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1. Introduction. We consider sequences (Ah) defined over the field Q of rational
numbers and satisfying a linear homogeneous recurrence relation

S0(h)Ah+n = S1(h)Ah+n_l + ... + Sn(h)Ah, /i = 0,1 (1)

with polynomial coefficients 5;. We shall assume without loss of generality, as we may,
that the 5, are defined over Z and the initial values AQ,AU... ,An-i are integer numbers.

Also, without loss of generality we may assume that So and Sn have no non-negative
integer zero. Indeed, any other case can be reduced to this one by making a shift
h t-»/i - / - 1 where / is an upper bound for zeros of the corresponding polynomials (and
which can be effectively estimated in terms of their heights).

There are a great many familiar sequences satisfying recurrence equations of the
present kind (see, say, [6], [11], [17]). Indeed, (Ah) is always the sequence of Taylor
coefficients of a formal power series satisfying a linear differential equation with
coefficients which are rational functions; a particular case is that of a power series
representing an algebraic function (note [17, Theorem 2.1]).

Here we obtain a lower bound for the growth of such sequences. In the special case
of recurrence sequences, thus the present sequences with constant coefficients, quite sharp
results have been obtained. But even there we do not as yet have an effectively
computable exponential lower bound in every case (see [3], [7], [11], [12], [13], [14]).

The height H(a) of a rational number a = r/s, where gcd(r, s) = i, is given by
max(|r|, \s\). We write HN(A) for the maximum max(H(A0),... , H(AN-i)).

Let ||i4|| be an upper bound for the height of the initial values Ao,... ,An-u that is,
\\A\\=Hn(A).

It should be well known that if HN(A) is bounded then (Ah) is a periodic sequence; it
is therefore a rather special linear recurrence sequence with constant coefficients. The first
part of the theorem below gives a quantitative form of this statement (and relies on its
qualitative form given in Lemma 1).

Then, in the second part of the theorem we show, by using a modification of the
approach of [16], that in the opposite case, that is when HN(A)-*<*>, it is possible to
obtain a fairly weak but effectively computable lower bound for HN(A).

We define the length L(S) of a polynomial S(h) s Z[h] as the sum of the absolute
value of its coefficients. Set

L = max{i?(So), i?(S,), • • • , %(Sn)}, d = max{deg 50, deg Su..., degSn}.

THEOREM. Let (Ah) be a sequence ofrationals.
(1) If HN(A) is bounded, then (Ah) is pure periodic with minimal period

r<exp((6«logn)1/2),
and thus

HN{A) ^ WII exp(0(r log L + dr log r)).
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(2) If HN(A)—><x> then there exists an effective absolute constant C>0 such that

These two statements result in an effective test to check whether HN(A) is bounded,
and therefore whether (Ah) is periodic. This result is a direct generalization of Theorem 3
of [2] dealing with the corresponding question for sequences satisfying linear recurrence
relations with constant coefficients.

2. Bounded HN(A). Here we are dealing with the first case of the theorem. Below
we refer to the generating function

f(X) = i AhXh.
h=0

LEMMA 1. Let (Ah) be a sequence of rationals, and suppose that HN(A) is bounded.
Then (Ah) is eventually periodic and thus is a sequence satisfying a linear homogeneous
recurrence relation with constant coefficients.

Proof. Since inter alia there are only finitely many denominators among the Ah we
may multiply by their lowest common multiple. Thus we lose no generality in supposing
that the Ah are integers. Then a theorem of Carlson and P61ya reports (see the comments
on Problem 165, Part VIII in Polya and Szego [9]; and for more general results see the
related discussion of Amice [1, Chapter 5]) that the generating function f{X) is either
rational or has the unit circle as a natural boundary.

On the other hand it is well known (see for example [5] but note that this result can
also be found in [17]), that the generating function satisfies a linear differential equation
with polynomial coefficients (Lemma 2 below gives a slightly more precise form of this
statement). Functions satisfying a linear differential equation with polynomial coefficients
do not have a natural boundary. Hence if HN(A) is bounded then f(X) must represent a
rational function.

