
JFP 19 (3 & 4): 311–333, 2009. c© 2009 Cambridge University Press

doi:10.1017/S0956796809007278 Printed in the United Kingdom

311

Big-step normalisation

THORSTEN ALTENKIRCH

School of Computer Science, University of Nottingham,

Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK

(e-mail: txa@cs.nott.ac.uk)

JAMES CHAPMAN

Institute of Cybernetics at Tallinn University of Technology,

Akadeemia tee 21, EE-12618 Tallinn, Estonia

(e-mail: james@cs.ioc.ee)

Abstract

Traditionally, decidability of conversion for typed λ-calculi is established by showing that

small-step reduction is confluent and strongly normalising. Here we investigate an alternative

approach employing a recursively defined normalisation function which we show to be

terminating and which reflects and preserves conversion. We apply our approach to the

simply typed λ-calculus with explicit substitutions and βη-equality, a system which is not

strongly normalising. We also show how the construction can be extended to system T with

the usual β-rules for the recursion combinator. Our approach is practical, since it does verify

an actual implementation of normalisation which, unlike normalisation by evaluation, is first

order. An important feature of our approach is that we are using logical relations to establish

equational soundness (identity of normal forms reflects the equational theory), instead of the

usual syntactic reasoning using the Church–Rosser property of a term rewriting system.

1 Introduction

Traditionally, decidability of conversion for typed λ-calculi is established by showing

that small-step reduction is confluent and strongly normalising; e.g. see Girard et al.

(1989), where this approach is applied to the simply typed λ-calculus, system F and

system T. In fact, decidability is not the only corollary of strong normalisation; we

can reason using the structure of normal forms and show for example that certain

types are not inhabited.

The small-step approach does not extend easily to stronger conversion relations,

e.g. η-conversion; η-reduction preserves strong normalisation, but η-expansion obvi-

ously does not. On the other hand η-expansion is preferable because normal terms

are in constructor form (i.e. λ-abstractions). This issue can by addressed by careful

modification of the reduction relation (Jay & Ghani 1995). A more serious issue

arises when introducing substitution as an explicit operation (Abadi et al. 1990) –

this is better because it treats substitution in the same way as other operators such

as application. It was hoped that the small-step semantics for substitution would

mix well with β-reduction – this hope was dashed by Melliès’s (1995) observation

that σβ-reduction is not strongly normalising.

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

312 T. Altenkirch and J. Chapman

All these issues can be addressed by ingenious modifications of the small-step

semantics. However, it is doubtful that anybody would actually want to implement

a normalisation function by laboriously applying one-step reductions to a term.

This criticism applies only to small-step term rewriting; clearly it is computationally

sensible to model the computation of a normal form by performing small steps of

an abstract machine.

We observe that normalisation can be expressed by the following specification:

We introduce a notion of normal forms n : Nf Γ σ indexed over context Γ and

type σ which can be embedded back into terms �n� : Tm Γ σ. We assume that

we can realise a function nf which for any t : Tm Γ σ calculates a normal form

nf t : Nf Γ σ such that the following properties hold:

(a) Soundness. Normalisation takes convertible terms to identical normal forms:

t �βησ t ′

nf t = nf t ′

(b) Completeness. Terms are convertible to their normal forms:

t �βησ �nf t�

Our terminology here is motivated by the view that the normal forms form a

syntactic model of the calculus.

As a consequence we obtain that convertibility corresponds to having the same

normal form:

t �βησ u ⇐⇒ nf t = nf u

Since the equality of normal forms is obviously decidable, we have that conversion

is decidable. Additionally, we would like that the notion of normal form contains no

redundant elements – and hence we can establish additional properties by induction

over the structure of normal forms. We can capture this property by additionally

demanding the next property.

(c) Stability. Normalisation is stable on normal forms:

n : Nf Γ σ
nf �n� = n

Strong normalisation gives rise to one way of implementing this specification. An

alternative is normalisation by evaluation (Berger & Schwichtenberg 1991; Coquand

& Dybjer 1997). Normalisation by evaluation exploits a complete model construction

in which the evaluation function can be inverted. The composition of the evaluation

function and its inverse gives rise to a normalisation function. This function can be

executed, since all the steps take place in a constructive metatheory. normalisation by

evaluation overcomes many of the shortcomings of the small-step approach. Indeed,

decidability for strong equality of λ-calculus with coproducts was shown using

normalisation by evaluation (Altenkirch et al. 2001; Balat 2002). More recently,

Lindley (2007) showed that a small-step semantics for this calculus is weakly

normalising, simplifying earlier work by Ghani (1995). Moreover, normalisation

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

Big-step normalisation 313

by evaluation is practical; it has been used in the actual implementation of

Schwichtenberg’s Minlog system and the Epigram system (Chapman et al. 2007).

Here we investigate yet another alternative: big-step normalisation. This is in some

way the most naive approach to normalisation: we use an environment machine,

implemented as a functional program, to reduce programs to values and apply

this method recursively to quote values as normal forms. We apply this approach

here to λβησ , simply typed λ-calculus with explicit substitutions, a calculus which is

difficult to capture using small-step reduction. Unlike normalisation by evaluation

our approach is first order, we do not need higher-order functions in any essential

way to implement normalisation, while normalisation by evaluation assumes that

we already have a means to evaluate higher-order programs, i.e. λ-terms.

Big-step normalisation shares the logical structure of small-step normalisation.

The normalisation function is specified as an inductive relation using only first-order

means. This relation is executable; indeed it is derived from a recursive functional

program and then shown to be terminating. Unlike normalisation by evaluation

there is a strict separation between the first-order structure of the program and

the higher-order reasoning needed to establish termination. Note that we do not

attempt to give a normalisation argument which can be formalised in first-order

arithmetic, such as the one given by David (2001). Indeed, we show in Section 7 that

our construction easily extends to system T, whose normalisation proof certainly

cannot be formalised in first-order arithmetic.

1.1 Related work

Big-step semantics has been used in the metatheory of typed λ-calculi by a number

of people. Here are some examples:

• Levy (2001) used Tait’s method to show normalisation for the big-step

semantics of a simple programming language.

• Watkins et al. (2004) used hereditary substitutions, which have a structure sim-

ilar to big-step normalisation, to show normalisation of a logical framework.

• T. Coquand used a variant of big-step reduction to normalise terms in ‘type

theory’ (Coquand 1991). However, he exploited a model of the untyped λ-

calculus to implement normalisation, which is not necessary in our approach.

• In our conference paper we have developed big-step normalisation for a

combinatory version of system T (Altenkirch & Chapman 2006).

Our work is closely related to C. Coquand’s formalisation of another variant of

simply typed λ-calculus with substitutions (Coquand 2002) – the main difference

from the present work is that she uses normalisation by evaluation.

1.2 Type theory as a metalanguage

We use type Ttheory (Martin-Löf 1984; Nordström et al. 1990; Hofmann 1997) as

a metalanguage; hence when we define a function we can also run it as a functional

program. However, since we do not exploit propositions as types in any essential

way, our development can be understood as taking place in naive set theory.

