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1. Introduction

In this paper we study the symplectic classification of singular curves under the following
equivalence.

Definition 1.1. Let N1 and N2 be germs of subsets of symplectic space (R2n, ω). N1

and N2 are symplectically equivalent if there exists a symplectomorphism germ

Φ : (R2n, ω) → (R2n, ω)

such that Φ(N1) = N2.

We recall that ω is a symplectic form if ω is a smooth non-degenerate closed 2-form,
and Φ : R

2n → R
2n is a symplectomorphism if Φ is diffeomorphism and Φ∗ω = ω.

Symplectic classification of curves was first studied by Arnold. In [2] he discovered new
symplectic invariants of singular curves. He proved that the A2k singularity of a planar
curve (the orbit with respect to standard A-equivalence of parametrized curves) split
into exactly 2k+1 symplectic singularities (orbits with respect to symplectic equivalence
of parametrized curves). He distinguished different symplectic singularities by different
orders of tangency of the parametrized curve to the nearest smooth Lagrangian subman-
ifold. He posed the problem of expressing these invariants in terms of the local algebra’s

c© 2012 The Edinburgh Mathematical Society 657

https://doi.org/10.1017/S0013091510001124 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510001124


658 W. Domitrz and Ż. Trȩbska

interaction with the symplectic structure and he proposed calling this interaction the
‘local symplectic algebra’.

In [12, 13] Ishikawa and Janeczko classified symplectic singularities of curves in the
two-dimensional symplectic space. All simple curves in this classification are quasi-
homogeneous.

We recall that a subset N of R
m is quasi-homogeneous if there exist a coordinate

system (x1, . . . , xm) on R
m and positive numbers w1, . . . , wm (called weights) such that,

for any point (y1, . . . , ym) ∈ R
m and any t ∈ R, if (y1, . . . , ym) belongs to N , then a point

(tw1y1, . . . , t
wmym) belongs to N .

A symplectic form on a two-dimensional manifold is a special case of a volume form on a
smooth manifold. The generalization of results in [12] to volume-preserving classification
of singular varieties and maps in arbitrary dimensions was obtained in [9]. The orbit of
action of all diffeomorphism germs agrees with volume-preserving orbit or splits into two
volume-preserving orbits (in the case K = R) for germs which satisfy a special weak form
of quasi-homogeneity, e.g. the weak quasi-homogeneity of varieties is a quasi-homogeneity
with non-negative weights wi � 0 and

∑
i wi > 0.

Symplectic singularity is stably simple if it is simple, and remains simple if the ambi-
ent symplectic space is symplectically embedded (i.e. as a symplectic submanifold) into a
larger symplectic space. In [14] Kolgushkin classified the stably simple symplectic singu-
larities of parametrized curves (in the C-analytic category). All stably simple symplectic
singularities of curves are also quasi-homogeneous.

In [8] new symplectic invariants of singular quasi-homogeneous subsets of a symplectic
space were explained by the algebraic restrictions of the symplectic form to these subsets.

The algebraic restriction is an equivalence class of the following relation on the space
of differential k-forms.

Differential k-forms ω1 and ω2 have the same algebraic restriction to a subset N if
ω1 − ω2 = α + dβ, where α is a k-form vanishing on N and β is a (k − 1)-form vanishing
on N .

The generalization of the Darboux–Givental Theorem [3] to germs of arbitrary sub-
sets of the symplectic space was obtained in [8] (see also [17]). This result reduces the
problem of symplectic classification of germs of quasi-homogeneous subsets to the prob-
lem of classification of algebraic restrictions of symplectic forms to these subsets. For
non-quasi-homogeneous subsets there is one more cohomological invariant apart from
the algebraic restriction [7, 8]. The dimension of the space of algebraic restrictions of
closed 2-forms to a one-dimensional quasi-homogeneous isolated complete intersection
singularity C is equal to the multiplicity of C [8]. In [6] it was proved that the space of
algebraic restrictions of closed 2-forms to a one-dimensional (singular) analytic variety
is finite dimensional. In [8] the method of algebraic restrictions was applied to vari-
ous classification problems in a symplectic space. In particular, the complete symplec-
tic classification of classical A–D–E singularities of planar curves and the S5 singu-
larity were obtained. Most of the different symplectic singularity classes were distin-
guished by new discrete symplectic invariants: the index of isotropy and the symplectic
multiplicity.
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In this paper, following ideas from [2,6], we use new discrete symplectic invariants: the
Lagrangian tangency orders (see § 2.1). Although this invariant has a similar definition
to the index of isotropy, its nature is different. Since the Lagrangian tangency order takes
into account the weights of quasi-homogeneity of curves, it allows us to distinguish more
symplectic classes in many cases. For example, using the Lagrangian tangency order, we
are able to the distinguish classes E3

6 and E4,±
6 of classical planar singularity E6, which

cannot be distinguished by the isotropy index or by the symplectic multiplicity. We also
present other examples of singularities which can be distinguished only by the Lagrangian
tangency order. On the other hand, there are singularities for which symplectic classes
can be distinguished by the index of isotropy but not by the Lagrangian tangency order,
for example, the parametric curve with semigroup (3, 7, 11) and T8 singularity. These
examples show that there are no simple relations between the Lagrangian tangency order
and the index of isotropy, even for the case of parametric curves.

We also obtain the complete symplectic classification of the classical isolated complete
intersection singularity T7 using the method of algebraic restrictions (Theorem 3.1).
We calculate discrete symplectic invariants for this classification (Theorems 3.3) and we
present geometric descriptions of its symplectic orbits (Theorem 3.5).

The paper is organized as follows. In § 2 we present known discrete symplectic invariants
and introduce the Lagrangian tangency orders. We also compare the Lagrangian tangency
order and the index of isotropy. Symplectic classification of T7 singularity is studied in § 3.
In § 4 we recall the method of algebraic restrictions and use it to classify T7 symplectic
singularities.

2. Discrete symplectic invariants

We define discrete symplectic invariants to distinguish symplectic singularity classes. The
first one is the symplectic multiplicity [8] introduced in [12] as a symplectic defect of a
curve.

Let N be a germ of a subset of (R2n, ω).

Definition 2.1. The symplectic multiplicity µsympl(N) of N is the codimension of a
symplectic orbit of N in an orbit of N with respect to the action of the group of local
diffeomorphisms.

The second one is the index of isotropy [8].

Definition 2.2. The index of isotropy ind(N) of N is the maximal order of vanishing
of the 2-forms ω|TM over all smooth submanifolds M containing N .

This invariant has geometrical interpretation. An equivalent definition is as follows:
the index of isotropy of N is the maximal order of tangency between non-singular sub-
manifolds containing N and non-singular isotropic submanifolds of the same dimension.
The index of isotropy is equal to 0 if N is not contained in any non-singular submanifold
which is tangent to some isotropic submanifold of the same dimension. If N is contained
in a non-singular Lagrangian submanifold, then the index of isotropy is ∞.
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Remark 2.3. If N consists of invariant components Ci we can calculate the index of
isotropy for each component ind(Ci) as the maximal order of vanishing of the 2-forms
ω|TM over all smooth submanifolds M containing Ci.

The symplectic multiplicity and the index of isotropy can be described in terms of
algebraic restrictions (Propositions 4.6 and 4.7).

2.1. Lagrangian tangency order

There is one more discrete symplectic invariant, introduced in [6] (following ideas
from [2]), which is defined specifically for a parametrized curve. This is the maximal
tangency order of a curve f : R → M to a smooth Lagrangian submanifold. If H1 =
· · · = Hn = 0 define a smooth submanifold L in the symplectic space, then the tangency
order of a curve f : R → M to L is the minimum of the orders of vanishing at 0 of
functions H1 ◦ f, . . . , Hn ◦ f . We denote the tangency order of f to L by t(f, L).

Definition 2.4. The Lagrangian tangency order Lt(f) of a curve f is the maximum
of t(f, L) over all smooth Lagrangian submanifolds L of the symplectic space.

The Lagrangian tangency order of a quasi-homogeneous curve in a symplectic space
can also be expressed in terms of algebraic restrictions (Proposition 4.8).

We can generalize this invariant for curves which may be parametrized analytically.
Lagrangian tangency order is the same for every ‘good’ analytic parametrization of a
curve [16]. Considering only such parametrizations, we can choose one and calculate
the invariant for it. It is easy to show that this invariant does not depend on chosen
parametrization.

Proposition 2.5. Let f : R → M and g : R → M be good analytic parametrizations
of the same curve. Then Lt(f) = Lt(g).

Proof. There exists a diffeomorphism θ : R → R such that g(s) = f(θ(s)) and
dθ/ds|0 �= 0. Let H1 = · · · = Hn = 0 define a smooth submanifold L in the symplectic
space. If dl(Hi ◦ f)/dtl|0 = 0 for l = 1, . . . , k, then

dk+1(Hi ◦ g)
dsk+1

∣∣∣∣
0

=
dk+1(Hi ◦ f ◦ θ)

dsk+1

∣∣∣∣
0

=
dk+1(Hi ◦ f)

dtk+1

∣∣∣∣
0

·
(

dθ

ds

)k+1∣∣∣∣
0
,

so the orders of vanishing at 0 of functions Hi ◦ f and Hi ◦ g are equal, and hence
t(f, L) = t(g, L), which implies that Lt(f) = Lt(g). �

We can generalize Lagrangian tangency order for sets containing parametric curves.
Let N be a subset of a symplectic space (R2n, ω).

Definition 2.6. The tangency order of the germ of a subset N to the germ of a
submanifold L t[N, L] is equal to the minimum of t(f, L) over all parametrized curve-
germs f such that Im f ⊆ N .

