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Embedding near domains

J.A. Graves and J.J. Malone

A class of near rings which generalizes the class of integral

domains is defined. The definition of near domain is derived

from the desirability of embedding near domains in near fields.

The near domains presented here are shown to contain the D-rings

of Berman and Siverman.

1. Near domains

We take integral domain to mean a commutative ring having no divisors

of zero. Near rings with no zero divisors have been considered by Ligh and

Malone [8], Clay [3] and Ferrero [4]. Ligh and Malone studied the

properties of finite near rings having in one case no zero divisors and in

another a finite number of zero divisors . Their work was not an attempt to

generalize the concept of integral domain. Clay [3] called a near ring

without divisors of zero a near integral domain but as he stated his

definition was for the want of a better name. The main object of his note

was the statement of the conjecture that, except for certain trivial cases,

such a system having finite characteristic must have prime characteristic.

This conjecture was later disproved by Ferrero [4]. Thus the absence of

zero divisors does not enhance the structure of a near ring to the extent

one might expect.

THEOREM 1.1. Let R be a near ring satisfying the right

canoe I la tion law.

(i) For all a £ R , Oa = aO = 0 .

(ii) R has no (proper) zero divisors,

(iii) The left cancellation law holds in R .
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Proof. If a # 0 and Oa = b * 0 , then b = bb or Ob = Obb so

that 0 = Ob and 0 = Ocz . If ab = 0 , b t 0 , then ab = Ob and

a = 0 . If ab = aa , a t 0 , then a(fc-e) = 0 and b = a . //

Ore has shown in [7 2] that, given a non-commutative ring having no

proper divisors of zero, a necessary and sufficient condition for the ring

to have a constructible division ring of quotients is that each pair of

non-zero elements has a left (or right) common multiple.

DEFINITION 1.2. A near ring' R is said to satisfy the left (right)

Ore condition if for all a t 0 , H 0 ( S , there exist s t 0 ,

t # 0 € R such that sa = tb (as = bt) .

DEFINITION 1.3. A (left) near domain is a (left) near ring D

satisfying the left Ore condition and the right cancellation law.

The usual proof that a finite integral domain is a field depends,

essentially, only on right cancellation and may be used to establish:

THEOREM 1.4. If R is a finite near ring for which the right
cancellation law holds* then R is a near field.

I t can be shown that f inite cannot be omitted from the hypothesis of

Theorem l.U. Let G be an additively written free group on two generators

x and y and for each non-negative integer n define T : G •*• G by

h(x, y)T = h{nx, ny) , for a l l h(x, y) € G . Let R be the near ring

generated additively by the T . McQuarrie [9] shows that R is a

distributively generated near ring with identity and Graves [5] shows that

R has the right cancellation property but satisfies neither the right nor

the left Ore condition.

By Theorem l.U, right cancellation implies the left Ore condition

(when R is f inite) . The near ring given as 2.5, 26) in [2] shows that

the converse does not hold.

THEOREM .1 .5 . A near domain R satisfying the descending chain
condition on principal R-subgroups is a near field.

Proof. Li gh [7] has shown that a near ring satisfying the descending

chain condition on principal i?-subgroups and having no zero divisors must

contain a left identity and moreover, if the left identity is unique, then

if is a near field. We have shown right cancellation implies no zero
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divisors. Hence an application of Ligh's result yields e € R such that

er = r , for a l l r (. R . If a * 0 € i? , we have for each x € R ,

xea = xa which implies xe = x . Hence e is the unique identity and, by

Ligh's resul t , R is a near field. / /

2. Near rings of quotients

In this section we show that a near domain may be embedded in a near

field and deduce some of the consequences of this embedding. Maxson [ H ]

has defined near rings of quotients and stated conditions for a near ring

to have a near ring of quotients. We generalize to the case of near rings

of quotients with respect to a multiplicative set.