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

314 T. Altenkirch and J. Chapman

Our notation is very much inspired by the Epigram system (McBride & McKinna

2004; McBride 2005a), which we have used together with Agda (Norell 2007a,b) for

a formalisation of the material presented here (Chapman 2007).

We use � for the type of small types (or sets) and Prop as the type of

propositions. We will not use proofs of propositions to make choices; i.e. we

assume a proof-irrelevant universe of propositions. We present inductively defined

families, types and predicates by giving the constructors in a natural deduction

style, inspired by the syntax of the Epigram system. We construct functions and

proofs by structural recursion over inductive definitions which, using the tactics

implemented in Epigram, are reducible to basic type theory, using only standard

combinators.

As in Epigram and other implementations of type theory we hide arguments and

types which can be inferred from the context to make the code more readable. If

we want to make implicit arguments explicit we put them in subscript position. As

an example consider our presentation of an inductive definition of the set of natural

numbers

Nat : �
where

zero : Nat
n : Nat

suc n : Nat

and the family of finite types

n : Nat
Fin n : �

where
fzero : Fin (suc n)

i : Fin n
fsuc i : Fin (suc n)

Note that we omit the declaration of n : Nat as an implicit argument to the

constructors fzero and fsuc because it can be automatically inferred by the system.

More details and examples can be found in the Epigram tutorial (McBride 2005b).

1.3 Overview of the paper

We introduce a simply typed λ-calculus with explicit substitution and βη-equality

in Section 2. We then implement a recursive normalisation function in partial type

theory in Section 3. Using a technique introduced by Bove and Capretta (2001) we

give a relational presentation, i.e. a big-step reduction relation of the partial functions

in total type theory to be able to characterize the graph of our normalisation function

in Section 4. Using a variant of strong computability1 (Tait 1967), incorporating

Kripke logical predicates, we then show that our partial normalisation function

terminates and returns a result convertible to the input in Section 5. It remains to

show soundness; we do this using Kripke logical relations in Section 6. We show

that this approach is easily extensible to system T with β-rules for the recursion

combinator in Section 7. We finish with general observations about our approach

and sketch future work (Section 8).

1 Also called strong reducibility. The strength here refers to the necessary strengthening of the induction
hypothesis and to strong normalisation.

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

Big-step normalisation 315

2 Simply typed λ-calculus with explicit substitutions

We present here the simply typed λ-calculus with explicit substitutions, much in the

spirit of the λσ-calculus (Abadi et al. 1990). This approach avoids the special status

of substitution which traditionally, unlike other term formers, is defined by recursion

over the syntax. In our presentation, substitution is a term former like any other,

with a set of equationally specified properties. We also diverge from the conventional

strategy of defining pre-terms first and then introducing a typing judgment. Instead

we directly present the family of well-typed terms as an inductively defined family.

We are, after all, only interested in the well-typed terms.

2.1 Syntax

The inductive definition of the set of types Ty : � with one base type and contexts

Con : � as backward-written lists of types are straightforward:

• : Ty
σ : Ty τ : Ty

(σ→τ) : Ty ε : Con
Γ : Con σ : Ty

(Γ ; σ) : Con

We define inductive families of well-typed terms and substitutions mutually:

Γ : Con σ : Ty
Tm Γ σ : �

Γ , Δ : Con
Subst Γ Δ : �

The syntax of terms uses categorical combinators which subsume variables. There is

a term � which refers to the last variable in the context, and t[t] is the application

of an explicit substitution to a term. Variables other than the last can be constructed

by combining � with weakening substitutions ↑σ , which corresponds to +1 in a de

Bruijn representation:

� : Tm (Γ ; σ) σ
t : Tm Δ σ 	t : SubstΓ Δ

t[t] : Tm Γ σ

t : Tm (Γ ; σ) τ
λσt : Tm Γ (σ→τ)

t : TmΓ (σ→τ) u : TmΓ σ
t u : Tm Γ τ

Our syntax for substitutions uses the standard categorical combinators: idΓ the iden-

tity substitution, 	t ◦	u composition of substitutions, 	t; t extension of a substitution

and ↑σ weakening or projection:

idΓ : Subst Γ Γ
	t : Subst Γ Δ 	u : Subst B Γ

	t ◦	u : Subst B Δ

	t : Subst Γ Δ t : TmΓ σ
(t; t) : Subst Γ (Δ; σ) ↑σ : Subst (Γ ; σ) Γ

As a special case we can derive substitution of the last variable by a term: given

t : Tm (Γ ; σ) τ and u : Tm Γ σ, we obtain t with � substituted by u as t[u] =

t[idΓ ; u] : Tm Γ τ.

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

316 T. Altenkirch and J. Chapman

As an example we represent the λ-term implementing the S combinator (given

σ, τ, ρ : Ty)

 λf .λg .λx .f x (g x) : (σ→τ→ρ)→(σ→τ)→σ→τ

as

λ(λ(λ((�[↑σ→τ][↑σ]) � ((�[↑σ]) �)))) : Tm ε ((σ→τ→ρ)→(σ→τ)→σ→τ).

2.2 Equational theory

We define weak conversion �wσ and strong (or βη) conversion for terms and

substitutions �βησ . Each of these is defined mutually for terms and substitutions:

t , u : Tm Γ σ

t �βησ u : Prop

t �wσ u : Prop

	t ,	u : Subst Γ Σ
	t �βησ 	u : Prop
	t �wσ 	u : Prop

.

Weak conversion corresponds to combinatorial equality and excludes the η-rule

and the ξ-rule (the congruence rule for λ). Since the axioms and rules defining

weak equality are simply a subset of the rules defining βη-equality we adopt the

convention that we write � if the rule applies to both but use �βησ if it only applies

to strong equality. Intuitively, the weak equality captures the fragment in which we

never go under a λ.

2.2.1 Conversion for terms

First we show the rules for how terms interact with substitutions:

�[t; t] � t proj

t[idΓ] � t id

t[t ◦	u] � t[t][u] comp

(λσt)[t] �βησ λσ(t[t ◦ ↑σ; �]) lam

(t u)[t] � t[t] (u[t]) capp

Note that in the weak theory we are not allowed to push a substitution under λ

because otherwise we could derive ξ from the other congruences. The β equation is

replaced by βσ:

(λσt)[u] u � t[u; u] βσ

As we will show below this βσ is equivalent to β in the strong theory, however, it is

stronger in the weak theory. We also add the η-rule for the βη-equality:

t �βησ λσ(t[↑σ] �) η

In addition we have refl, sym and trans and all congruence rules for terms except

for ξ which only holds for the strong equality:

t , u ∈ Tm (Γ ; σ) τ

t�βησu

λσt �βησ λσu
ξ

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

Big-step normalisation 317

2.2.2 Conversion for substitutions

The conversion for substitutions is given by the usual laws defining a category

(t ◦	u) ◦	v � 	t ◦ (u ◦	v) assoc

idΓ ◦	u � 	u idl

	u ◦ idΓ � 	u idr

and the following laws which formalise the existence of finite products:

↑σ ◦ (u; u) � 	u wk

(t; t) ◦	u � (t ◦	u); t[u] cons

idΓ ; σ � (idΓ ◦ ↑σ);� sid

The choice of laws is motivated by the need to show soundness and completeness

of our normalisation algorithm. In addition we have refl, sym and trans and all

congruence rules for substitutions.