Definition 2.7. The Lagrangian tangency order of N , Lt(N), is equal to the maximum
of t[N, L] over all smooth Lagrangian submanifold-germs L of the symplectic space.
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Table 1. Comparison of symplectic invariants of Ak singularity.

normal form parametrization Lt(N) ind

A0�i�k−1
k (k even) C : (t2, tk+1+2i, tk+1, 0, . . . , 0) k + 1 + 2i i

Ak
k (k even) C : (t2, 0, tk+1, 0, . . . , 0) ∞ ∞

A0�i�k−1
k (k odd) B± : (t, ±t(k+1)/2+i, ±t(k+1)/2, 0, . . . , 0) 1

2 (k + 1) + i i

Ak
k, (k odd) B± : (t, 0, ±t(k+1)/2, 0, . . . , 0) ∞ ∞

In this paper we consider N which are singular analytic curves. They may be identified
with a multi-germ of parametric curves. We define invariants which are special cases of
the above definition.

Consider a multi-germ (fi)i∈{1,...,r} of analytically parametrized curves fi. For any
smooth submanifold L in the symplectic space we have r-tuples (t(f1, L), . . . , t(fr, L)).

Definition 2.8. For any I ⊆ {1, . . . , r} we define the tangency order of the multi-germ
(fi)i∈I to L:

t[(fi)i∈I , L] = min
i∈I

t(fi, L).

Definition 2.9. The Lagrangian tangency order Lt((fi)i∈I) of a multi-germ (fi)i∈I is
the maximum of t[(fi)i∈I , L] over all smooth Lagrangian submanifolds L of the symplectic
space.

For multi-germs we can also define relative invariants according to selected branches
or collections of branches.

Definition 2.10. Let S ⊆ I ⊆ {1, . . . , r}. For i ∈ S let us fix numbers ti � Lt(fi).
The relative Lagrangian tangency order Lt[(fi)i∈I : (S, (ti)i∈S)] of a multi-germ (fi)i∈I

related to S and (ti)i∈S is the maximum of t[(fi)i∈I\S , L] over all smooth Lagrangian
submanifolds L of the symplectic space for which t(fi, L) = ti, if such submanifolds exist,
or −∞ if there are no such submanifolds.

We can also define special relative invariants according to selected branches of the
multi-germ.

Definition 2.11. For fixed j ∈ I the Lagrangian tangency order related to fj of a
multi-germ (fi)i∈I denoted by Lt[(fi)i∈I : fj ] is the maximum of t[(fi)i∈I\{j}, L] over all
smooth Lagrangian submanifolds L of the symplectic space for which t(fj , L) = Lt(fj),

These invariants have geometric interpretations. If Lt(fi) = ∞, then a branch fi is
included in a smooth Lagrangian submanifold. If Lt((fi)i∈I) = ∞, then there exists a
Lagrangian submanifold containing all the curves fi for i ∈ I.

We may use these invariants to distinguish symplectic singularities.

2.2. Comparison of the Lagrangian tangency order and the index of isotropy

Definitions of the Lagrangian tangency order and the index of isotropy are similar.
They show how far a variety N is from the nearest non-singular Lagrangian submanifold.
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Table 2. Symplectic invariants of Dk singularity.

(The branch C1 has a form (t, 0, 0, 0, . . . , 0). If k is odd, then C2 has a form (tk−2, f(t), t2, 0, . . . , 0)
and λk = 1. If k is even, then C2 consists of two branches: B± : (±t(k−2)/2, f(t), t, 0, . . . , 0) and
λk = 1

2 .)

normal form f(t) Lt(N) Lt(C2) ind ind2

D0
k t2λk 2λk (k − 2)λk 0 0

D1
k btkλk + 1

2 t4λk kλk kλk 1 1

Di
k (1 < i < k − 3) btkλk +

1
i + 1

t2(i+1)λk , b �= 0 kλk (k − 2 + 2i)λk 1 i

1
i + 1

t2(i+1)λk (k − 2 + 2i)λk (k − 2 + 2i)λk i i

Dk−3,±
k (±1)ktkλk +

b

k − 2
t2(k−2)λk kλk ∞ 1 ∞

Dk−2
k

1
k − 2

t2(k−2)λk (3k − 8)λk ∞ k − 3 ∞

Dk−1
k

1
k − 1

t2(k−1)λk (3k − 6)λk ∞ k − 2 ∞

Dk
k 0 ∞ ∞ ∞ ∞

The index of isotropy of a quasi-homogeneous set N is ∞ if and only if the Lagrangian
tangency order of N is ∞. Studying classical singularities, we have found examples of all
possible interactions between these invariants.

Example 2.12. For some singularities the index of isotropy distinguishes the same
symplectic classes that can be distinguished by the Lagrangian tangency order. It is
observed, for example, for planar curves: the classical Ak and Dk singularities (Tables 1
and 2) and for Sµ singularities studied in [10].

A complete symplectic classification of classical A–D–E singularities of planar curves
was obtained using a method of algebraic restriction in [8]. Below, we compare the
Lagrangian tangency order and the index of isotropy for these singularities. A curve N

may be described as a parametrized curve or as a union of parametrized components Ci

preserved by local diffeomorphisms in the symplectic space (R2n, ω0 =
∑n

i=1 dpi ∧ dqi),
n � 2. For calculating the Lagrangian tangency orders, we give their parametrization in
the coordinate system (p1, q1, p2, q2, . . . , pn, qn).

Denote by (Ak) the class of varieties in a fixed symplectic space (R2n, ω) which are
diffeomorphic to

Ak = {x ∈ R
2n�4 : xk+1

1 − x2
2 = x�3 = 0}. (2.1)

A curve N ∈ (Ak) can be described as a parametrized singular curve C for k even, or as
a pair of two smooth parametrized branches B+ and B− if k is odd. We denote Lt(C)
or Lt(B+, B−), respectively, by Lt(N).
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Table 3. Symplectic invariants of E6 singularity.

normal
form parametrization Lt(N) ind µsymp

E0
6 (t4, t3, t3, 0, . . . , 0) 4 0 0

E1,±
6 (t4, ± 1

2 t6 + bt7, t3, 0, . . . , 0) 7 1 2

E2
6 (t4, t7 + 1

3 bt9, t3, 0, . . . , 0) 8 1 3

E3
6 (t4, 1

3 t9 + 1
2 bt10, t3, 0, . . . , 0) 10 2 4

E4,±
6 (t4, ± 1

2 t10, t3, 0, . . . , 0) 11 2 4

E5
6 (t4, 1

3 t13, t3, 0, . . . , 0) 14 3 5

E6
6 (t4, 0, t3, 0, . . . , 0) ∞ ∞ 6

Denote by (Dk) for k � 4 the class of varieties in a fixed symplectic space (R2n, ω)
which are diffeomorphic to

Dk = {x ∈ R
2n�4 : x2

1x2 − xk−1
2 = x�3 = 0}. (2.2)

A curve N ∈ (Dk) consists of two invariant components: C1 (smooth) and C2 (singu-
lar diffeomorphic to Ak−3). C2 may consist of one or two branches, depending on k. To
distinguish the symplectic classes completely we need two invariants: Lt(N) (the Lagran-
gian tangency order of N) and Lt(C2) (the Lagrangian tangency order of the singular
component C2). Equivalently, we can use the index of isotropy of N , ind, and the index
of isotropy of C2, ind2.

Example 2.13. There are also symplectic singularities distinguished by the Lagrang-
ian tangency order but not by the index of isotropy. The simplest example is planar
singularity E6 (Table 3). We also observe such a ‘greater sensitivity’ of the Lagrangian
tangency order for E7 and E8 singularities and for parametric curves with the semigroups
(3, 4, 5), (3, 5, 7) and (3, 7, 8) studied in [6].

Denote by (E6) the class of varieties in a fixed symplectic space (R2n, ω) which are
diffeomorphic to

E6 = {x ∈ R
2n�4 : x3

1 − x4
2 = x�3 = 0}. (2.3)

As can be seen in Table 3, we are able, by the Lagrangian tangency order, to distinguish
the classes E3

6 and E4,±
6 which cannot be distinguished by the index of isotropy or by

the symplectic multiplicity.

Example 2.14. Some symplectic singularities can be distinguished by the index of
isotropy but not by the Lagrangian tangency order. We observe such a situation for a
parametric quasi-homogeneous curve-germ with semigroup (3, 7, 11) listed as a stably
simple singularity of curves in [1]. Another example is the T8 singularity presented below
(see the rows for (T8)4 and (T8)6,2 in Table 6).

The germ of a curve f : (R, 0) → (R2n, 0) with semigroup (3, 7, 11) is diffeomorphic to
the curve t → (t3, t7, t11, 0, . . . , 0). Among symplectic singularities of this curve-germ
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Table 4. Symplectic invariants for some symplectic classes of
the curve with semigroup (3, 7, 11).

Class Normal form of f Lt(f) ind

1 t → (t3, t10, t7, 0, t11, 0, . . . , 0) 10 1
2 t → (t3, t11, t7, 0, t11, 0, . . . , 0) 11 0
3 t → (t3, t10 + ct11, t7, 0, t11, 0, . . . , 0), c �= 0 10 0

in the symplectic space (R2n, ω =
∑n

i=1 dpi ∧ dqi) with the canonical coordinates
(p1, q1, . . . , pn, qn) we have, for example, the classes represented by the normal forms
given in Table 4.

Symplectic classes (1) and (3) have the same Lagrangian tangency order (equal to 10)
but have different indices of isotropy (1 and 0, respectively). Symplectic classes (2) and
(3) have the same index of isotropy (equal to 0) but have different Lagrangian tangency
orders (11 and 10, respectively). We also observe that the Lagrangian tangency order
for class (1) is less than that for class (2) but the inverse inequality is satisfied for the
indices of isotropy.