So the sequence (Ah) satisfies a linear homogeneous recurrence relation with
constant coefficients and so, from some h on, the Ah are given by a generalised power sum

m

^ = 2/W»)a?. (2)

Since the Ah are integers and are bounded it follows that the roots a, must be roots of
unity and that the polynomial coefficients Pt(h) must be constants. Hence the sequence
(Ah) is, as asserted, eventually periodic. •

LEMMA 2. The function f(X) satisfies a differential equation

1=0

where the Rj(X), i = - 1 , 0 , . . . ,d, are polynomials with coefficients not all equal to zero
and of degree at most n.

https://doi.org/10.1017/S0017089500031372 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031372


LINEAR RECURRENCE SEQUENCES 149

Proof. Having defined the differential operators

one sees that

/i=0

(under the standard agreement that ( . j = 0 for h < i). Further, we define the coefficients

tjj by the representations

i=0

where Tn(X) = Sn(X) and Tj(X) =-Sj(X), j = l,...,n-l. Therefore, from (1) we
obtain

£ i <..;*'A £ Ah+jx"=£ £ tlJ £ Ah+i(
h

/=0i=0 /i=0 /=0i=0 A0 v '

= 2 x> 2 Ah+il tJH)
/ i = 0 ; = 0 i = 0 x l /

h=0 ;=0

Multiplying the last identity by n \X" and changing the order of the summation, we get

1=0

where
2
;=0

and

,=o '• y=o /i=o

It is evident that at least one of the polynomials above is not identical to zero. •

Proof of the theorem: Part 1. As in the proof of Lemma 1 we obtain a representation
(2) of the Ah as a power sum with the Pt(h) constants and the a, roots of unity,
i = 1,.. . , m. Thus the only poles of the generating function f(X) are the reciprocals I/a,,
/ = 1 , . . . ,m, and they are roots of unity. On the other hand, it follows from Lemma 2
that all poles off(X) are zeros of the first non-zero polynomial among Rd,Rd-\,• • • ,RQ-
Each is of degree at most n. Therefore, the degree of the field extension Q(au..., am), is
at most n. Also, it is well known that if a is a root of unity of degree N and T is the
minimal positive integer t such that a' = 1 —we shall refer to T as the period of a—then
(f)(T) = N, where (p(T) is the Euler function. Thus if Tu...,Tm are the periods of
<*!,..., am, respectively, then T ^ L C M ^ , . . . , Tm). The maximal possible value of this
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least common multiple is estimated in [2, Theorem 1] as exp((6« \ogn)m) and the bound
for T follows.

Moreover, (Ah) is pure periodic. Assume that this is not so, and that k is minimal so
that Ak ¥=Ak-?. Then Ak+r = Ak+r-T for all integer r > 1. In particular, from (1) we obtain

S0(k + lr)Ak+n - Si(k + lr)Ak+r,-, - . . . - Sn(k + h)Ak

= S0(k + lr)Ak+lT+n - S,(k + h)Ak+lz+n^ -... - Sn(k + lr)Ak+lT = 0

for all positive integers /. Therefore we have the polynomial identity

S0(X)Ak+n - Si(X)Ak+n^ - . . . - Sn{X)Ak = 0.
It yields

Sn(k-r)Ak-T = S0(k-

= S0(k - r)Ak+n - Si(k - r)Ak+n.1 - . . . - Sn_{(k - x)Ak+l

= Sn(k- T)Ak.

As the polynomial Sn(h) has no integer positive zeros, we obtain Ak~T = Ak, and this
contradiction shows that Ah = Ah+Z for all h= 0 , 1 , . . . .

Finally, we notice that from (1) we have the representation

Ah=-^Jl—. / J = 0 , 1 , . . . ,

US0(k)
k=0

where Qh are integers satisfying the recurrence equation

e * + . = i s i ( A ) e » + , - i ft so(k), A = o , i , . . . .
Therefore,

n

\Qh+n\ s 2 {L(h + l)d)'+1 |Q,+n_,|, Ai = 0 , 1 , —

Together with

max{|Q0|,... , |QB_,|} = max{|y40|, • • •, U4«-i|} = \\A \\

we obtain the estimate \Qh+n\<2 \\A\\ (L(h + I)*)2*. Also, of course we have

k=0 k=0

Therefore Hh(A) < Hh+n(A) = \\A || exp(O(/i log L + dh log h)) for any h. On replacing h
by T we obtain the asserted bound for HN{A). •