2.2.3 The β- and βσ-equations

We note that the usual β-rule

(λσt) u �βησ t[u] β

is too weak for the weak equality because we cannot reduce a λ-term with a delayed

substitution. However, as announced earlier, we have the following:

Proposition 1

The rules β and βσ are inter-derivable in the strong theory.

Proof

First of all it is easy to see that βσ implies β: (λσt) u � (λσt)[idΓ] u using id

and (λσt)[idΓ] u � t[idΓ ; u] using βσ. Second we show that the other direction is

provable:

(λσt)[u] u

� (λσt[u ◦ ↑σ; �]) u {lam}
� t[u ◦ ↑σ; �][idΓ ; u] {β}
� t[(u ◦ ↑σ; �) ◦ (idΓ ; u)] {comp}
� t[(u ◦ ↑σ) ◦ (idΓ ; u);�[idΓ ; u]] {cons}
� t[(u ◦ ↑σ) ◦ (idΓ ; u); u] {proj}
� t[u ◦ (↑σ ◦ (idΓ ; u)); u] {assoc}
� t[u ◦ idΓ ; u] {wk}
� t[u; u] {idr}

�

3 Recursive normalisation

We start with a recursive implementation of normalisation and will later verify

that it is terminating, sound and complete. However, since our implementation uses

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

318 T. Altenkirch and J. Chapman

dependent types the function is automatically type correct – we will never have to

verify a property like subject reduction.

We first sketch the top-level structure of the algorithm before going into the details

of the implementation. We take the liberty of referring to values, environments and

normal forms before defining them. Normalisation proceeds in two steps: we define

a simple evaluator, basically an environment machine, which produces values, or

weak normal forms:

t : Tm Δ σ 	v : Env Γ Δ
eval t	v : Val Γ σ

The evaluator is parameterised by an environment, which assigns to every free vari-

able a value of the appropriate type and returns a value. To complete normalisation

we define a quoting function which returns a normal form by recursively evaluating

the term

v : Val Γ σ
quote v : Nf Γ σ

Hence we obtain nf by combining eval and quote:

t : TmΓ σ
nf t : Nf Γ σ

where nf t ⇒ quote (eval t idΓ)

Here idΓ : Env Γ Γ is the identity environment, which we define later by recursion

over Γ .

Having completed our sketch we start to fill in the details. We begin with the

definition of de Bruijn variables – the variable � is the variable at the end (right-hand

side) of the context; vsuc � is the next one; and so on

Γ : Con σ : Ty
Var Γ σ : �

where
� : Var (Γ ; σ) σ

x : Var Γ σ
vsucτ x : Var (Γ ; τ) σ

We define a type of neutral values, representing computations which are stuck

due to the presence of variables in a key position. Since we need neutral values

and neutral normal forms we parameterise the definition by an abstract type of

values:

T : Con → Ty → � Γ : Con σ : Ty
NeT Γ σ : �

where

x : Var Γ σ
x : NeT Γ σ

f : NeT Γ (σ→τ) a : T Γ σ
f a : NeT Γ τ

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

Big-step normalisation 319

Now a value is either a λ-closure or a neutral value. We also define the type of

environments, since it has to be defined mutually with the type of values:

Γ : Con σ : Ty
Val Γ σ : �

Γ , Δ : Con
Env Γ Δ : �

where

t : Tm (Δ; σ) τ 	v : Env Γ Δ
λσt[v] : Val Γ (σ→τ)

n : NeVal Γ σ
n : Val Γ σ

ε : Env Γ ε
v : Val Γ σ 	v : Env Γ Δ

(v ; v) : Env Γ (Δ; σ)

We introduce a family of (overloaded) embedding operations � � from Var Γ σ,

Val Γ σ and NeVal Γ σ into Tm Γ σ and from Env Γ Δ into SubstΓ Δ. We are ready to

define evaluation which has to be defined mutually with evaluation of substitutions

and applications of values:

t : Tm Δ σ 	v : Env Γ Δ
eval t	v : Val Γ σ

	t : Subst ΔΣ 	v : Env Γ Δ
	eval	t	v : Env Γ Σ

f : Val Γ (σ→τ) a : Val Γ σ
f @ a : Val Γ τ

We define eval, an environment-based evaluator:

eval � (v ; v) ⇒ v

eval t[t] 	v ⇒ eval t (eval	t	v)

eval λt 	v ⇒ λt[v]

eval t u 	v ⇒ (eval t	v)@ (eval u	v)

We also have to evaluate substitutions:

	eval id 	v ⇒ 	v
	eval 	t ◦	u 	v ⇒ 	eval	t (eval	u	v)
	eval (t; t) 	v ⇒ (eval	t	v); (eval t	v)
	eval ↑σ (v ; v) ⇒ 	v

Application of values recursively calls eval on the term with the context extended

by the argument, while in the case of a neutral value n , the argument is added to

the spine:

λt[v] @ a ⇒ eval t (v ; a)

n @ a ⇒ n a

To define full normalisation we first define the so-called η-long β-normal forms,

reusing the definition of neutral values:

Γ : Con σ : Ty
Nf Γ σ : �

where
n : Nf (Γ ; σ) τ
λσn : Nf Γ (σ→τ)

n : NeNf Γ •
n : Nf Γ •

Alternatively, β-normal forms can be defined by allowing any type in the last rule,

instead of restricting it to base type. We extend the family of embedding operations

� � with instances for Nf Γ σ and NeNf Γ σ into Tm Γ σ and also into ValΓ σ.

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

320 T. Altenkirch and J. Chapman

Weakening is defined by mutual recursion for neutral values, values and environ-

ments:

v : NeVal Γ σ
v+τ : NeVal (Γ ; τ) σ

where
x+τ ⇒ vsucτ x

(n v)+τ ⇒ (n+τ) (v+τ)

v : Val Γ σ
v+τ : Val (Γ ; τ) σ

where
n+τ ⇒ n+τ

(λρt[v])+τ ⇒ λρt[v
+τ]

v : Env Γ Δ
v+τ : Env (Γ ; τ) Δ

where
ε+τ ⇒ ε

(v ; v)+τ ⇒ (v+τ; v+τ)

We can iterate weakenings using contexts: here ++ is concatenation of contexts. We

give the instance for values as an example:

Δ : Con v : Val Γ σ
v+Δ : Val (Γ ++ Δ) σ

where
v+ε ⇒ v

v+(Δ; σ) ⇒ (v+Δ)
+σ

The same principle applies to all weakening operations.