Another example is T8 singularity. Denote by (T8) the class of varieties in a fixed
symplectic space (R2n, ω) which are diffeomorphic to

T8 = {x ∈ R
2n�4 : x2

1 + x3
2 − x4

3 = x2x3 = x�4 = 0}. (2.4)

This is the classical one-dimensional isolated complete intersection singularity T8 [5,
11].

Let N ∈ (T8). N is quasi-homogeneous with weights w(x1) = 6, w(x2) = 4, w(x3) = 3.
A curve N consists of two invariant singular components: C1 (diffeomorphic to the A2

singularity) and C2 (diffeomorphic to the A3 singularity), which is a union of two smooth
branches B+ and B−. In local coordinates they have the form

C1 = {x2
1 + x3

2 = 0, x3 = x�4 = 0},

B± = {x1 ± x2
3 = 0, x2 = x�4 = 0}.

Using the method of algebraic restrictions, one can obtain, in the same way as pre-
sented in the last two sections for the case of the T7 singularity, the following complete
classification of symplectic T8 singularities.

Theorem 2.15. Any stratified submanifold of the symplectic space (R2n, ω =∑n
i=1 dpi ∧ dqi) which is diffeomorphic to T8 is symplectically equivalent to one and

only one of the normal forms (T8)i, i = 0, 1, . . . , 8. The parameters c, c1, c2, c3 of the
normal forms are moduli:

T 0
8 : p2

1 + p3
2 − q4

1 = 0, p2q1 = 0, q2 = c1q1 − c2p1p�3 = q�3 = 0,

c1 · c2 �= 0;

T 12
8 : p2

1 + p3
2 − q4

1 = 0, p2q1 = 0, q2 = c1q1 − c2p1 − c3p1p2, p�3 = q�3 = 0,

c1 · c2 = 0;
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T 13
8 : p2

1 + q3
1 − q4

2 = 0, q1q2 = 0, p2 = c1q1 + c2p1q2, p�3 = q�3 = 0,

c1 · c2 �= 0;

T 23
8 : p2

1 + q3
1 − q4

2 = 0, q1q2 = 0, p2 = c1q1 + c2p1q2 + c3p1q
2
2 , p�3 = q�3 = 0,

c1 · c2 = 0;

T 2>3
8 : p2

2 + p3
1 − q4

1 = 0, p1q1 = 0, q2 = 1
2c1q

2
1 + 1

2c2p
2
1, p�3 = q�3 = 0,

c1 �= 0;

T 3,0
8 : p2

2 + p3
1 − q4

1 = 0, p1q1 = 0, q2 = 1
2c1p

2
1 + 1

3c2q
3
1 , p�3 = q�3 = 0,

(c1, c2) �= (0, 0);

T 5,0
8 : p2

2 + p3
1 − q4

1 = 0, p1q1 = 0, q2 = 1
4cq4

1 , p�3 = q�3 = 0;

T 3,1
8 : p2

1 + p3
2 − p4

3 = 0, p2p3 = 0, q1 = 1
2p2

3 + 1
2c2p

2
2, q2 = −c1p1p3, p�4 = q�3 = 0;

T 4
8 : p2

1 + p3
2 − p4

3 = 0, p2p3 = 0, q1 = 1
2c1p

2
2 + 1

3c2p
3
3, q2 = −p1p3, p�4 = q�3 = 0,

(c1, c2) �= (0, 0);

T 6,1
8 : p2

1 + p3
2 − p4

3 = 0, p2p3 = 0, q1 = 1
4cp4

3, q2 = −p1p3, p�4 = q�3 = 0;

T 5,1
8 : p2

1 + p3
2 − p4

3 = 0, p2p3 = 0, q1 = 1
2p2

2 + 1
3cp3

3, p�4 = q�2 = 0;

T 6,2
8 : p2

1 + p3
2 − p4

3 = 0, p2p3 = 0, q1 = 1
3p3

3, p�4 = q�2 = 0;

T 7
8 : p2

1 + p3
2 − p4

3 = 0, p2p3 = 0, q1 = 1
4p4

3, p�4 = q�2 = 0;

T 8
8 : p2

1 + p3
2 − p4

3 = 0, p2p3 = 0, q�1 = p�4 = 0.

Lagrangian tangency orders and indices of isotropy were used to obtain a detailed
classification of (T8). A curve N ∈ (T8) may be described as a union of three parametrical
branches C1, B+, B−. Their parametrization in the coordinate system (p1, q1, p2, q2, . . . ,

pn, qn) is presented in the second column of Tables 5 and 6. To distinguish the classes of
this singularity, we need the following three invariants:

(i) Lt(N) = Lt(C1, B+, B−) = maxL(min{t(C1, L), t(B+, L), t(B−, L)});

(ii) L1 = Lt(C1) = maxL(t(C1, L));

(iii) L2 = Lt(C2) = maxL(min{t(B+, L), t(B−, L)});

here L is a smooth Lagrangian submanifold of the symplectic space.
Branches B+ and B− are diffeomorphic and are not preserved by all symmetries of

T8, so we can use neither Lt(B+) nor Lt(B−) as invariants. Considering the triples
(Lt, L1, L2), we obtain a more detailed classification of symplectic singularities of T8

than the classification given in Theorem 2.15. Some subclasses appear to have a natural
geometric interpretation.

We also calculate the index of isotropy of N ∈ (T8), denoted by ind, and the indices of
isotropy of components C1 and C2, denoted by ind1 and ind2, respectively. In Tables 5
and 6 we present a comparison of the invariants.
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Table 5. Symplectic invariants for symplectic classes of T8 singularity when ω|W �= 0.

(W is the tangent space to a non-singular three-dimensional manifold in (R2n�4, ω) containing
N ∈ (T8).)

class parametrization conditions Lt L1 L2 ind ind1 ind2

(T8)0 (t3, 0, −t2, −c2t
3, 0, . . . ) c1 · c2 �= 0 2 3 2 0 0 0

(±t2, t, 0, c1t ∓ c2t
2, 0, . . . )

(T8)12 (t3, 0, −t2, −c2t
3 + c3t

5, 0, . . . ) c1 = 0, c2 �= 0 2 3 2 0 0 0
(±t2, t, 0, c1t ∓ c2t

2, 0, . . . ) c2 = 0, c3 �= 0 2 5 2 0 1 0
c2 = c3 = 0 2 ∞ 2 0 ∞ 0

(T8)13 (t3, −t2, −c1t
2, 0, 0, . . . ) c1 · c2 �= 0 2 3 3 0 0 1

(±t2, 0, ±c2t
3, t, 0, . . . )

(T8)23 (t3, −t2, −c1t
2, 0, 0, . . . ) c1 = 0, c2 �= 0 2 3 3 0 0 1

(±t2, 0, ±c2t
3 ± c3t

4, t, 0, . . . ) c2 = 0, c3 �= 0 2 3 4 0 0 2
c2 = 0, c3 = 0 2 3 ∞ 0 0 ∞

(T8)2>3 (−t2, 0, t3, 1
2c2t

4, 0, . . . ) c1 · c2 �= 0 2 5 3 0 1 1
(0, t, ±t2, 1

2c1t
2, 0, . . . ) c1 �= 0, c2 = 0 2 ∞ 3 0 ∞ 1

(T8)3,0 (−t2, 0, t3, 1
2c1t

4, 0, . . . ) c1 · c2 �= 0 2 5 4 0 1 2
(0, t, ±t2, 1

3c2t
3, 0, . . . ) c1 �= 0, c2 = 0 2 5 ∞ 0 1 ∞

c1 = 0, c2 �= 0 2 ∞ 4 0 ∞ 2

(T8)5,0 (−t2, 0, t3, 0, 0, . . . ) 2 ∞ ∞ 0 ∞ ∞
(0, t, ±t2, 1

4ct4, 0, . . . )

Remark 2.16. We note that considering the pairs (L1, L2) gives the same classifi-
cation as considering the pairs (ind1,ind2). To distinguish classes (T8)0 and (T8)12 for
c2 �= 0, c1 = 0 we may use Lagrangian tangency order related to component C1. We have
Lt[C2 : C1] = 1 for class (T8)0 but Lt[C2 : C1] = 2 for class (T8)12 if c2 �= 0, c1 = 0. In
similar way, we can distinguish classes (T8)13 and (T8)23 for c2 �= 0, c1 = 0.

Remark 2.17. We can see from Table 6 that the Lagrangian tangency order, Lt,
distinguishes different classes from the index of isotropy, ind. For example, the class
(T8)4 in the case c1 = 0, c2 �= 0 and the class (T8)6,2 are distinguished by the index
of isotropy, ind, but are not distinguished by the Lagrangian tangency order. We can
distinguish these classes using the relative Lagrangian tangency order: for the class (T8)4

in the case c1 = 0, c2 �= 0 we have Lt[C2 : C1] = 3, and for the class (T8)6,2 we have
Lt[C2 : C1] = 4.

The index of isotropy for the classes (T8)3,1, (T8)4, (T8)6,1, (T8)5,1 is less than that for
the class (T8)6,2 but the analogical inequality does not hold for the Lagrangian tangency
order.

We are not able to distinguish all symplectic classes using the Lagrangian tangency
orders or the indices of isotropy, but we can do so by checking geometric conditions
formulated analogously to the T7 singularity (see § 3.2).
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Table 6. Lagrangian invariants for symplectic classes of T8 singularity when ω|W = 0.