3. Unbounded HN(A). Here we consider Part 2 of the theorem: H^A)-*™. The
proof relies on Lemmata 3-5 but first of all we recall some standard notation and several
well known facts.
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For a polynomial S(h) e Z[h], beside its length £(S), we define its height H(S)
simply as the maximum absolute value of its coefficients, and its Mahler measure as

degS

M(S) = s0 n max{l, |cr;|},
/=i

where s0 is the leading coefficient of S and the product is over all zeros of S repeated
according to their multiplicity.

Then the following inequalities can be found in [8]:

H(S) ^ <£{S) < (degS + 1)H(S), M(S) <

For S(h), T(h)eZ[h], it is evident that M{ST) = M(S)M(T), whence the previous
inequalities yield

< 2deg5+deg

LEMMA 3. For every nonnegative integer I there are polynomials

Su[h]el[h], i = l , . . . , n,

of degree at most Id and of length at most

such that
S'0(h)Ah+l = S h l ( h ) A h + n ^ + . . . + SnJ(h)Ah, h = 1 , 2 , . ...

Proof. We use induction on /. For / < n - 1 the assertion is trivial and for / = n we
may set 5,-,n = S,5o~\ i = l,... ,n. It is clear that deg 5,,n < nd and that

) < 2ndLn < Ln, / = 1 , . . . , n.

For / > n we have

; / 1 2 5,,,_
; = 1

+n., 2 ^
. = 1 y

and we may set

But each term S^o"1^,,;-; in the last sum is a polynomial of degree at most Id and of
length at most

l S t j - f t ^ 2 l d L n L M < 2 W L " L , _ 1 .
Hence

and we are done. D
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It will be convenient to use a compact notation whereby we write

for a monomial of total degree |/| =j0 +... ;„_) in n consecutive A's.

L E M M A 4. For each pair of integers / > 0 and k = \j\ there is a polynomial

Gtj[h]eZ[h], ; = O o , . . . , ; n - , )

of degree at most kid and of length at most

such that

Sk
0'(h)Ak

h+l =

Proof. It follows from Lemma 3 that we may set

where

Therefore deg G,,; ̂  kid and

( t S*-,j) ^ nk2kldLk = nw+V2W+WLknt. D

LEMMA 5. A linear homogeneous system of M polynomial equations

0, j = 1 M
1=0

with M + 1 unknowns Q,, polynomials PJJ e Z[/i], / = 0, . . . , M and j = 1 , . . . , M, of degree
at most 8 and height at most H, has a nonzero solution in polynomials of degree at most
A = 8M and of height at most ((M + l)H)M+\

Proof. The data amounts to our having a linear homogeneous system of

equations with coefficients whose absolute values do not exceed H, in the

(A + 1)(M + 1)

unknown integer coefficients of the polynomials Qt of degree at most A. By "Siegel's
lemma" such a system has a nonzero integer solution of height not exceeding
((Af + 1)//)M+1 (see [4] for a survey of various sharpenings of this result). •

Proof of the theorem: Part 2. Set HN(A) = Q and consider the polynomial

v(a)=n n ("«-«)
u=\v=-Q
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of degree D = (2Q + 1)Q, and height HQV) <2DQD < DD. Define the sequence (Wh) by
D

Wh = W(Ah). If W(/i) = S Bkh
k then, by Lemma 4 we have the representation

5 DI/UWX7 ^ D C(D — k)l/l-\ ^ /"• /L.\W1o (n)wh+i— 2J -D^O (") ZJ t-'jA")™-*-
k=0 \j\ = k

Hence we may write, for non-negative integer /,

SZ'(hWh+! = I Pj,,(hM, h = 1,2,... , (3)

with polynomials PiJt of degree at most IdD and of height at most

= IT13X |-̂ 5A:I ^ i-* •*»•/ ^
* = 0 D

= max |B( t |2<D-*;)wLD-'£/i '£ ( '+ I )2<H: / ( '+3 ) /2L' : '"