Having defined weakening for values we can finally derive the identity environ-

ment, which is used by nf , by recursion over Γ :

Γ : Con
idΓ : Env Γ Γ

where

idε ⇒ ε

id(Γ ; σ) ⇒ (idΓ)+σ ; �

We are ready to define quote for values simultaneously with quote for neutral

values:

v : Val Γ σ
quoteσ v : Nf Γ σ

n : NeVal Γ σ
quote n : NeNf Γ σ

where

quote• n ⇒ quote n

quote(σ→τ) f ⇒ λσquoteτ (f +σ @�)

quote x ⇒ x

quote n v ⇒ (quote n) (quote v)

Note that we define quote by recursion over the type. This can be avoided if we

are only interested in β-normal forms. In this case we would define quote as follows:

quoteβ λσt[v] ⇒ λσquoteβτ (eval t (v+σ ; �))

quoteβ n ⇒ quote
β
n

While quote and quote remind us of reify and reflect (sometimes also called quote

and unquote) as they appear in normalisation by evaluation, the precise relationship

is less clear: while reify maps semantic values to normal forms and reflect maps

neutral terms to semantic values, here both quote and quote go basically in the same

direction, respectively mapping computational values and neutral values to normal

forms and neutral normal forms.

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

Big-step normalisation 321

4 Big-step semantics

The functions defined in the previous section are not structurally recursive, and

hence it is not obvious how to implement them in total type theory. To bridge

this gap we will exploit a technique pioneered by Bove and Capretta (2001): we

inductively define the graph of our function and then show that the graph is total;

i.e. for every input there exists an output. We can use this proof to actually run our

function without having to employ a choice principle – i.e. we keep the separation

of propositions and types.

4.1 The Bove–Capretta technique

As an example consider the following function which is defined using nested

recursion:

n : Nat
f n : Nat

where
f zero ⇒ zero

f (suc n) ⇒ f (f n)

While it is obvious to us that f is total, it is not obviously structurally recursive.

However, we can inductively define the graph of the function as a relation – its

big-step semantics:

n , n ′ : Nat
f n ⇓ n ′ : Prop

where
fz : f zero ⇓ zero

p : f n ⇓ n ′ p ′ : f n ′ ⇓ n ′′

fs p p ′ : f (suc n) ⇓ n ′′

We adopt the convention that the relation corresponding to the recursive definition

of f : Nat → Nat is written as f − ⇓ − : Nat → Nat → Prop . We can now define

a structurally recursive version of f called f str:

p : f n ⇓ m
f str n p : Σ n ′ :Nat . n ′ = m

where

f str zero fz ⇒ (zero, refl)

f str (suc n) (fs p p ′) with f str n p

| (n ′, refl) ⇒ f str n ′ p ′

And once we have established that f − ⇓ − is total, we have the following:

Theorem 2

n : Nat
f n ⇓ zero

Proof

By induction on n . �

We can now redefine f as a structurally recursive function2:

n : Nat
f n : Nat

where f n ⇒ fst (f str n (theorem2 n))

2 When using theorems as proof terms in programs we write theoremi, where i is the number of the
theorem.

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

322 T. Altenkirch and J. Chapman

4.2 Big-step semantics of nf

We will now apply this technique to the recursive definition of normalisation from

the previous section. The big-step semantics is given by the following inductively

defined relations:

t : Tm Δ σ 	v : Env Γ Δ v : Val Γ σ
eval t	v ⇓ v : Prop

	t : Subst ΔΣ 	v : EnvΓ Δ 	w : Env Γ Σ
	eval	t	v ⇓ 	w : Prop

f : Val Γ (σ→τ) a : Val Γ σ v : Val Γ τ
f @ a ⇓ v : Prop

v : Val Γ σ n : Nf Γ σ
quote v ⇓ n : Prop

v : NeVal Γ σ n : NeNf Γ σ
quote v ⇓ n : Prop

t : Tm Γ σ n : Nf Γ σ
nf t ⇓ n : Prop

The inductive definition of those relations is straightforward from the recursive

definition of the functions in the previous section. To illustrate this we give the

constructors for eval t	v ⇓ v :

rlam : eval (λσt)	v ⇓ λσt[v] rvar : eval � (v ; v) ⇓ v

p : 	eval	t	v ⇓ 	v ′ q : eval t	v ′ ⇓ v
rsubs p q : eval (t[t])	v ⇓ v

p : eval t	v ⇓ f q : eval u	v ⇓ v r : f @ v ⇓ w
rapp p q r : eval (t u)	v ⇓ w

We can now augment our evaluation algorithm, making it structurally recursive on

the big-step relation. To make the induction go through we have to show simul-

taneously that the functions calculate the specified results. We define structurally

recursive functions corresponding to the recursive ones in the previous section by

structural recursion over the proofs of termination:

t : TmΔ σ 	v : Env Γ Δ p : eval t	v ⇓ v
evalstr t	v p : Σv ′ :Val Γ σ . v ′ = v

	t : Subst ΔΣ 	v : Env Γ Δ p : 	eval	t	v ⇓ 	w
	eval

str
	t	v p : Σw ′ :EnvΓ Σ .w ′ = w

f : ValΓ (σ→τ) a : ValΓ σ p : f @ a ⇓ v
appstr f a p : Σv ′ :Val Γ τ. v ′ = v

v : ValΓ σ p : quote v ⇓ n
quotestr v p : Σn ′ :Nf Γ σ. n ′ = n

m : NeVal Γ σ p : quote m ⇓ n

quote
str

m p : Σn ′ :NeNf Γ σ. n ′ = n

p : nf t ⇓ n
nf str t p : Nf Γ σ

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

Big-step normalisation 323

The definition of the structurally recursive operator proceeds along the lines of
our example f str; e.g. in the case of evalstr this becomes

evalstr � (v ; v) rvar ⇒ (v , refl)

evalstr t[t] 	v (rsubs p q) with 	eval
str
	t	v p

| (v ′, refl) ⇒ evalstr t	v ′ q

evalstr λt 	v rlam ⇒ (λt[v], refl)

evalstr t u 	v (rapp p q r) with evalstr t	v p | evalstr u	v q

| (f , refl) | (a , refl)

⇒ appstr f a r

We are using the with-construct here to allow us to pattern match on an

intermediate value – see the relevant literature (McBride & McKinna 2004; Norell

2007b) for further details. The derivation of structurally recursive versions of @,
	eval, quote and quote proceeds analogously.