(W is the tangent space to a non-singular three-dimensional manifold in (R2n�6, ω) containing
N ∈ (T8).)

class parametrization conditions Lt L1 L2 ind ind1 ind2

(T8)3,1 (t3, 1
2c2t

4, −t2, 0, 0, 0, . . . ) c2 �= 0 3 5 3 1 1 1
(±t2, 1

2 t2, 0, ∓c1t
3, t, 0, . . . ) c2 = 0 3 ∞ 3 1 ∞ 1

(T8)4 (t3, 1
2c1t

4, −t2, 0, 0, 0, . . . ) c1 · c2 �= 0 4 5 4 1 1 2
(±t2, 1

3c2t
3, 0, ∓t3, t, 0, . . . ) c1 = 0, c2 �= 0 4 ∞ 4 1 ∞ 2

c1 �= 0, c2 = 0 5 5 ∞ 1 1 ∞

(T8)6,1 (t3, 0, −t2, 0, 0, 0, . . . ) 5 ∞ ∞ 1 ∞ ∞
(±t2, 1

4ct4, 0, ∓t3, t, 0, . . . )

(T8)5,1 (t3, 1
2 t4, −t2, 0, 0, 0, . . . ) c �= 0 4 5 4 1 1 2

(±t2, 1
3ct3, 0, 0, t, 0, . . . ) c = 0 5 5 ∞ 1 1 ∞

(T8)6,2 (t3, 0, −t2, 0, 0, 0, . . . ) 4 ∞ 4 2 ∞ 2
(±t2, 1

3 t3, 0, 0, t, 0, . . . )

(T8)7 (t3, 0, −t2, 0, 0, 0, . . . ) 7 ∞ ∞ 3 ∞ ∞
(±t2, 1

4 t4, 0, 0, t, 0, . . . )

(T8)8 (t3, 0, −t2, 0, 0, 0, . . . ) ∞ ∞ ∞ ∞ ∞ ∞
(±t2, 0, 0, 0, t, 0, . . . )

3. Symplectic T7-singularities

Denote by (T7) the class of varieties in a fixed symplectic space (R2n, ω) which are
diffeomorphic to

T7 = {x ∈ R
2n�4 : x2

1 + x3
2 + x3

3 = x2x3 = x�4 = 0}. (3.1)

This is the classical one-dimensional isolated complete intersection singularity T7 [5,
11]. N is quasi-homogeneous with weights w(x1) = 3, w(x2) = w(x3) = 2.

We use the method of algebraic restrictions to obtain the complete classification of
symplectic singularities of (T7) presented in the following theorem.

Theorem 3.1. Any stratified submanifold of the symplectic space (R2n,
∑n

i=1 dpi ∧
dqi) which is diffeomorphic to T7 is symplectically equivalent to one and only one of the
normal forms T i

7, i = 0, 1, . . . , 7 (respectively, i = 0, 1, 2, 4). The parameters c, c1, c2 of
the normal forms are moduli:

T 0
7 : p2

1 + p3
2 + q3

2 = 0, p2q2 = 0, q1 = c1q2 + c2p2, p�3 = q�3 = 0, c1 · c2 �= 0;

T 1
7 : p2

1 + p3
2 + q3

1 = 0, p2q1 = 0, q2 = c1q1 − c2p1p2, p�3 = q�3 = 0;

T 2
7 : p2

1 + p3
2 + q3

2 = 0, p2q2 = 0, q1 = 1
2c1q

2
2 + 1

2c2p
2
2, p�3 = q�3 = 0, (c1, c2) �= (0, 0);

T 4
7 : p2

1 + p3
2 + q3

2 = 0, p2q2 = 0, q1 = 1
3cq3

2 , p�3 = q�3 = 0;
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T 3
7 : p2

1 + p3
2 + p3

3 = 0, p2p3 = 0, q1 = 1
2c1p

2
2 + 1

2p2
3, q2 = −c2p1p3, p�4 = q�3 = 0;

T 5
7 : p2

1 + p3
2 + p3

3 = 0, p2p3 = 0, q1 = 1
3cp3

3, q2 = −p1p3, p�4 = q�3 = 0;

T 6
7 : p2

1 + p3
2 + p3

3 = 0, p2p3 = 0, q1 = 1
3p3

3, p�4 = q�2 = 0;

T 7
7 : p2

1 + p3
2 + p3

3 = 0, p2p3 = 0, q�1 = p�4 = 0.

In § 3.1 we use the Lagrangian tangency orders to distinguish more symplectic sin-
gularity classes. In § 3.2 we propose a geometric description of these singularities that
confirms this more detailed classification. Some of the proofs are presented in § 4.

3.1. Distinguishing symplectic classes of T7 by Lagrangian tangency orders
and the indices of isotropy

A curve N ∈ (T7) can be described as a union of two parametrical branches B1 and
B2. Their parametrization is given in the second column of Table 7. To distinguish the
classes of this singularity we need the following three invariants:

(i) Lt(N) = Lt(B1, B2) = maxL(min{t(B1, L), t(B2, L)});

(ii) Ln = max{Lt(B1), Lt(B2)} = max{maxL t(B1, L), maxL t(B2, L)};

(iii) Lf = min{Lt(B1), Lt(B2)} = min{maxL t(B1, L), maxL t(B2, L)}.

Here L is a smooth Lagrangian submanifold of the symplectic space.
Branches B1 and B2 are diffeomorphic and are not preserved by all symmetries of T7,

so neither Lt(B1) nor Lt(B2) can be used as invariants. The new invariants are defined
instead: Ln, which describes the Lagrangian tangency order of the nearest branch, and Lf ,
which represents the Lagrangian tangency order of the farthest branch. Considering the
triples (Lt(N), Ln, Lf), we obtain a more detailed classification of symplectic singularities
of T7 than the classification given in Table 11. Some subclasses appear to have a natural
geometric interpretation (Tables 8 and 9).

Remark 3.2. We can define the indices of isotropy for branches analogously to the
Lagrangian tangency orders and use them to characterize singularities of T7. We use the
following invariants:

(i) indn = max{ind(B1), ind(B2)};

(ii) indf = min{ind(B1), ind(B2)}.

Here ind(B1), ind(B2) denote the indices of isotropy for individual branches. They can
be calculated by knowing their dependence on the Lagrangian tangency orders Lt(B1),
Lt(B2) for the A2 singularity (Table 1).

Theorem 3.3. A stratified submanifold N ∈ (T7) of a symplectic space (R2n, ω) with
the canonical coordinates (p1, q1, . . . , pn, qn) is symplectically equivalent to one and only
one of the curves presented in the second column of Table 7. The parameters c, c1, c2

are moduli. The indices of isotropy are presented in the fourth, fifth and sixth columns
of Table 7 and the Lagrangian tangency orders of the curve are presented in the seventh,
eighth and ninth columns of the table.
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Table 7. The Lagrangian tangency orders and the indices of isotropy for
symplectic classes of T7 singularity.

parametrization conditions
class of branches for subclasses ind indn indf Lt(N) Ln Lf

(T7)0 (t3, −c2t
2, −t2, 0, 0, . . . ) c1 · c2 �= 0 0 0 0 2 3 3

2n � 4 (t3, −c1t
2, 0, −t2, 0, . . . )

c1 · c2 �= 0 0 1 0 2 5 3
(T7)1 (t3, −t2, 0, −c1t

2, 0, . . . ) c1 = 0, c2 �= 0 0 1 0 3 5 3
2n � 4 (t3, 0, −t2, c2t

5, 0, . . . ) c1 �= 0, c2 = 0 0 ∞ 0 2 ∞ 3
c1 = 0, c2 = 0 0 ∞ 0 3 ∞ 3

(T7)2 (t3, 1
2c2

1t
4, 0, −t2, 0, . . . ) c1 · c2 �= 0 0 1 1 2 5 5

2n � 4 (t3, 1
2c2

2t
4, −t2, 0, 0, . . . ) c1 · c2 = 0, 0 ∞ 1 2 ∞ 5

(c1, c2) �= (0, 0)
(T7)3 (t3, 1

2 t4, 0, c2t
5, −t2, 0, . . . ) c1 �= 0 1 1 1 5 5 5

2n � 6 (t3, 1
2c1t

4, −t2, 0, 0, 0, . . . ) c1 = 0 1 ∞ 1 5 ∞ 5
(T7)4 (t3, 1

3ct6, 0, −t2, 0, . . . ) 0 ∞ ∞ 2 ∞ ∞
2n � 4 (t3, 0, −t2, 0, 0, . . . )
(T7)5 (t3, − 1

3ct6, 0, t5, −t2, 0, . . . ) 1 ∞ ∞ 5 ∞ ∞
2n � 6 (t3, 0, −t2, 0, 0, 0, . . . )
(T7)6 (t3, − 1

3 t6, 0, 0, −t2, 0, . . . ) 2 ∞ ∞ 7 ∞ ∞
2n � 6 (t3, 0, −t2, 0, 0, 0, . . . )
(T7)7 (t3, 0, 0, 0, −t2, 0, . . . ) ∞ ∞ ∞ ∞ ∞ ∞
2n � 6 (t3, 0, −t2, 0, 0, 0, . . . )

The comparison of invariants presented in Table 7 shows that the Lagrangian tangency
orders distinguish more symplectic classes than the indices of isotropy. The method of
calculating these invariants is described in § 4.4.

3.2. Geometric conditions for the classes (T7)i

The classes (T7)i can be distinguished geometrically, without using any local coordinate
system.

Let N ∈ (T7). Then N is the union of two branches: singular one-dimensional irre-
ducible components diffeomorphic to the A2 singularity. In local coordinates they have
the form

B1 = {x2
1 + x3

3 = 0, x2 = x�4 = 0},

B2 = {x2
1 + x3

2 = 0, x�3 = 0}.

