R*G) = - 2 (resp. a(R*) = -2 ) .

Proof. Recall that R'G is a Cohen-Macaulay ring and that A is a Cohen-Macaulay
local ring with d = ht^m. And the assertions on 1Z(m)G follow from (2.4) and (4.1). The
assertions on 7l(m) are due to [5, (1.1) and (1.2)], since R' ^ £(m).

Let us now apply Proposition 4.2 to the following examples.

Example 4.3. Let G = Sn be the symmetric group and 1 < q e Z. Assume that
ch/c = 0. Let G act on the polynomial ring R = k[Xt, X2 Xn] so that a(Xt) = X^
for all a e G and 1 < i" < n. We p u t / = X\ + X\ + ... + X"n and o = /R . Then o is a G-
stable graded ideal in R, since / € RG. Let Rm = R/a, SOI = [R']+, and A = R^. Let
m = WlRw. Then we have

Theorem 4.4. (1) Let n>2. Then the following assertions hold true.

(a) 7£(m) is a Cohen-Macaulay ring if and only ifq<n.

(b) 7£(m)G is a Cohen-Macaulay ring if and only ifq< n(n + l)/2.

(2) Let n > 3. Then the following assertions hold true.

(a) 7£(m) is a Gorenstein ring if and only ifq — n — 2.

(b) 7£(m)G is a Gorenstein ring if and only ifq = [n(n + 1) — 4]/2.

Proof. The ring R* is Gorenstein with dim R' = n — 1 and a(R') = q — n (cf. [6,
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(3.1.6)]). Since RG is the polynomial ring in n variables over k and R*G s RG/fRG, we
see that a(RG) = -n(n + l)/2 and that R'G is a Gorenstein ring of a(R'G) = q-n(n+ l)/2.
Hence from (4.2) the assertions (a) and (b) in (4.4) follow.

If we take n = q>2 in (4.4), the ring 7£(m) is not Cohen-Macaulay but 72.(m)G is.
Letting n > 3 and q = [n(n + 1) — 4]/2, we get examples of non-Cohen-Macaulay rings
7l(m) for which the invariant subrings Tl{m)G are Gorenstein.

Example 4.5. Let n > 3 and let R = C[XX, X2, • • •, Xn] be the polynomial ring. Let
C denote a primitive (n — 2)-th root of unity. Let a : R -> R be the automorphism of C-
algebras defined by a{X^) = tXt for 1 < i < n - 1 and CT(^J = £~]Xn. Let G be the
subgroup of Autci? generated by a. We take/ = £,<,<„-XT2 and a =fR. Then 7e(m)G

is a Gorenstein ring.

Proof. The ring R* is Gorenstein with dim R* = n — 1 and a(R*) = —2. Therefore
by (4.2) (2) 7£(m) is a Gorenstein ring too. On the other hand since/ e RG, by (3.2) (4)
we have XG.R' = XG.R- Let T be the linear transformation of V = Rt induced from the
action of a on V. Then detx = 1 whence XG.R = 1 by (3.3), so that XGX — !• Because
the canonical isomorphism R* ^ Q(m) is compatible with G-action, from (3.5) that the
ring 7£(m)c is Gorenstein follows.

Example 4.6. Let A be an arbitrary Noetherian local ring of dim A > 2. Let G be a
finite group of order N and assume that G acts on A as automorphisms of rings. Let N be
invertible in A. We choose elements a, b in AG so that a, b forms a subsystem of parameter
for the local ring AG. Let / = (a, b)A. Then TZ(l)G is a Gorenstein ring, if so is AG.

Proof. Let J = (a, b)AG. Then since the extension A/AG is pure (cf. [8]), we have
/" HAG =f for all i e Z. Hence 1l(I)G = ^(J) =* /1G[AT, y]/(aX - fe7) (here AG[X, Y] is
the polynomial ring in two variables over AG). Thus the ring 7£(/)G is Gorenstein, if
so is AG.
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