5 Termination and completeness

We use the notion of strong computability to show that our normalisation function

terminates and that the result is βη-equivalent to the input. Since we are evaluating

under λ, we introduce a Kripke-style extension of computability at higher type,

v : Val Γ σ
SCVΓ ,σ v : Prop

which is defined by recursion over σ:

quote n ⇓ m �n� �βησ �m�
SCVΓ ,• n

∀Δ.∀v :Val (Γ++Δ) σ .SCV v → ∃w .f +Δ @ v ⇓ w ∧ �f +Δ��v� �wσ�w� ∧ SCVw
SCVΓ , (σ→τ) f

It is straightforward to extend strong computability to environments:

	v : Env Γ Δ
SCEΓ ,Δ	v : Prop

where
SCE ε

SCE	v SCV v
SCE (v ; v)

We will need that strong computability is closed under weakening:

Lemma 3

SCVΓ , σ v
SCV(Γ++Δ), σ v+Δ

SCEΓ ,Σ 	v
SCE(Γ++Δ),Σ 	v

+Δ

Proof

By induction over σ and Σ . �

Our main technical lemma is that quote terminates for all strongly computable

values and that the result is βησ-convertible to the input. Our proof proceeds by

induction over the type; to deal with the negative occurrence of types we show at the

same time that termination of quote for neutral terms implies strong computability.

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

324 T. Altenkirch and J. Chapman

The second component of our proof is also required to show that the identity

environment is strongly computable. This structure of establishing two propositions

by mutual induction over types is common to conventional strong normalisation

proofs and can also be found in the normalisation by evaluation construction.

Lemma 4

SCVΓ , σ v
∃m :Nf Γ σ. quoteΓ , σ v⇓m ∧ �v� �βησ �m�

(q)
quoteΓ , σ n⇓m �n� �βησ �m�

SCVΓ , σ n
(u)

Proof

By mutual induction over σ. In the base case both implications follow trivially from

the definition of SCV and the observation that all values of base type are neutral.

Consider (σ→τ):

(q) Given SCVΓ , σ f . Using ind.hyp. (u) for σ we can show that SCV(Γ ; σ), σ �, and

hence f +σ @ � ⇓ v (1), �f +σ � � �wσ �v� (2) and SCVΓ ;σ,τ v . Now using ind.hyp.

(q) for τ we know that quote v ⇓ n (3) and �v� �βησ �n� (4). By the definition of

the big-step semantics and (1) and (2) we can infer that quoteΓ , σ f ⇓ λσn and

using η, ξ and with (2) and (4) that �f ��βησ�λσn�.

(u) Given quoteΓ , (σ→τ) n ⇓ m and �n� �βησ �m� (1). To show SCVΓ ,(σ→τ) n , assume

as given SCV(Γ++Δ), σ v . Certainly n+Δ @ v ⇓ n+Δ v , since n is neutral. By

ind.hyp. (q) for σ we know that quoteΓ ,σ v ⇓ u and �v� �βησ �u� (2). Hence,

quoteΓ ,σ (n+Δ v) ⇓ m u (3), and from (1) and (2) we can infer �n+Δ� �v� �βησ �n+Δ v�
(4). SCV(Γ++Δ), τ (n+Δ v) follows from (3) and (4) by ind. hyp. (u) for τ. �

A simple consequence of the second component of the lemma is that variables are

strongly computable, and hence the identity environment is strongly computable.

Corollary 5

x : Var Γ σ
SCVx

(1) Γ : Con
SCE idΓ

(2)

Proof

(i) Since quoteΓ , σ x ⇓ x , we just have to apply (u) of Lemma 4.

(ii) By induction over Γ using (i) and Lemma 3. �

We prove the fundamental theorem for our notion of strong computability which

has to be shown mutually for terms and substitutions:

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

Big-step normalisation 325

Theorem 6

t : Tm Δ σ SCEΓ ,Δ	v
∃v :Val Γ σ. eval t	v ⇓ v ∧ t[�	v�] �wσ �v� ∧ SCV v

	t : Subst ΔΣ SCEΓ ,Δ	v

∃	w : Env Γ Σ . 	eval	t	v ⇓ 	w ∧	t ◦ �	v� �wσ �	w� ∧ SCE	w

Proof

By induction over t : Tm Δ σ and 	t : Subst Γ Δ, using the laws of the weak

conversion relation and the definition of the big-step reduction relation. The proof is

mostly straightforward adaptation of the fundamental theorem for logical predicates;

we just discuss some interesting cases. We assume as given SCEΓ ,Δ	v .

λσt: Since λσt is a value, we have that eval (λσt)	v ⇓ f with f = λσt[v], and the

equational condition holds trivially. It remains to show that SCVΓ ,(σ→τ) f . Assume

as given SCVΓ++Δ′ ,σ v ; using the induction hypothesis for t and Lemma 3 for 	v ,

we know that there is a w , such that eval t (v+Δ′ ; v) ⇓ w , �t[v+Δ′ ; v]� �wσ �w� and

SCVw . By the definition of the big-step relation we have that f +Δ @ v ⇓ w , and

using βσ we can show that �f � �v� �wσ �w�.

(t u): By ind.hyp for t and u we can infer eval t	v ⇓ f (1), t[�	v�] �wσ �f � (2) and

SCVΓ , (σ→τ) f (3); eval u	v ⇓ v (4), u[�	v�] �wσ �v� (5) and SCVΓ , σ v (6). By the

definition of SCV using Δ = ε and (3) and (6) we get that f @ v ⇓ w (7),

�f � �v� �wσ �w� (8) and SCVw . Using the definition of the big-step semantics and

(1), (4) and (7) we can show that eval (t u)	v ⇓ w and (t u)[�	v�] �wσ �w� using

capp and (2), (5) and (8).

(t; t): By ind.hyp. for	t we get 	eval	t	v ⇓ 	w (1),	t ◦ �	v� �wσ �	w� (2) and SCE	w (3).

Using the last with the ind.hyp. for t we have that 	eval t	v ⇓ v (4), t[�	v�] �wσ �v�
(5) and SCV v (6). The definition of the big-step reduction and (1) and (4) imply

that 	eval (t; t)	v ⇓ (w ; v). Using the cons rule and (2) and (5) we can show

(t; t) ◦ �	v� �wσ �	w ; v� and SCE (w , v) by (3) and (6). �

Note that the proof never refers to the notion of computability at base type; hence

we could have replaced it with any predicate.3 The fundamental theorem already

implies termination and completeness for reduction to values – this corresponds

to the result in our workshop paper (Altenkirch & Chapman 2006) which uses

combinatory logic corresponding to weak equality of closed terms. Correspondingly

we can actually show that the result is weakly equal (�wσ) to its input, even though

here we only need that it is βησ-equal to its input.

We now can combine the results to infer that nf terminates and produces a normal

form which is βησ-equivalent to its input.

3 Including the empty set, indeed there are no closed values of base type.

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

326 T. Altenkirch and J. Chapman

Proposition 7

t : Tm Δ σ
∃n :Nf Δ σ. nf t ⇓ n ∧ t �βησ �n�

Proof

By the fundamental Theorem 6 and Corollary 5(ii) we know that eval t id ⇓ v

with t �wσ t[�id�] �wσ �v� and SCV v . Using Lemma 4 we know that quote v ⇓ n and

�v� �βησ �n�; and hence by combining the two steps we obtain the result. �

Since we now know that our functions terminate, we can from now on use the

total functions defined in Section 4 together with the termination proofs given in

this section:

t : TmΓ σ
nf t : Nf Γ σ

where nf t ⇒ nf str t (fst (prop7 t))

To ease notation we will omit the proof terms altogether but make sure that we

only use strongly computable values and environments.