Denote by �1, �2 the tangent lines at 0 to the branches B1 and B2, respectively. These
lines span a 2-space P1. Let P2 be 2-space tangent at 0 to the branch B1 and P3 be
2-space tangent at 0 to the branch B2. Define the line �3 = P2 ∩ P3. The lines �1, �2, �3
span a 3-space W = W (N). Equivalently, W is the tangent space at 0 to some (and then
any) non-singular 3-manifold containing N .
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The classes (T7)i satisfy special conditions in terms of the restriction ω|W , where ω is
the symplectic form. For N = T7 = (3.1) it is easy to calculate

�1 = span(∂/∂x3), �2 = span(∂/∂x2), �3 = span(∂/∂x1). (3.2)

3.2.1. Geometric conditions for the class [0]T7

The geometric distinction of the class (T7)7 follows from Theorem 4.4: N ∈ (T7)7 if and
only if N is contained in a non-singular Lagrangian submanifold. The following theorem
gives a simple way to check the latter condition without using algebraic restrictions.
Given a 2-form σ on a non-singular submanifold M of R

2n such that σ(0) = 0 and a
vector v ∈ T0M , we denote by Lvσ the value at 0 of the Lie derivative of σ along a vector
field V on M such that v = V (0). The assumption σ(0) = 0 implies that the choice of V

is irrelevant.

Proposition 3.4. Let N ∈ (T7) be a stratified submanifold of a symplectic space
(R2n, ω). Let M3 be any non-singular submanifold containing N and let σ be the restric-
tion of ω to TM3. Let vi ∈ �i be non-zero vectors. If the symplectic form ω has zero
algebraic restriction to N , then the following conditions are satisfied:

(I) σ(0) = 0;

(II) Lv3σ(vi, vj) = 0 for i, j ∈ {1, 2};

(III) Lvi
σ(v3, vi) = 0 for i ∈ {1, 2};

(IV) Lviσ(v3, vj) = Lvj σ(v3, vi) for i �= j ∈ {1, 2}.

Theorem 3.5. A stratified submanifold N ∈ (T7) of a symplectic space (R2n, ω)
belongs to the class (T7)i if and only if the couple (N, ω) satisfies corresponding conditions
in the last column of Table 8 or Table 9.

The proofs of the theorems of this section are presented in § 4.5.

4. Proofs

4.1. The method of algebraic restrictions

In this section we present basic facts about the method of algebraic restrictions, which
is a very powerful tool for the symplectic classification. The details of the method and
proofs of all results of this section can be found in [8].

Given a germ of a non-singular manifold M , denote by Λp(M) the space of all germs at
0 of differential p-forms on M . Given a subset N ⊂ M , introduce the following subspaces
of Λp(M):

Λp
N (M) = {ω ∈ Λp(M) : ω(x) = 0 for any x ∈ N};

Ap
0(N, M) = {α + dβ : α ∈ Λp

N (M), β ∈ Λp−1
N (M)}.
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Table 8. Geometric interpretation of singularity classes of T7 when ω|W �= 0.

(W is the tangent space to a non-singular three-dimensional manifold in (R2n�4, ω) containing
N ∈ (T7).)

class normal form geometric conditions

(T7)0 [T7]0 : [θ1 + c1θ2 + c2θ3]T7 ω|�i+�j �= 0 ∀i, j ∈ {1, 2, 3} so
c1 · c2 �= 0 2-spaces tangent to branches are not isotropic

(T7)1 ∃i �= j ∈ {1, 2}ω|�i+�3 = 0 and ω|�j+�3 �= 0
(exactly one branch has tangent 2-space isotropic)

[T7]12,5 : [c1θ1 + θ2 + c2θ5]T7 ω|�1+�2 �= 0 and no branch is contained
c1 · c2 �= 0 in a Lagrangian submanifold

[T7]13,5 : [θ2 + c2θ5]T7 , ω|�1+�2 = 0 and no branch is contained
c2 �= 0 in a Lagrangian submanifold

[T7]12,∞ : [c1θ1 + θ2]T7 , ω|�1+�2 �= 0 and exactly one branch is contained
c1 �= 0 in a Lagrangian submanifold

[T7]13,∞ : [θ2]T7 ω|�1+�2 = 0 and exactly one branch is contained
in a Lagrangian submanifold

(T7)2 ω|�1+�2 �= 0, ω|�i+�3 = 0 ∀i ∈ {1, 2}
[T7]25 : [θ1 + c1θ4 + c2θ5]T7 no branch is contained
c1 · c2 �= 0 in a Lagrangian submanifold

[T7]2∞ : [θ1 + c1θ4 + c2θ5]T7 exactly one branch
c1 · c2 = 0, c1 + c2 �= 0 is contained in a Lagrangian submanifold

(T7)4 [T7]4 : [θ1 + cθ7]T7 ω|�1+�2 �= 0, ω|�i+�3 = 0 ∀i ∈ {1, 2},
and branches are contained in
different Lagrangian submanifolds

Definition 4.1. Let N be the germ of a subset of M and let ω ∈ Λp(M). The algebraic
restriction of ω to N is the equivalence class of ω in Λp(M), where the equivalence is as
follows: ω is equivalent to ω̃ if ω − ω̃ ∈ Ap

0(N, M).

Notation. The algebraic restriction of the germ of a p-form ω on M to the germ of a
subset N ⊂ M will be denoted by [ω]N . By writing [ω]N = 0 (or saying that ω has zero
algebraic restriction to N), we mean that [ω]N = [0]N , i.e. ω ∈ Ap

0(N, M).

Definition 4.2. Two algebraic restrictions [ω]N and [ω̃]Ñ are called diffeomorphic
if there exists the germ of a diffeomorphism Φ : M̃ → M such that Φ(Ñ) = N and
Φ∗([ω]N ) = [ω̃]Ñ .

The method of algebraic restrictions applied to singular quasi-homogeneous subsets is
based on the following theorem.

https://doi.org/10.1017/S0013091510001124 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510001124


672 W. Domitrz and Ż. Trȩbska

Table 9. Geometric interpretation of singularity classes of T7 when ω|W = 0.

(W is the tangent space to a non-singular three-dimensional manifold in (R2n�6, ω) containing
N ∈ (T7); (I)–(IV) are the conditions of Proposition 3.4.)

class normal form geometric conditions

(T7)3 [T7]35 : [θ4 + c1θ5 + c2θ6]T7 (III) is not satisfied and no branch
c1 �= 0 is contained in a Lagrangian submanifold
[T7]3∞ : [θ4 + c2θ6]T7 (III) is not satisfied and exactly one branch

is contained in a Lagrangian submanifold

(T7)5 [T7]5 : [θ6 + cθ7]T7 (III) is satisfied but (II) is not and branches
are contained in different Lagrangian submanifolds

(T7)6 [T7]6 : [θ7]T7 (I)–(IV) are satisfied and branches
are contained in different Lagrangian submanifolds

(T7)7 [T7]7 : [0]T7 (I)–(IV) are satisfied and N is
contained in a Lagrangian submanifold

Theorem 4.3 (Theorem A in [8]). Let N be the germ of a quasi-homogeneous
subset of R

2n. Let ω0, ω1 be germs of symplectic forms on R
2n with the same algebraic

restriction to N . There exists a local diffeomorphism Φ such that Φ(x) = x for any x ∈ N

and Φ∗ω1 = ω0.
Two germs of quasi-homogeneous subsets N1, N2 of a fixed symplectic space (R2n, ω)

are symplectically equivalent if and only if the algebraic restrictions of the symplectic
form ω to N1 and N2 are diffeomorphic.

Theorem 4.3 reduces the problem of symplectic classification of germs of singular quasi-
homogeneous subsets to the problem of diffeomorphic classification of algebraic restric-
tions of the germ of the symplectic form to the germs of singular quasi-homogeneous
subsets.

The geometric meaning of zero algebraic restriction is explained by the following the-
orem.

Theorem 4.4 (Theorem B in [8]). The germ of a quasi-homogeneous set N of a
symplectic space (R2n, ω) is contained in a non-singular Lagrangian submanifold if and
only if the symplectic form ω has zero algebraic restriction to N .

The following result shows that the method of algebraic restrictions is very powerful
tool in symplectic classification of singular curves.

Theorem 4.5 (Theorem 2 in [6]). Let C be the germ of a K-analytic curve (for
K = R or K = C). Then the space of algebraic restrictions of germs of closed 2-forms to
C is a finite-dimensional vector space.

By a K-analytic curve we mean a subset of K
m which is locally diffeomorphic to a

one-dimensional (possibly singular) K-analytic subvariety of K
m. Germs of C-analytic

parametrized curves can be identified with germs of irreducible C-analytic curves.
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Table 10. Relations towards calculating [Λ2(R2n)]N for N = T7.

relations proof

1 [x2 dx2 ∧ dx3]N = 0 (4.1) ∧ dx2

2 [x3 dx2 ∧ dx3]N = 0 (4.1) ∧ dx3

3 [x3 dx1 ∧ dx2]N = [x2 dxy3 ∧ dx1]N (4.1) ∧ dx1

4 [x1 dx1 ∧ dx2]N = 0 (4.2) ∧ dx2 and row 2
5 [x1 dx1 ∧ dx3]N = 0 (4.2) ∧ dx3 and row 1
6 [x2

2 dx1 ∧ dx2]N = [x2
3 dx3 ∧ dxy1]N (4.2) ∧ dx1

7 [x2
1 dx2 ∧ dx3]N = 0 rows 1 and 2 and [x2

1]N = [−x3
2 − x3

3]N
8 [x2

3 dx1 ∧ dx2]N = 0 (4.1) ∧ x3 dx1 and [x2x3]N = 0

In the remainder of this paper we use the following notation:

• [Λ2(R2n)]N is the vector space consisting of algebraic restrictions of germs of all
2-forms on R

2n to the germ of a subset N ⊂ R
2n;

• [Z2(R2n)]N is the subspace of [Λ2(R2n)]N consisting of algebraic restrictions of
germs of all closed 2-forms on R

2n to N ;

• [Symp(R2n)]N is the open set in [Z2(R2n)]N consisting of algebraic restrictions of
germs of all symplectic 2-forms on R

2n to N .

For calculating discrete invariants we use the following propositions.

Proposition 4.6 (Domitrz et al . [8]). The symplectic multiplicity of the germ of
a quasi-homogeneous subset N in a symplectic space is equal to the codimension of the
orbit of the algebraic restriction [ω]N with respect to the group of local diffeomorphisms
preserving N in the space of algebraic restrictions of closed 2-forms to N .