DEFINITION 2.1. Let R be a near ring and S a multiplicative set

in fl . We say R satisfies the left Ore condition with respect to S if

for each (s, r) € S x R there exists (s., r ) € S x R such that

s.r = r s .

DEFINITION 2.2. Let S be a multiplicative set in a near ring R .

A near ring R^ is called a near ring of left quotients of R with

respect to S if

( i ) Rg has an iden t i t y 1 ,

( i i ) there ex i s t s an embedding (monomorphism) $ : R "* RQ ,

( i i i ) for each s (. S , $(s) i s a uni t in Rg ,

( iv) every q t R^ can be expressed as q = [4>(s)]~ [^Cr)] ,

{8, r) € S x R .

THEOREM 2.3. Let S t P be a multiplicative set of (both left and
right) cancellable elements in a (left) near ring R . Then a near ring of
left quotients of R with respect to S exists if and only if R
satisfies the left Ore condition with respect to S .

Proof. Suppose Ro ' ex is t s . Then by the definition of Rc there

exists $ : R •* Rs embedding R into Rs . For each ( s , r) € S x R ,

the product [$(r) ][$(s) ]~ in Rs is expressible as

https://doi.org/10.1017/S0004972700042830 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042830


36 J.A. Graves and J .J . Malone

[•( rOn-Ms)]"1 = [*(s1)]~1[*(r1)] , for some [a^ rj I S * R . But then

[$(s )] [*(r)] = [$(r ) ] [ * ( s ) ] implies s r = r s since $ is a monomor-

phism.

To show the converse we construct R<, by defining an equivalence

relation "V1 on S * R and binary operations addition and multiplication

oo the set of equivalence classes (S*/?)/^ . In proving this part of the

theorem, there are many details to be verified and not all of these

verifications will be given. However, several illustrations of the general

techniques of the proof will be presented.

I f [a, x), (d, y) t S * R we define (c, x) ^ {d, y) i f there

exists (s, r) € S x R such that so = rd implies sx = ry . Hote that

even though r may not be in S , so = rd where s, a and d are

elements of S implies the product rd £ S and forces r to be

cancellable. From the definition, i t can be noted that if

(e, x) ^ {d, y) , then for every [a^, flu) € R x R , a a = ad implies

Since the relation ^ is an equivalence relation, we can consider the

set of equivalence classes (Sxi?)/^ = R s where we denote the class

containing (a, x) by x/a , and equality of classes is determined by

x/a = y/d if and only if {a, x) ^ (d, y) .

Define + (addition) on Rs by x/a + y/d = {sx+ry)/sc = (sx+ry)/rd

where (e, r) € 5 x R s a t i s f i e s so = rd 6 S .

We observe the defini t ion is independent of the choice of ( s , r) by

assuming ( s , , r O sa t i s f i e s s.e = r.d and showing that

[s x+r y)/s1a = (sx+ry)/ea , that i s , [s^o, s^r^) ^ (se, sx+ry) . Let

(s_, r_) be such that sos\° ~ r p 8 c " T n e n S 2 s i = r2S a n d s i n c e

8 o = r^d , so = rd , we have, s^r d = s
2

s - i c = r
2

s c = r 2 r ^ which implies

s2rx = r2r . Thus, s ^ ^ ^ ^ ^ ^ 2 2

implying the equivalence required.

Now addition is also well defined in the sense of being independent of
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the choice of the representatives for the equivalence classes. For let

( c , x ) "*> ( e 1 , x ' ) a n d ( d , y ) ^ i d ' , y ' ) . W e s h o w

x / o + y / d = x ' / e ' + y ' I d ' b y c h o o s i n g ( s , r ) a n d ( s 1 , r ' ) s u c h t h a t

so = rd and s'c' = r'd' to write x/a + y/d = {sx+ry)/so = (sx+ry)/rd

and s ' /e1 + y' Id' = (s 'x'+r 'y' )/s 'a.' = (s'x'+r'y')/r'd' . Then find

(s^, r . ) such that s ^ c = r.s'c' = s rd = r r'd' whence s sx = r s'x'

and s.ry = r ^ ' y ' , so that we have s (sx+iy) = r . ( s ' i ' + r ' i / ' ) which

yields (se, sx+ry) ^ ( s ' e 1 , s 'x '+r ' j / ' ) .