Once we have established that nf is terminating it is straightforward to show

stability:

Proposition 8 (stability)

n : Nf Γ σ
nf �n� = n

n : NeNf Γ σ
∃ n ′ :NeVal Γ σ . eval �n� = n ′ ∧ quote n ′ = n

Proof

By simultaneous induction on normal and neutral terms. �

6 Soundness

It remains to be shown that normalisation maps βησ-equivalent terms to equal

normal forms. We define a logical relation on values which is preserved by the

values obtained from convertible terms and which is mapped to identical normal

forms by quote:

v ,w : ValΓ σ
v ∼Γ , σ w : Prop

where

quote m = quote n
m ∼Γ , • n

∀Δ . ∀v ,w :Val (Γ++Δ) σ . v ∼ w → f +Δ@v ∼ g+Δ@w

f ∼Γ , (σ→τ) g

The pointwise extension to environments is straightforward:

	v , 	w : Env Γ Δ
	v ∼	w : Prop

where
ε∼ ε

	v ∼	w v ∼ w
(v ; v) ∼ (w ; w)

As before for strong computability we will need that ∼ is closed under weakening:

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

Big-step normalisation 327

Lemma 9

v ∼Γ ,σ w
v+Δ ∼(Γ++Δ),σ w+Δ

	v ∼Γ ,Σ 	w
v+Δ ∼(Γ++Δ),Σ w+Δ

Proof

By induction over σ and Σ . �

We will also need that we have defined a family of partial equivalence relations

(PERs).

Lemma 10

For all v , v ′ : Val Γ σ such that v ∼Γ ,σ v ′ is symmetric and transitive, and for all

	v , 	v ′ : Env Γ Δ such that 	v ∼Γ ,Δ	v
′ is symmetric and transitive.

Proof

By induction over σ for both properties for the value relation and corresponding by

induction over Δ for the environment relation. Symmetry for environments requires

symmetry for values, and transitivity for environments requires transitivity for values.

Note also that we need symmetry of values to establish transitivity of values for the

σ → τ case. �

Before we can establish the fundamental theorem for logical relations we have to

show an identity extension lemma:

Lemma 11

t : TmΓ σ 	v ∼	w
eval t	v ∼ eval t 	w

	t : Subst Γ Δ 	v ∼	w
	eval	t	v ∼ 	eval	u 	w

Proof

By simultaneous induction over t : Tm Γ σ and	t : Subst Γ Δ. �

To show that quote maps equivalent values to equal normal forms, we have to

simultaneously establish a dual property, as before for strong computability.

Lemma 12

v ∼Γ , σ w
quoteΓ , σ v = quoteΓ , σ w

(q)
quoteΓ , σ m = quoteΓ , σ n

m ∼Γ , σ n
(u)

Proof

By induction over σ. For base types both properties follow directly from the definition

of ∼ and the observation that all values of base type are neutral. We show both

properties for (σ→τ):

(q) Given f ∼Γ , (σ→τ) g (1) we have to show quoteΓ , (σ→τ) f = quoteΓ , (σ→τ) g . This

reduces to showing λσquote(Γ ; σ), τ (f +σ@�) = λσquote(Γ ; σ), τ (g+σ@�). Applying

Lemma 9 to (1) we obtain f +σ∼(Γ ; σ), (σ→τ)g
+σ (2). Using ind.hyp. (u) for σ we

can show �∼(Γ ; σ),σ� (3), and hence by the definition of ∼ and (2) and (3) we

get f +σ@� ∼(Γ ; σ), τ f +σ@� (4). By applying ind.hyp (q) for τ to (4) we arrive at

quote(Γ ; σ), τ (f +σ@�) ∼(Γ ; σ), τ quote(Γ ; σ), τ (f +σ@�).

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

328 T. Altenkirch and J. Chapman

(u) Given quoteΓ , (σ→τ) m = quoteΓ , (σ→τ) n (1) we have to show m ∼Γ , (σ→τ) n . Un-

folding the definition of ∼ this means that given v ∼(Γ++Δ), σ w (2) we have to show

that m+Δ@v ∼(Γ++Δ), τ n+Δ@w . Using the induction hypothesis (u) for τ reduces to

showing that quote(Γ++Δ), τ (m+Δ v) = quote(Γ++Δ), τ (n+Δ w). This follows from (1)

and quoteΓ++Δ,σ v = quoteΓ++Δ,σ w which we can show by using ind.hyp (q) for σ

with (2). �

And also, we can exploit the second property to show that the identity environment

is related to itself.

Corollary 13

x : Var Γ σ
x ∼ x

Γ : Con
idΓ ∼ idΓ

We show the fundamental theorem of logical relations:

Theorem 14

t�βησu 	v ∼	w
eval t	v ∼ eval u 	w

	t�βησ	u 	v ∼	w
	eval	t	v ∼ 	eval	u 	w

Proof

By mutual induction over the derivation of t �βησ u and 	t �βησ	u , as before we

consider some typical cases. We assume that 	v ∼	w (H).

refl, trans and sym Reflexivity follows from Lemma 11 and symmetry and

transitivity from Lemma 10.

ξ: To show eval (λσt)	v ∼ eval (λσu)	w its sufficient to show λσt[v] ∼Γ , σ→τ λσu[w].

Given v ∼Γ++Δ,σ w we have to show that λσt[v
+Δ]@v∼Γ++Δ,τλσu[w+Δ]@w which

reduces to eval t (v+Δ ; v)∼(Γ++Δ), σeval u (v+Δ ; w); this follows from the induction

hypothesis and Lemma 9 applied to (H).