Proposition 4.7 (Domitrz et al . [8]). The index of isotropy of the germ of a quasi-
homogeneous subset N in a symplectic space (R2n, ω) is equal to the maximal order of
vanishing of closed 2-forms representing the algebraic restriction [ω]N .

Proposition 4.8 (Domitrz [6]). Let f be the germ of a quasi-homogeneous curve
such that the algebraic restriction of a symplectic form to it can be represented by a
closed 2-form vanishing at 0. Then the Lagrangian tangency order of the germ of a quasi-
homogeneous curve f is the maximum of the order of vanishing on f over all 1-forms α

such that [ω]f = [dα]f

4.2. Algebraic restrictions to T7 and their classification

One has the following relations for (T7)-singularities:

[d(x2x3)]T7 = [x2 dx3 + x3 dx2]T7 = 0, (4.1)

[d(x2
1 + x3

2 + x3
3)]T7 = [2x1 dx1 + 3x2

2 dx2 + 3x2
3 dx3]T7 = 0. (4.2)

Multiplying these relations by suitable 1-forms, we obtain the relations in Table 10.
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Using the method of algebraic restrictions and Table 10, we obtain the following propo-
sition.

Proposition 4.9. [Λ2(R2n)]T7 is an eight-dimensional vector space spanned by the
algebraic restrictions to T7 of the 2-forms:

θ1 = dx2 ∧ dx3, θ2 = dx1 ∧ dx3, θ3 = dx1 ∧ dx2,

θ4 = x3dx1 ∧ dx3, θ5 = x2dx1 ∧ dx2,

σ1 = x3dx1 ∧ dx2, σ2 = x1dx2 ∧ dx3,

θ7 = x2
3dx1 ∧ dx3.

Proposition 4.9 and the results of § 4.1 imply the following description of the space
[Z2(R2n)]T7 and the manifold [Symp(R2n)]T7 .

Theorem 4.10. [Z2(R2n)]T7 is a seven-dimensional vector space spanned by the alge-
braic restrictions to T7 of the quasi-homogeneous 2-forms θi:

θ1, θ2, θ3, θ4, θ5, θ6 = σ1 − σ2, θ7.

If n � 3, then [Symp(R2n)]T7 = [Z2(R2n)]T7 . The manifold [Symp(R4)]T7 is an open
part of the 7-space [Z2(R4)]T7 consisting of algebraic restrictions of the form [c1θ1 + · · ·+
c7θ7]T7 such that (c1, c2, c3) �= (0, 0, 0).

Theorem 4.11.

(i) Any algebraic restriction in [Z2(R2n)]T7 can be brought by a symmetry of T7 to
one of the normal forms [T7]i given in the second column of Table 11.

(ii) The codimension in [Z2(R2n)]T7 of the singularity class corresponding to the normal
form [T7]i is equal to i.

(iii) The singularity classes corresponding to the normal forms are disjoint.

(iv) The parameters c, c1, c2 of the normal forms [T7]0, [T7]1, [T7]2, [T7]3, [T7]4, [T7]5

are moduli.

The proof of Theorem 4.11 is presented in § 4.6.
In the first column of Table 11, we denote by (T7)i a subclass of (T7) consisting of

N ∈ (T7) such that the algebraic restriction [ω]N is diffeomorphic to some algebraic
restriction of the normal form [T7]i. Theorems 4.3 and 4.11 and Proposition 4.10 imply
the following statement, which explains why the given stratification of (T7) is natural.

Theorem 4.12. Fix i ∈ {0, 1, . . . , 7}. All stratified submanifolds N ∈ (T7)i have the
same

(a) symplectic multiplicity and

(b) index of isotropy given in Table 11 by (T7)i.
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Table 11. Classification of symplectic T7 singularities.

(‘cod’ denotes the codimension of the classes; µsym denotes the symplectic multiplicity; ‘ind’
denotes the index of isotropy.)

symplectic class normal forms for algebraic restrictions cod µsym ind

(T7)0 (2n � 4) [T7]0 : [θ1 + c1θ2 + c2θ3]T7 , c1 · c2 �= 0 0 2 0
(T7)1 (2n � 4) [T7]1 : [c1θ1 + θ2 + c2θ5]T7 1 3 0
(T7)2 (2n � 4) [T7]2 : [θ1 + c1θ4 + c2θ5]T7 , (c1, c2) �= (0, 0) 2 4 0
(T7)3 (2n � 6) [T7]3 : [θ4 + c1θ5 + c2θ6]T7 3 5 1
(T7)4 (2n � 4) [T7]4 : [θ1 + cθ7]T7 4 5 0
(T7)5 (2n � 6) [T7]5 : [θ6 + cθ7]T7 5 6 1
(T7)6 (2n � 6) [T7]6 : [θ7]T7 6 6 2
(T7)7 (2n � 6) [T7]7 : [0]T7 7 7 ∞

Proof. Part (a) follows from Proposition 4.6 and Theorem 4.11 and the fact that
the codimension in [Z2(R2n)]T7 of the orbit of an algebraic restriction a ∈ [T7]i is equal
to the sum of the number of moduli in the normal form [T7]i and the codimension in
[Z2(R2n)]T7 of the class of algebraic restrictions defined by this normal form.

Part (b) follows from Theorem 4.4 and Proposition 4.7. �

Proposition 4.13. The classes (T7)i are symplectic singularity classes, i.e. they are
closed with respect to the action of the group of symplectomorphisms. The class (T7) is
the disjoint union of the classes (T7)i, i ∈ {0, 1, . . . , 7}. The classes (T7)0, (T7)1, (T7)2,
(T7)4 are non-empty for any dimension 2n � 4 of the symplectic space; the classes (T7)3,
(T7)5, (T7)6, (T7)7 are empty if n = 2 and not empty if n � 3.

4.3. Symplectic normal forms

Let us transfer the normal forms [T7]i to symplectic normal forms. Fix a family ωi of
symplectic forms on R

2n realizing the family [T7]i of algebraic restrictions. We can fix,
for example,

ω0 = θ1 + c1θ2 + c2θ3 + dx1 ∧ dx4 + dx5 ∧ dx6 + · · · + dx2n−1 ∧ dx2n, c1 · c2 �= 0,

ω1 = c1θ1 + θ2 + c2θ5 + dx2 ∧ dx4 + dx5 ∧ dx6 + · · · + dx2n−1 ∧ dx2n,

ω2 = θ1 + c1θ4 + c2θ5 + dx1 ∧ dx4 + dx5 ∧ dx6 + · · · + dx2n−1 ∧ dx2n, (c1, c2) �= (0, 0),

ω3 = θ4 + c1θ5 + c2θ6 + dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6

+ dx7 ∧ dx8 + · · · + dx2n−1 ∧ dx2n,

ω4 = θ1 + cθ7 + dx1 ∧ dx4 + dx5 ∧ dx6 + · · · + dx2n−1 ∧ dx2n,

ω5 = θ6 + cθ7 + dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · · + dx2n−1 ∧ dx2n,

ω6 = θ7 + dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · · + dx2n−1 ∧ dx2n,

ω7 = dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · · + dx2n−1 ∧ dx2n.
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Let ω =
∑m

i=1 dpi ∧dqi, where (p1, q1, . . . , pn, qn) is the coordinate system on R
2n, n �

3 (respectively, n = 2). Fix, for i = 0, 1, . . . , 7 (respectively, for i = 0, 1, 2, 4) a family Φi

of local diffeomorphisms which bring the family of symplectic forms ωi to the symplectic
form ω : (Φi)∗ωi = ω. Consider the families T i

7 = (Φi)−1(T7). Any stratified submanifold
of the symplectic space (R2n, ω) which is diffeomorphic to T7 is symplectically equivalent
to one and only one of the normal forms T i

7, i = 0, 1, . . . , 7 (respectively, i = 0, 1, 2, 4)
presented in Theorem 3.1. By Theorem 4.11 we obtain that parameters c, c1, c2 of the
normal forms are moduli.

4.4. Proof of Theorem 3.3

The numbers ind(B1) and ind(B2) are computed using Proposition 4.7 for branches
B1 and B2. The space [Z2(R2n)]B1 is spanned only by the algebraic restrictions to B1 of
the 2-forms θ2, θ4. The space [Z2(R2n)]B2 is spanned only by the algebraic restrictions to
B2 of the 2-forms θ3, θ5. Branches are curves of type A2, and from Table 1 we know the
interaction between the index of isotropy and the Lagrangian tangency order. Knowing
ind(B1) and ind(B2), we obtain Lt(B1) = 3 + ind(B1) and Lt(B2) = 3 + ind(B2). Then
Lf is the minimum of these numbers and Ln is their maximum. Next we calculate Lt(N)
by definition, finding the nearest Lagrangian submanifold to the branches, knowing that
it cannot be greater than Lf .

As an example we calculate the invariants for the class (T7)1.
We have [ω1]B1 = [c1θ1 + θ2 + c2θ5]B1 = [θ2]B1 and thus ind(B1) = 0 and Lt(B1) = 3.

[ω1]B2 = [c1θ1 + θ2 + c2θ5]B2 = [c2θ5]B2 and thus ind(B2) = 1 and Lt(B2) = 5 if c2 �= 0
and ind(B2) = ∞ and Lt(B2) = ∞ if c2 = 0.

Finally, for the class (T7)1 we have Ln = 5 if c2 �= 0 and Ln = ∞ if c2 = 0 and Lf = 3
so Lt(N) � 3.

For the smooth Lagrangian submanifolds L defined by the conditions p1 = 0, q2 = 0
and pi = 0, i > 2, we get t[N, L] = 3 if c1 = 0; thus, Lt(N) = 3 in this case. But,
if c1 �= 0, then t[N, L] = 2 and it cannot be greater for any other smooth Lagrangian
submanifold, so Lt(N) = 2 in this case.