* = 0 D

< •H(W)nD<l+1)2dD'«+3V2LDn' ^ exp(c,d« log LD log D);

here cx > 0 is some absolute constant.
The number of; = (;„,... ,;n_i) with |;'| < D is A/ = ( ). Accordingly, we consider

the system of M equations

M

ZJ Pj,i(h)Qi(h) = 0, ; = 1 , . . . , M,
1=0

in the M + 1 unknowns Qi(h), I = 0 , . . . , M. By (3) we have that

/ = O, A = 1,2,....
/=o

From the bounds for Ht{D) and Lemma 5 we see that for some m^M and some
polynomials R,e1[h], 1 = 0,...,m, the sequence (Wh) satisfies a linear recurrence
equation

i 0, A = 1 ,2 , . . . , (4)
/=o

of order m and with polynomial coefficients of height

H < exp(c2d« log LDn+l log D),

where c2 > 0 is some absolute constant.
Clearly, Wh = 0 for /i = 0 , . . . ,N- 1. On the other hand, since HN(A)-+& the

sequence has nonzero values. But any integer zero of the polynomial Rm(h) is plainly at
most H (because it divides the constant coefficient of Rm). Hence, of m consecutive
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values Wh, h = H + 1 , . . . , / / + m, at least one must be nonzero. Thus H + m^N. The
upper bounds for H and m now yield the result. •

4. Several remarks. As mentioned above, the theorem leads to an effective test to
check whether the sequence (Ah) is periodic. It is enough to compute HN{A) for some N
for which the estimates of the first and the second parts of the theorem contradict one
another.

Unfortunately, such an N is astronomically large, being multi-exponential with
respect to all its parameters. Indeed, suppose we define the "input-size" as / =
n log H-41| + nd log L + 1. Then the minimal N up to which we have to compute HN{A) is
of order

N(I) = exp exp exp(/1/2+£).

For n fixed this can be reduced to N(I) = expexp(/1+£). A natural question is if one can
do better. In particular we would like to stress the importance of the following problem.

OPEN QUESTION 1. Is it possible to determine whether HN(A)—>K in polynomial time

For linear recurrence sequences over an arbitrary field IK it is natural to consider the
number VN{A) of different values among Au..., AN, instead of the height HN(A).

It is not difficult to see that the method used here allows one to prove that the sum
and product of any two linear recurrence sequences satisfying equations of the shape (1)
over an arbitrary field IK are linear recurrence sequences of the same type with explicit
bounds for the order of their corresponding equations and the degree of their coefficients.
This is an explicit version of the well known fact that the set of all linear recurrence
sequences satisfying equations of the shape (1) over an arbitrary field IK form a ring
([6], [11], [17]).

For example, in [15], the aforementioned result of [2] was generalized to linear
recurrence sequences of algebraic numbers. Accordingly our results can be extended to
this case as well.

Unfortunately, over an arbitrary field we cannot readily bound the maximal zero of a
polynomial; yet that is a crucial point of the final part of our method.

On the other hand, if all the coefficients of the equation (1) over an arbitrary field IK
are constant, then one can readily obtain

VN(A) > Nv"

for the number VN(A) of different values among Au... ,AN. This holds provided that
N ^ T where r is a period of the linear recurrence sequence, if such exists (for example in
the case of a finite field IK = F,); otherwise we formally set T = ». Indeed, if N < r then all
N vectors (Ah,... ,Ah+n--i), h = l,...,N, must be distinct, therefore V(N)n > N. There
are improvements on this idea in [16] in the case of a finite field IK = ¥q.

In respect of the general case we ask:

OPEN QUESTION 2. Does the collection of all linear recurrence sequences, satisfying
equations with leading coefficient S0(h) without an integer zero, form a ring?

Given a positive answer to this question, one can bound VN(A) from below in any
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field, independent of any bounds for the height of the polynomials coefficients or for their
zeros. Certainly a most interesting generalization would be on sequences over p-adic
fields. The following question could be the first step in this direction.

OPEN QUESTION 3. Can the approach of this paper be adjusted to get non-trivial lower
bounds in p-adic norms of sequences of rational numbers satisfying the equation (1)?
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