βσ: We have to show eval (((λσt)[u]) u)	v ∼ eval (t[u; u])	w . This reduces to having

to show eval t (eval	u	v ; eval u	v) ∼ eval t (eval	u 	w ; eval u 	w). This follows from ap-

plying Lemma 11 to u and (H) to give (1), Lemma 11 to 	u and (H) to give (2)

and Lemma 11 to t and (2,1).

assoc: We have to show 	eval ((s ◦	t) ◦	u)	v ∼ 	eval (s ◦ (t ◦	u))	w . This reduces to

showing 	eval	s (eval	t (eval	u	v)) ∼ 	eval	s (eval	t (eval	u 	w)); this follows again from

Lemma 11, applied first to 	u and (H) to give (1), then to	t and (1) to give (2) and

finally to	s and (2). �

By putting everything together we can establish soundness of the normalisation

function:

Proposition 15

t�βησ u
nf t = nf u

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

Big-step normalisation 329

Proof

Using Corollary 13 and Theorem 14 we can infer that eval t id ∼ eval u id; and hence

by Lemma 12 we obtain the result. �

7 System T

It is straightforward to extend our system to include a type of natural numbers. We

replace the base type • with N and extend the syntax of terms with zero 0, successor

suc and primitive recursion prec:

0 : Tm Γ N
t : Tm Γ N

suc t : Tm Γ N
n : Tm Γ N f : Tm Γ N→σ→σ z : Tm Γ σ

prec n f z : Tm Γ σ

We add the following � rules to the equational theory (and congruences for suc

and prec):

prec 0 f z � z cprimrecz

prec (suc n) f vz � f n (prec n f z) cprimrecs

Values Val and normal forms are extended with 0 and suc and neutral terms Ne with

a constructor to represent primitive recursion applied to a neutral natural number:

0 : ValΓ N
v : ValΓ N

suc v : Val Γ N 0 : Nf Γ N
n : Nf Γ N

suc n : Nf Γ N

n : NeT Γ N f : Val Γ (N→σ→σ) z : ValΓ σ
prec n f z : NeT Γ σ

A separate semantic primitive recursor pr is added and eval extended to accommo-

date it:

n : Val Γ N f : Val Γ (N→σ→σ) z : Val Γ σ
pr n f z : Val Γ σ

pr 0 f z ⇒ z

pr (suc n) f z ⇒ f @ n @(pr n f z)

eval 0 	v ⇒ 0

eval (suc n) 	v ⇒ suc (eval n	v)

eval (prec n f z) 	v ⇒ pr (eval n	v) (eval f n) (eval z n)

For quote we replace the case for quote• with cases for quoteN,

quoteN 0 ⇒ 0

quoteN (suc n) ⇒ suc (quoteN n)

quoteN n ⇒ quote n

and the big-step semantics is updated accordingly. Next we replace the base cases •
in the definitions of SCV and ∼ with inductively defined notions for N:

SCVΓ ,N 0
SCVΓ ,N n

SCVΓ ,N (suc n)
quote n ⇓ m �n� �βησ �m�

SCVΓ ,N n

0 ∼N 0
m ∼N n

sucm ∼N suc n
quote m = quote n

m∼Γ ,Nn

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

330 T. Altenkirch and J. Chapman

We also require an extra lemma to prove the fundamental theorem:

Lemma 16

SCVΓ , (N→σ→σ) f SCVΓ σ z SCVΓ ,N n
∃v :Val Γ σ . pr f z n ⇓ v ∧ prec �f � �z � �n� �wσ �v� ∧ SCV v

Proof

By induction over SCVΓ ,N n . �

8 Conclusions

Let us summarize the main result of this paper:

Theorem 17

We have defined a function in total type theory

t : TmΓ σ
nf t : Nf Γ σ

with the following properties:

soundness
t �βησ t ′

nf t = nf t ′

completeness
t �βησ �nf t�

stability n : Nf Γ σ
nf �n� = n

Proof

Propositions 7, 8 and 15. �

As we have already indicated, we chose the names because we consider normal forms

as a syntactic model construction. Moreover, the second property, completeness,

implies that the inverse of soundness holds:

Corollary 18

nf t = nf u
t �βησ u

Since our definition of normal form is a first-order inductive definition (see Propo-

sition 3), it is clear that equality of normal forms is decidable. Hence, we obtain the

following corollary:

Corollary 19

Given t , u : TmΓ σ, it is decidable whether t �βησ u holds.

Moreover, the last property, stability, clearly implies that nf is surjective on normal

forms. As a consequence, we can prove relevant properties of terms by induction

over normal forms.

This is not a new result: it can be obtained by proving strong normalisation of

a suitably chosen small-step reduction relation (avoiding Melliès’ problem) or by

using normalisation by evaluation. What have we gained by our approach?

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

Big-step normalisation 331

First of all, the traditional approach using term rewriting does not directly lead

to an implementation of normalisation. We can use strong normalisation to justify

such an implementation, but this requires yet another proof. Also we wonder why

we have to first fight with the non-determinism introduced by the small-step relation

only to throw it away in the end anyway. The case of the typed λ-calculus with

strong sums (Lindley 2007) is a good example. Lindley’s (2007) analysis clearly

suggests an algorithm to compute normal forms, but this is lost due to the need to

fit it into the framework of term rewriting.

Second, the term-rewriting approach means that we need to prove the Church–

Rosser property as a property of our rewriting system. In our experience, it often

requires a fair amount of ingenuity to have the Church–Rosser property without

losing completeness or strong normalisation. In our setting, equational soundness is

shown by using the fundamental property of logical relation. This at least inspires

some hope that our construction will be more easily generalizable to other calculi.

What about normalisation by evaluation (NBE)? In our view (Altenkirch et al.

1995), it is basically a semantic construction: we provide a complete model construc-

tion; we show completeness by constructively inverting evaluation. This approach

gives us a beautiful high-level analysis of normalisation; however, its actual com-

putational content is often not immediately clear, and the normalisation functions

seems to work by magic. No doubt this counterintuitive nature of NBE has a

lot to do with the intensive use of higher-order functions in its implementation.

They are also the reason that NBE can be only formalised in a metatheory in

which constructive higher-order functions are primitive. This may be one reason

why the traditional approach using term rewriting is still more popular: it can

be easily formulated within standard set theory. Our approach shares this feature,

just replacing small-step reduction by a computationally more realistic big-step

semantics.

It has been suggested by one anonymous referee that we should try to derive

our algorithm from NBE together with the implementation of an evaluator for

the functional functional metalanguage which is used to execute the higher-order

program. It seems plausible that this is possible – however, we doubt that much is

gained by doing so because we claim that our approach has its own intuitive beauty

and does not need to be justified by translation. Let us look back at what we have

done.

How do we implement normalisation? We reduce to values, corresponding to

weak normal forms and iterate the process (quote). This gives rise to a normaliser

to β-normal forms. The only modification required for η-equality in this case is

to recursively η-expand every functional term. How do we prove termination? We

adopt Tait’s method of strengthening the induction hypothesis to function types –

i.e. by using logical predicates. Since we go under λ’s we really need Kripke logical

predicates – this is traditionally swept under the carpet by syntactic trickery, using an

infinite supply of fresh variables. Completeness, i.e. that the result of normalisation is

convertible to its input, can be shown at the same time, since it follows the structure

of the algorithm. How do we prove soundness, i.e. that convertible terms are mapped

to identical normal forms? We use logical relations, indeed Kripke logical relations,

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

332 T. Altenkirch and J. Chapman

for the same reasons as above. In the present paper we have spelled out the details

of this construction in great detail, corresponding to a formalisation using the Agda

system (Chapman 2007).

Our recipe, we believe, is applicable to many calculi. Clearly, we have to justify

this claim by actually applying our method to well-known difficult cases: typed λ-

calculus with sums or other extensions such as bar recursion, dependent types with

η rules and the combination, i.e. dependent types with non-empty sums and bar

recursion; the last are calculi whose metatheoretic properties are not yet established.