4.5. Proof of Theorem 3.5

Proof of Proposition 3.4. Any 2-form σ which has zero algebraic restriction to T7

can be expressed in the following form:

σ = H1α + H2β + dH1 ∧ γ + dH2 ∧ δ,

where H1 = x2
1 + x3

2 + x3
3, H2 = x2x3 and α, β are 2-forms on TM3 and γ = γ1 dx1 +

γ2 dx2 + γ3 dx3 and δ = δ1 dx1 + δ2 dx2 + δ3 dx3 are 1-forms on TM3. Since

H1(0) = H2(0) = 0, dH1|0 = dH2|0 = 0, (4.3)

we obtain the following equality:

Lvσ = d(V 
 σ)|0 + (V 
 dσ)|0 = d(V 
 σ)|0.
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Equation (4.3) also implies that

d(V 
 σ)|0 = d(V 
 dH1)|0 ∧ γ|0 + d(V 
 dH2)|0 ∧ δ|0.

By simple calculation we get

Lv1σ = dx2 ∧ δ|0 = δ3|0 dx2 ∧ dx3 − δ1|0 dx1 ∧ dx2,

Lv2σ = dx3 ∧ δ|0 = δ1|0 dx3 ∧ dx1 − δ2|0 dx2 ∧ dx3,

Lv3σ = 2 dx1 ∧ γ|0 = 2γ2|0 dx1 ∧ dx2 − 2γ3|0 dx3 ∧ dx1.

Finally, we obtain

Lv1σ(v3, v1) = 0, Lv2σ(v3, v2) = 0, Lv3σ(v1, v2) = 0,

Lv1σ(v3, v2) = −δ1|0 = Lv2σ(v3, v1).

�

Proof of Theorem 3.5. The conditions on the pair (ω, N) in the last columns of
Tables 8 and 9 are disjoint. It suffices to prove that these conditions in the row of (T7)i

are satisfied for any N ∈ (T7)i. This is a corollary of the following claims.

1. Each of the conditions in the last column of Tables 8 and 9 is invariant with respect
to the action of the group of diffeomorphisms in the space of pairs (ω, N).

2. Each of these conditions depends only on the algebraic restriction [ω]N .

3. Take the simplest 2-forms ωi representing the normal forms [T7]i for algebraic
restrictions: ω0, ω1, ω2, ω3, ω4, ω5, ω6, ω7. The pair (ω = ωi, T7) satisfies the
condition in the last column of Table 8 or Table 9 (the row of (T7)i).

To prove the third statement we note that in the case N = T7 = (3.1) one has

W = span(∂/∂x1, ∂/∂x2, ∂/∂x3)

and

v1 ∈ �1 = span(∂/∂x3),

v2 ∈ �2 = span(∂/∂x2),

v3 ∈ �3 = span(∂/∂x1).

By simple calculation and observation of Lagrangian tangency orders, we obtain that
following statements are true.

(T 0) ω0|�1+�2 �= 0, ω0|�1+�3 �= 0, ω0|�2+�3 �= 0, Ln < ∞ and Lf < ∞; hence, no branch is
contained in a smooth Lagrangian submanifold.
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(T 1) For any c1 and c2, ω1|�1+�3 = 0 and ω1|�2+�3 �= 0 or ω1|�1+�3 �= 0 and ω1|�2+�3 = 0.
If c2 = 0, then Ln = ∞ and Lf < ∞; hence, exactly one branch is contained in
some smooth Lagrangian submanifold. For c2 �= 0, Ln < ∞ and Lf < ∞, so no
branch is contained in a smooth Lagrangian submanifold. ω1|�1+�2 = 0 if and only
if c1 = 0.

(T 2) For any c1 and c2, ω2|�1+�2 �= 0, ω2|�1+�3 = 0 and ω2|�2+�3 = 0. If c1 · c2 �= 0, then
Ln < ∞ and Lf < ∞ so no branch is contained in a Lagrangian submanifold. If
c1 = 0 and c2 �= 0 or c1 �= 0 and c2 = 0, then Ln = ∞ and Lf < ∞; hence, exactly
one branch is contained in some smooth Lagrangian submanifold.

(T 3) The Lie derivative of ω3 = θ4 + c1θ5 + c2θ6 along a vector field V = ∂/∂x3 is not
equal to 0, so condition (III) of Proposition 3.4 is not satisfied. If c1 �= 0, then
Ln < ∞ and Lf < ∞; hence, no branch is contained in a Lagrangian submanifold.
If c1 = 0, then Ln = ∞ and Lf < ∞; hence, only one branch is contained in some
Lagrangian submanifold.

(T 4) For any c, ω4|�1+�2 �= 0, ω4|�1+�3 = 0 and ω4|�2+�3 = 0. Both branches are contained
in different Lagrangian submanifolds since Ln = Lf = ∞ and Lt(N) < ∞.

(T 5) We can calculate the Lie derivatives of ω5 = θ6+cθ7 along vector fields V1 = ∂/∂x3,
V2 = ∂/∂x2 and V3 = ∂/∂x3: LV1ω

5(V3, V1) = 0 and LV2ω
5(V3, V2) = 0, so condi-

tion (III) of Proposition 3.4 is satisfied, but the Lie derivative LV3ω
5(V1, V2) is not

equal to 0, so condition (II) of Proposition 3.4 is not satisfied. We have Lt(N) < ∞
and Ln = Lf = ∞; hence, branches are contained in different Lagrangian subman-
ifolds.

(T 6) The Lie derivatives of ω6 = θ7, LViω
6(Vj , Vk) = 0 for i, j, k ∈ {1, 2, 3}, so conditions

(II)–(IV) of Proposition 3.4 are satisfied. We have Lt(N) < ∞ and Ln = Lf = ∞;
hence, branches are contained in different Lagrangian submanifolds.

(T 7) For ω7 = 0 we have LVi
ω7(Vj , Vk) = 0 for i, j, k ∈ {1, 2, 3}, so conditions (II)–(IV)

of Proposition 3.4 are satisfied. The condition Lt(N) = ∞ implies the curve N is
contained in a smooth Lagrangian submanifold.

�

4.6. Proof of Theorem 4.11

In our proof we use vector fields tangent to N ∈ (T7). A Hamiltonian vector field is an
example of such a vector field. We recall by [4] a suitable definition and facts.

Definition 4.14. Let H = {H1 = · · · = Hp = 0} ⊂ R
n be a complete intersection.

Consider a set of p + 1 integers 1 � i1 < · · · < ip+1 � n. A Hamiltonian vector field
XH(i1, . . . , ip+1) on a complete intersection H is the determinant obtained by expansion

https://doi.org/10.1017/S0013091510001124 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510001124


Symplectic T7, T8 singularities 679

Table 12. Infinitesimal actions on algebraic restrictions of closed 2-forms to T7.

(E is defined as in (4.5).)

LXi [θj ] [θ1] [θ2] [θ3] [θ4] [θ5] [θ6] [θ7]

X0 = E 4[θ1] 5[θ2] 5[θ3] 7[θ4] 7[θ5] 7[θ6] 9[θ7]
X1 = x3E [0] 7[θ4] 3[θ6] 9[θ7] [0] [0] [0]
X2 = x2E [0] −3[θ6] 7[θ5] [0] −9[θ7] [0] [0]
X3 = x1E −4[θ6] [0] [0] [0] [0] [0] [0]
X4 = x2

2E [0] [0] −9[θ7] [0] [0] [0] [0]
X5 = x2

3E [0] 9[θ7] [0] [0] [0] [0] [0]

with respect to the first row of the symbolic (p + 1) × (p + 1) matrix

XH(i1, . . . , ip+1) = det

⎡
⎢⎢⎢⎢⎢⎣

∂/∂xi1 · · · ∂/∂xip+1

∂H1/∂xi1 · · · ∂H1/∂xip+1

...
. . .

...

∂Hp/∂xi1 · · · ∂Hp/∂xip+1

⎤
⎥⎥⎥⎥⎥⎦

. (4.4)

Theorem 4.15 (Wahl [15]). Let H = {H1 = · · · = Hp = 0} ⊂ R
n be a positive-

dimensional complete intersection with an isolated singularity. If H1, . . . , Hp are quasi-
homogeneous with positive weights λ1, . . . , λn, then the module of vector fields tangent
to H is generated by the Euler vector field

E =
n∑

i=1

λixi
∂

∂xi

and the Hamiltonian fields XH(i1, . . . , ip+1), where the numbers i1, . . . , ip+1 run through
all possible sets 1 � i1 < · · · < ip+1 � n.

Proposition 4.16. Let H = {H1 = · · · = Hn−1 = 0} ⊂ R
n be a one-dimensional

complete intersection. If XH is the Hamiltonian vector field on H, then [LXH
(α)]H = [0]H

for any closed 2-form α.

Proof. Note that XH 
 dx1 ∧ · · · ∧ dxn = dH1 ∧ · · · ∧ dHn−1. This implies that, for
i < j,

XH 
 dxi ∧ dxj = (−1)i+j+1
(

∂

∂xi1

∧ · · · ∧ ∂

∂xin−2

) ⌋
(dH1 ∧ · · · ∧ dHn−1)

=
n−1∑
k=1

(−1)k+i+j

(
∂

∂xi1

∧ · · · ∧ ∂

∂xin−2

) ⌋
(dHl1,k

∧ · · · ∧ dHln−2,k
) dHk

=
n−1∑
k=1

fk dHk,
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where (i1, . . . , in−2) = (1, . . . , i−1, i+1, . . . , j−1, j+1, . . . , n), and for k ∈ {1, . . . , n−1}
we take a sequence (l1,k, . . . , ln−2,k) = (1, . . . , k − 1, k + 1, . . . , n − 1).