For any e Z S , 0/e is an additive right identity for /?„ and

-x/c is a right additive inverse for x/o € i?c .

Since addition can be shown to be associative, we now have (/?e> +J

is a group and, since addition on Ra is defined in terms of the addition

of R , [Rs, +) is abelian if and only if (i?, +) is abelian.

Let x/o, y/d £ f?<, . Define • (multiplication) on R~ by

x/c • y/d = ry/so where (s, r) £ S x i? satisfies ex = rd .

This multiplication is independent of the choice of (s , r) and is

also independent of the choice of representatives of the equivalence

classes.

For any e £ S , e/e = 1 € ?_ .

Now multiplication is associative; for let x/c, y/d, z/e € i?<, and

compute {x/o'y/d) • z/e = ry/so • z/e = r.z/s so where sx = rd and

s^ry = re . Also, x/o • (y/d'z/e) = x/c • r^z/s^ = rj-^z/s.o where

Spjy = r- e , and s.x = r->s2d . To see that these products are equal we

find (s^, r^) such that s^s.so = r . s . a , whence B\i
s^s = rlt

r>3 a n d '

using the equalities above, s,s^rd = e,s s i = *\s_x = r,r s d which

implies s u S l r = r ^ r ^ . Further, s ^ e = s^s^ = r ^ 8 ^ = rl*r3r2e

which implies s^r. = r,r r~ . So s ,r s = r, r r 2 which says the desired

equality holds.
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The fact that multiplication is left distributive over addition in Ro

follows from the left distributive property in R .

At this point we have shown (/?„, +, •} is a left near ring with

identity. To show Rc is a near ring of left quotients of R with

respect to S we must verify the remaining three defining properties of a

near ring of left quotients.

Let <J> : R •* Rg be defined by r •* er/e where 3 6 S . Then * is

well defined because er/e = dv/d for all e, d £ S . For r , r € R ,

§[r-J + *(r2) = ev-^l& + er2/e = [er^er ) le = e [r +r^\ le = $(r +r ) and

^(r^) • $(r"2J = er./e • er^le = rerJse = ser r /se = er^cje = $(r r2)

where (s, r ) satisfies ser = re . So $ is a near ring morphism.

Further, kernel 4> = 0 , for i f v € R , $(r) = er/e = 0/e - eO/e implies

er = eO and so r = 0 . Thus 4> is a monomorphism embedding i? into

*5 •

For all s (. S , $(s) = es/e has an inverse e/es 6 i?̂  , for we

compute, where (s., r.) satisfies s es = r.es , that

es/e • e/es - v els e = e/e = 1 since e and s cancellable implies

s. = 2% . Similarly, e/es • es/e = e/e = 1 6 i?c .

Every q = r/s € ./?„ may be expressed as [<J>(s)] [<J>(r)] where

(s, r) $. S x. R . Consider [*(s )]~1[0(r) ] = e/es • er/e = r er/s es = r/s

where [s,, r,) satisfies s^e = r.e , an element of S .

Thus R^ is a near ring of left quotients of R with respect to S

and the theorem is proved. //

Several points should be noted about the proof of Theorem 2.3- First,

commutativity of addition in R is not assumed. Secondly, the defining

properties of a near ring of left quotients and the left Ore condition

imply that any two near rings of left quotients for a given near ring R

are isomorphic. Thus we speak of the near ring of left quotients of R
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with respect to S . Thirdly, as pointed out by Maxson [II], a parallel

construction for near rings of right quotients does not hold because the

right distributive law is necessary for addition in i?c to be well

defined, in the sense of being independent of the choice of (s , r) (. S x R

used in the definition of addition.