Acknowledgments

We would like to thank Conor McBride for advice related to the formalisation of

the material; we would also like to thank Ulf Norell for implementing Agda and

help with using it. We are grateful for the anonymous referees for their thorough

and competent feedback which helped very much to improve the presentation of the

material.

References

Abadi, M., Cardelli, L., Curien, P.-L. & Lèvy, J.-J. (1990) Explicit substitutions. In Conference

Record of 17th Annual ACM Symposium on Principles of Programming Languages, POPL ’90

(San Francisco, CA, Jan. 1990). ACM Press, pp. 31–46.

Altenkirch, T. & Chapman, J. (2006) Tait in one big step. In Proceedings of the Workshop on

Mathematically Structured Functional Programming, MSFP 2006 (Kuressaare, July 2006),

McBride, C. & Uustalu T. (eds), Electronic Workshops in Computing. BCS, article 4.

Altenkirch, T., Dybjer, P., Hofmann, M. & Scott, P. (2001) Normalization by evaluation for

typed lambda calculus with coproducts. In Proceedings of the 16th Annual IEEE Symposium

on Logic in Computer Science, LICS ’01. Boston, MA.

Altenkirch, T., Hofmann, M. & Streicher, T. (1995) Categorical reconstruction of a reduction

free normalization proof. In Proceedings of the 6th International Confernece on Category

Theory and Computer Science, CTCS ’95 (Cambridge, August 1995), Pitt, D., Rydeheard,

D. E. & Johnstone, P. (eds), Lecture Notes in Computer Science, vol. 953. Springer,

pp. 182–199.

Balat, V. (2002) Une étude des sommes fortes: isomorphismes et formes normales. PhD thesis,

Université Denis Diderot.

Berger, U. & Schwichtenberg, H. (1991) An inverse of the evaluation functional for typed λ–

calculus. In Proceedings of the 6th Annual IEEE Symposium on Logic in Computer Science,

LICS ’91 (Amsterdam, July 1991). IEEE CS Press, pp. 203–211.

Bove, A. & Capretta, V. (2001) Nested general recursion and partiality in type theory.

In Proceedings of the 14th International Conference on Theorem Proving in Higher-Order

Logics, TPHOLs 2001 (Edinburgh, September 2001), Boulton, R. J., & Jackson, P. B. (eds),

Lecture Notes in Computer Science, vol. 2152. Springer, pp. 121–135.

Chapman, J. (2007) Formalisation of big-step normalisation for system T [online]. Available

at http://cs.ioc.ee/∼james/BSN.html (Accessed 4 May 2009).

Chapman, J., McBride, C. & Altenkirch, T. (2007) Epigram reloaded: a standalone typechecker

for ETT. In Trends in Functional Programming 6, van Eekelen, M. (ed). Intellect, pp. 79–94.

Coquand, C. (2002) A formalised proof of the soundness and completeness of a simply typed

lambda-calculus with explicit substitutions, Higher-Order Symb. Comput., 15 (1): 57–90.

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

Big-step normalisation 333

Coquand, T. (1991) An algorithm for testing conversion in type theory. In Logical Frameworks,

Huet, G. & Plotkin, G. (eds). Cambridge University Press, pp. 255–279.

Coquand, T. & Dybjer, P. (1997) Intuitionistic model constructions and normalization proofs,

Math. Struct. Comput. Sci., 7 (1): 75–94.

David, R. (2001) Normalization without reducibility, Ann. Pure Appl. Logic, 107 (1–3): 121–

130.

Ghani, N. (1995) Beta–eta equality for coproducts. In Proceedings of the 2nd International

Conference on Typed Lambda Calculi and Applications, TLCA ’95 (Edinburgh, April 1995),

Dezani-Ciancaglini, M. & Plotkin, G. (eds), Lecture Notes in Computer Science, vol. 902.

Springer, pp. 171–185.

Girard, J.-Y., Lafont, Y. & Taylor, P. (1989) Proofs and Types. Cambridge Tracts in Theoretical

Computer Science, vol. 7. Cambridge University Press.

Hofmann, M. (1997) Syntax and semantics of dependent types. Semantics and logics of

computation, vol. 14, Pitts, A. M. & Dybjer, P. (eds). Cambridge University Press,

pp. 79–130.

Jay, C. B. & Ghani, N. (1995) The virtues of eta-expansion, J. Funct. Program., 5 (2): 135–154.

Levy, P. B. (2001) Call-by-Push-Value. PhD thesis, Queen Mary, University of London.

Lindley, S. (2007) Extensional rewriting with sums. In Proceedings of the 8th International

Conference on Typed Lambda Calculi and Applications, TLCA 2007 (Paris, June 2007),

Ronchi Della Rocca, S. (ed), Lecture Notes in Computer Science, vol. 4583. Springer,

pp. 255–271.

Martin-Löf, P. (1984) Intuitionistic Type Theory. Bibliopolis.

McBride, C. (2005a) Epigram [online]. Available at http://www.e-pig.org/ (Accessed 4 May

2009).

McBride, C. (2005b) Epigram: practical programming with dependent types. In Revised

Lectures from 5th International School on Advanced Functional Programming, AFP 2004

(Tartu, August 2004), Vene, V. & Uustalu, T. (eds), Lecture Notes in Computer Science,

vol. 3622. Springer, pp. 130–170.

McBride, C. & McKinna, J. (2004) The view from the left, J. Funct. Program., 14 (1): 69–111.

Melliès, P.-A. (1995) Typed lambda-calculi with explicit substitutions may not terminate. In

Proceedings of the 2nd International Conference on Typed Lambda Calculi and Applications,

TLCA ’95 (Edinburgh, April 1995), Dezani-Ciancaglini, M. & Plotkin, G. (eds), Lecture

Notes in Computer Science, vol. 902. Springer, pp. 328–334.

Nordström, B., Petersson, K. & Smith, J. (1990) Programming in Martin-Löf ’s Type Theory:

An Introduction. Oxford University Press.

Norell, U. (2007a) Agda 2 [online]. Available at http://www.cs.chalmers.se/∼ulfn/.

Norell, U. (2007b) Towards a Practical Programming Language Based on Dependent Type

theory. PhD thesis, Chalmers University of Technology.

Tait, W. W. (1967) Intensional interpretations of functionals of finite type, J. Symb. Logic,

32 (2): 198–212.

Watkins, K., Cervesato, I., Pfenning, F. & Walker, D. (2004) A concurrent logical framework:

the propositional fragment. In Revised Selected Papers from 3rd Internationa; Workshop on

Types for Proofs and Programs, TYPES 2003 (Torino, April/May 2003), Berardi, S., Coppo,

M. & Damiani, F. (eds), Lecture Notes in Computer Sci., vol. 3085. Springer, pp. 355–377.

https://doi.org/10.1017/S0956796809007278 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007278

