Canad. Math. Bull. Vol. 33 (3), 1990

FUGLEDE’S COMMUTATIVITY THEOREM AND NR(T — ))

BY
ROBERT WHITLEY

ABSTRACT. Fuglede’s commutativity theorem for normal operators is
an easy consequence of the result that: For 7' normal, denoting the range
of T—=Aby R(T—X),N{R(T —)): all \} = {0}:

Fuglede’s commutativity theorem for normal operators is an easy consequence of
the elegant intersection of ranges theorem: If T is normal, then the intersection of the
ranges R(T — M), for all ), is zero

(1) N{R(T — \) : all A} = {0}

Equation (1), with (T — ) replaced by (T — \)?, was established by Johnson in [3].
Equation (1) was proved in [5], with reference to Johnson’s work, and independently
in [6]; proofs can also be found in [8, lemma 5.1] and [1, lemma 3.5]. Equation (1)
can be extended to T hyponormal, for which see [1], by the use of Stampfli’s powerful
local spectral theory [1, 9, 10, 11, 12, 13].

Lemma 1 and corollary 2 below give a simple proof of Fuglede’s theorem using (1).
Lemma 3 gives an easy proof of a special case of (1) which is sufficient to establish
Fuglede’s theorem.

LemMMA 1. Let T be a normal operator. For each ) there is a unitary operator Uy,
with

€)) T =N =U\T - N"

This Uy commutes with both T and T*.

Proor. Define Uy, on the range R(T — A)* of (T — A\)* by Un(T — A\)*x = (T — \)x.
Because T is normal, U, is an isometry and so has a unique extension to the closure
of R(T — A\)*. Extend U, to all of the Hilbert space as the identity on [R(T — ML =
N(T — )\) = N(T — M\)*. Equation (2) holds by construction. Since U) is unitary,
equation (2) implies that

3) (T — ) = (T — M)~
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Taking adjoints in (2) shows that U} commutes with (T — XA) and thus Uy commutes
with (T — M\)*. Then

Un(T = X) = (T = N = Us(T — N)*Uy = (T — MUy
and Uy commutes with (T’ — \) and U} with (T — A)*. ]

COROLLARY 2. Fuglede’s Theorem: Let T be normal and suppose that B commutes
with T. Then B commutes with T*.

Proor. Using the lemma, write
4) T*B —BT* = (T — A\)*B —B(T — \)* = (T — \)(U;B — BUY)

By the intersection of the ranges theorem, 7*B = BT*. O

For a normal operator T, use the spectral theorem to represent T as multiplication on
L*(S, X, v) by an L®(S, X, v) function ¢. Assume that g belongs to the N R(T — ))
so that for all A = x +1iy

lg(s)?

5 9 = _—
&) [, )  To(s) = AP

v(ds) < oo
Define u(E) = [ |g(s)|>v(ds), a finite measure, and rewrite equation (5) as

1
(6) [, y) = /Sm p(ds) < oo

Equation (1) will hold if it can be shown that u(S) = 0. Note that the example of
constant ¢ shows that (6) must hold for all A before one can, in general, conclude
that p = 0.

To establish Fuglede’s theorem the full strength of (1) is not required. From equation
(4), if g belongs to the range of T*B —BT*, then g = (T —A)(U;B —BUjY)g, so f(x, y)
can be chosen to be bounded with

fox, y) = I(UiB — BUY gl < 4]1BI* g

In this case where f is bounded, the measure y can be shown to be zero by complex
variable methods, as in the proof of [1, theorem 3.4]. Lemma 3 gives a simple real
variable proof.

LemMA 3. If the function f(x, y) of equation (5) is bounded then y = 0.
Prook. For z # 0, define

1
@) F(x, y, z) '—‘/Smﬂ(ds)
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By the Monotone Convergence Theorem, F(x, y, z) increases to f(x, y) as z tends to
zero: hence f(x, y) is lower semicontinuous, therefore measurable and so has a finite
intergral over any compact subset of R2.

If necessary, change ¢ on a set of measure zero so that |p(s)] = M for all s in S.
Set a(s) = Reyp(s), b(s) = Imp(s), A = x + iy, and consider:

dxdy = dxd d.
[ Lz L [ e
2M —a(s) 2M —b(s)
-/ / iy ddy p(ds)
2M —a(s) J —2M —b(s) * +y?2
// / o) dxdy u(ds) 2 27ru(S)/ (1/r)dr
M X

and the last term is infinite unless u(S ) =0. O

Lemma 3, or the stronger equation (1), can be extended to more general ¢. Note
that if ¢(sp) = oo, then p can be a non-zero point mass at sy and still have (6) hold.
However, one can extend the result to the case where ¢ is a measurable function
which is finite p-almost everywhere as follows: Let S, = {s : |¢(s)| = n}. Then for
the measure u, defined by p,(E) = u(s, NE),

1
falx, ) = /S m un(ds) < 00

and ¢ belongs to L*(S, X, u,). By the theorem for essentially bounded ¢, u, = 0.
Since this is true for all n, u = 0.
I would like to thank M. Schechter for his helpful comments.
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