DEFINITION 2.4. If R is a near ring having at least one

cancellable element and C is the multiplicative set of all cancellable

elements of R , then the near ring of left quotients of R with respect

to C is called the total near ring of left quotients of R .

COROLLARY 2.5. The total near ring of left quotients of a near

domain D is a near field (called the near field of quotients of D ).

Proof. We have shown that in D right cancellation implies there are

no zero divisors and this implies left cancellation. Hence the multiplic-

ative set S of all cancellable elements of D is 0\{o} , so any non-

zero element of the total near ring of left quotients has a multiplicative

inverse. //

Since a near domain embeds in a near field, we have:

COROLLARY 2.6. Let R be a near domain, then

(i) [R, +) is commutative,

(ii) for all a, b i R , a(-b) = -{db) = (-a)fc ,

(Hi) if R has characteristic m < °° , m is prime.

We can observe by examples that neither of the defining properties of

a near domain is by itself sufficient hypothesis to assure an embedding in

a near field. The near ring given as 2.5, 26) in [2] is a near ring which

satisfies the left Ore condition but which cannot be a sub near ring of a

near field because it has zero divisors. Malcev [10] has given an example

of a ring which has no divisors of zero but which is not embeddable in a

division ring. Since Malcev's is a ring example, the absence of zero

divisors along with right distributivity show that the right cancellation

law holds. Thus his example provides a near ring satisfying the right

cancellation law that is not embeddable in a near field.

The D-ring of Berman and Si Iverman [I] is the only embeddable (in a

near field) generalization of integral domain appearing in the near ring
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l i t e ra ture . We now show near domains are generalizations of 2)-rings.

DEFINITION 2.7. A D-ring is a near ring D such that

(i) ab = 0 ; a, b € D implies a = 0 or b = 0 ,

( i i ) for every a (. D there are non-zero elements a , a € D

such that a a and aa are in the multiplicative center

of D .

THEOREM 2.8 . If the near ring R is a D-ring} then R is a near

domain.

Proof. First, if satisfies left Ore condition (also right by similar

proof). Let a, b € R . Then there exists a t 0 € if such that a a is

in the multiplicative center of R , whence [a a)b = b[a a) = [ba )a .

Thus there exist x = a a and y = ba in R such that xb = ya , where
& &

x and y are non-zero if a and b are non-zero. Also, the right

cancellation law holds in if . Let a, b, e # 0 (. R satisfy ao = bo .

There exists c # 0 (. R such that aa is in the multiplicative center

and oer # 0 so that aaa = boa , which implies [oo )a = [ao )b , so

that [oo ) (a-b) = 0 . Hence a = b and if is a near domain. / /

For the ring of integers Z (actually any Ore domain, see [6]), the

field of quotients of any non-zero ideal of Z is the same as that of Z ,

namely the rational numbers. Similarly we have:

THEOREM 2.9 . Let R be a near domain having Q as its near field

of quotients. If A / (0) is an ideal of R , then Q is also the near

field of quotients of A .

Proof. We f i rs t observe that A is in fact a near domain, so A

does have a near field of quotients and the statement of the theorem makes

sense. Clearly A satisfies the right cancellation law. Given a ± 0 ,

b t 0 in A , there exist s ^ O , t t 0 in i? such that sa = tb .

To find similar elements 'in A , take x t 0 € A , whence xs t 0 , xt # 0

are such that (xs)a = (xt)fc with xs and xt in A since A is an

ideal . (Note that this actually shows any if-subgroup of a near domain is

also a near domain.)
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Let d/c € Q and let a * 0 £ A . Then there exist s t 0 ,

t jt o € i? such that se = ia # 0 , and further there exist x ? 0 , y € i?

such that xsd = ya . So d/c = sd/so = sd/ta = xsd/xta = ya/xta , where

xta t 0 € i4 and #a € 4 , by A an ideal. Thus Q is contained in the

neax field of quotients of A and, since A c R , the theorem is

proved. / /
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