Thus,

[XH 
 dxi ∧ dxj ]H=0 =
[ n−1∑

k=1

fk dHk

]
H

= [0]H .

If
α =

∑
i<j

gi,j dxi ∧ dxj

is a closed 2-form, then [LXH
α]H = [d(XH 
 α)]H . It implies that

[LXH
α]H =

∑
i<j

gi,j [d(XH 
 dxi ∧ dxj)]H + [dgi,j ∧ (XH 
 dxi ∧ dxj)]H = [0]H .

�

The germ of a vector field tangent to T7 of non-trivial action on algebraic restriction of
closed 2-forms to T7 may be described as a linear combination of germs of vector fields:
X0 = E, X1 = x3E, X2 = x2E, X3 = x1E, X4 = x2

2E, X5 = x2
3E, where E is the Euler

vector field
E = 3x1

∂

∂x1
+ 2x2

∂

∂x2
+ 2x3

∂

∂x3
. (4.5)

Proposition 4.17. The infinitesimal action of germs of quasi-homogeneous vector
fields tangent to N ∈ (T7) on the basis of the vector space of algebraic restrictions of
closed 2-forms to N is presented in Table 12.

Let A = [c1θ1 + c2θ2 + c3θ3 + c4θ4 + c5θ5 + c6θ6 + c7θ7]T7 be the algebraic restriction
of a symplectic form ω.

The first statement of Theorem 4.11 follows from the following lemmas.

Lemma 4.18. If c1 · c2 · c3 �= 0, then the algebraic restriction A = [
∑7

k=1 ckθk]T7 can
be reduced by a symmetry of T7 to an algebraic restriction [θ1 + c̃2θ2 + c̃3θ3]T7 .

Proof of Lemma 4.18. We use the homotopy method to prove that A is diffeomor-
phic to [θ1 + c̃2θ2 + c̃3θ3]T7 .

Let

Bt = [c1θ1 + c2θ2 + c3θ3 + (1 − t)c4θ4 + (1 − t)c5θ5 + (1 − t)c6θ6 + (1 − t)c7θ7]T7

for t ∈ [0; 1]. Then B0 = A and B1 = [c1θ1 + c2θ2 + c3θ3]T7 . We prove that there exists a
family Φt ∈ Symm(T7), t ∈ [0; 1] such that

Φ∗
t Bt = B0, Φ0 = id. (4.6)

Let Vt be a vector field defined by dΦt/dt = Vt(Φt). Then, by differentiating (4.6), we
obtain

LVtBt = c4θ4 + c5θ5 + c6θ6 + c7θ7. (4.7)
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We are looking for Vt in the form

Vt =
5∑

k=1

bk(t)Xk,

where bk(t) for k = 1, . . . , 5 are smooth functions bk : [0; 1] → R. Then, by Proposi-
tion 4.17, (4.7) has the form

⎡
⎢⎢⎢⎣

7c2 0 0 0 0
0 7c3 0 0 0

3c3 −3c2 −4c1 0 0
9c4(1 − t) −9c5(1 − t) 0 −9c3 9c2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4

b5

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

c4

c5

c6

c7

⎤
⎥⎥⎥⎦ . (4.8)

If c1 · c2 · c3 �= 0, we can solve (4.8), and Φt may be obtained as a flow of vector field
Vt. The family Φt preserves T7, because Vt is tangent to T7 and Φ∗

t Bt = A. Using the
homotopy arguments, we have that A is diffeomorphic to B1 = [c1θ1 + c2θ2 + c3θ3]T7 . By
the condition c1 �= 0 we have a diffeomorphism Ψ ∈ Symm(T7) of the form

Ψ : (x1, x2, x3) �→ (|c1|−3/4x1, |c1|−1/2x2, |c1|−1/2x3) (4.9)

and we obtain

Ψ∗(B1) =
[

c1

|c1|
θ1 + c2|c1|−5/4θ2 + c3|c1|−5/4θ3

]
T7

= [±θ1 + c̃2θ2 + c̃3θ3]T7 .

By the symmetry of T7 : (x1, x2, x3) �→ (x1, x3, x2), we have that [θ1 + c̃2θ2 + c̃3θ3]T7 and
[−θ1 + c̃3θ2 + c̃2θ3]T7 are diffeomorphic. �

Lemma 4.19. If c2 · c3 = 0 and c2 + c3 �= 0, then the algebraic restriction of the
form [

∑7
k=1 ckθk]T7 can be reduced by a symmetry of T7 to an algebraic restriction

[c̃1θ1 + θ2 + c̃5θ5]T7 .

Proof of Lemma 4.19. We use methods similar to those used above to prove that
if c2 · c3 = 0 and c2 + c3 �= 0, then A is diffeomorphic to [c̃1θ1 + θ2 + c̃5θ5]T7 . If c3 = 0,
then c2 �= 0 and A = [c1θ1 + c2θ2 + c4θ4 + c5θ5 + c6θ6 + c7θ7]T7 , Let

Bt = [c1θ1 + c2θ2 + (1 − t)c4θ4 + c5θ5 + (1 − t)c6θ6 + (1 − t)c7θ7]T7 for t ∈ [0; 1].

Then B0 = A and B1 = [c1θ1 + c2θ2 + c5θ5]T7 . We prove that there exists a family
Φt ∈ Symm(T7), t ∈ [0; 1], such that

Φ∗
t Bt = B0, Φ0 = id. (4.10)

Let Vt be a vector field defined by dΦt/dt = Vt(Φt). Then, by differentiating (4.10), we
obtain

LVtBt = c4θ4 + c6θ6 + c7θ7. (4.11)
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We are looking for Vt in the form Vt = b1(t)X1 +b2(t)X2 +b4(t)X4 +b5(t)X5, where bk(t)
for k = 1, 2, 4, 5 are smooth functions bk : [0; 1] → R. Then, by Proposition 4.17, (4.11)
has the form ⎡

⎢⎣
7c2 0 0 0
0 −3c2 −4c1 0

9c4(1 − t) −9c5 0 9c2

⎤
⎥⎦

⎡
⎢⎢⎢⎣

b1

b2

b4

b5

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

c4

c6

c7

⎤
⎥⎦ . (4.12)

If c2 �= 0, we can solve (4.12), and Φt may be obtained as a flow of vector field Vt. The
family Φt preserves T7, because Vt is tangent to T7 and Φ∗

t Bt = A. Using the homotopy
arguments we have that A is diffeomorphic to B1 = [c1θ1+c2θ2+c5θ5]T7 . By the condition
c2 �= 0, we have a diffeomorphism Ψ ∈ Symm(T7) of the form

Ψ : (x1, x2, x3) �→ (c−3/5
2 x1, c

−2/5
2 x2, c

−2/5
2 x3) (4.13)

and we obtain

Ψ∗(B1) = [c1c
−4/5
2 θ1 + θ2 + c5c

−7/5
2 θ5]T7 = [c̃1θ1 + θ2 + c̃5θ5]T7 .

If c2 = 0, then c3 �= 0 and by the diffeomorphism Θ ∈ Symm(T7) of the form
(x1, x2, x3) �→ (x1, x3, x2), we obtain

Θ∗[c1θ1 + c3θ3 + c4θ4 + c5θ5 + c6θ6 + c7θ7]T7 = [−c1θ1 + c3θ2 + c4θ5 + c5θ4 − c6θ6 − c7θ7]T7

and we may now use the homotopy method. �

Lemma 4.20. If c2 = c3 = 0, c1 �= 0 and (c4, c5) �= (0, 0), then the algebraic restriction
of the form [

∑7
k=1 ckθk]T7 can be reduced by a symmetry of T7 to an algebraic restriction

[θ1 + c̃4θ4 + c̃5θ5]T7 .

Lemma 4.21. If c1 �= 0 and c2 = c3 = c4 = c5 = 0, then the algebraic restriction of
the form [

∑7
k=1 ckθk]T7 can be reduced by a symmetry of T7 to an algebraic restriction

[θ1 + c̃7θ7]T7 .

Lemma 4.22. If c1 = c2 = c3 = 0 and (c4, c5) �= (0, 0), then the algebraic restriction
of the form [

∑7
k=1 ckθk]T7 can be reduced by a symmetry of T7 to an algebraic restriction

[θ4 + c̃5θ5 + c̃6θ6]T7 .

Lemma 4.23. If c1 = · · · = c5 = 0 and c6 �= 0, then the algebraic restriction A =
[
∑7

k=1 ckθk]T7 can be reduced by a symmetry of T7 to an algebraic restriction [θ6+c̃7θ7]T7 .

Lemma 4.24. If c1 = · · · = c6 = 0 and c7 �= 0, then the algebraic restriction A =
[
∑7

k=1 ckθk]T7 can be reduced by a symmetry of T7 to an algebraic restriction [θ7]T7 .

The proofs of Lemmas 4.20–4.24 are similar and are based on Table 12.
Statement (ii) of Theorem 4.11 follows from conditions in the proof of part (i), and

statement (iii) follows from Theorem 3.5, which was proved in § 4.5.
Now we prove that the parameters c, c1, c2 are moduli in the normal forms. The

proofs are very similar in all cases. We consider as an example the normal form with
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two parameters [c1θ1 + θ2 + c2θ3]T7 . From Table 12 we see that the tangent space to the
orbit of [c1θ1 + θ2 + c2θ3]T7 at [c1θ1 + θ2 + c2θ3]T7 is spanned by the linearly independent
algebraic restrictions [4c1θ1 + 5θ2 + 5c2θ3]T7 , [θ4]T7 , [θ5]T7 , [θ6]T7 and [θ7]T7 . Hence, the
algebraic restrictions [θ1]T7 and [θ3]T7 do not belong to it. Therefore, the parameters c1

and c2 are independent moduli in the normal form [c1θ1 + θ2 + c2θ3]T7 .
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