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We perform simulations of a two-fluid–structure interaction problem involving liquid–
gas flow past a fully submerged stationary circular cylinder. Interactions between the
liquid–gas interface with finite surface tension and flow disturbances arising from the
cylinder induce a variety of interfacial phenomena and wake structures. We map different
interface regimes in a parameter space defined by the Bond number Bo ∈ [100, 5000]
and the submergence depth h/D ∈ [1, 2.5] of the cylinder while keeping the Reynolds
(Re) and Weber (We) numbers fixed at 150 and 1000, respectively. The emerging interface
features are classified into three distinct regimes: interfacial waves generated by Strouhal
vortices, the entrainment of multi-scale gas bubbles and the reduced deformation state.
In the interfacial wave regime, we demonstrate that the frequency of transverse interface
fluctuations at a specific streamwise location is identical to the vortex shedding frequency.
Additionally, the wavelength of interfacial waves is determined by the size of vortex pairs
consisting of alternating Strouhal vortices. In the gas entrainment regime at Bo = 1000,
our bubble-size distributions reveal that the entrained bubbles have sizes ranging from one
to two orders of magnitude smaller than the cylinder. These multi-scale bubbles are formed
primarily through plunging and surfing breakers at h/D = 2.5. In contrast, at h/D = 1,
smaller bubbles initially emerge from the breakup of a gas finger. Over time, some of
these bubbles grow in size through coalescence cascades. The influence of Re ∈ [50, 150]
and W e ∈ [700, 1100] on gas entrainment is quantified in terms of mean bubble size and
count. Lastly, we demonstrate how the deformability of the liquid–gas interface drives the
hydrodynamic lift force acting on the cylinder. The net downward lift materializes only
in the gas entrainment and reduced deformation regimes due to the broken symmetry of
the front stagnation point. While our study focuses on two-dimensional simulations, we

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1008 A10-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-5908-1736
https://orcid.org/0009-0004-1745-2588
https://orcid.org/0000-0002-7764-3595
https://orcid.org/0000-0002-7878-0655
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2025.162&domain=pdf
https://doi.org/10.1017/jfm.2025.162


K. Patel, J. Sun, Z. Yang and X. Zhu

also provide insights into the three-dimensional gas entrainment mechanism for one of the
extreme cases at h/D = 1.

Key words: multiphase flow, wave-structure interactions, vortex shedding

1. Introduction

1.1. Two-fluid–structure interaction
The fluid–structure interaction problem involving single-phase flow past a stationary
circular cylinder has remained one of the central problems in fluid dynamics for an
extended period (Strouhal 1878; von Kármán & Rubach 1912; Roshko 1955; Williamson
1996). In the case of isothermal Newtonian fluids, the flow characteristics arising
from this problem are governed by a single control parameter – the Reynolds number
Re =O(inertial forces)/O(viscous forces). The continuing research on vortex-induced
vibrations (Williamson & Govardhan 2004) in such bluff-body flows, caused by periodic
shedding of vortices, has paved the way for innovative energy harvesting applications
(Lee et al. 2019; Joy et al. 2023).

Over time, numerous physics-rich variants of this canonical flow problem have surfaced.
Examples include flow around an oscillating cylinder (Hourigan 2021), flow past a fixed
cylinder with a superhydrophobic surface (Sooraj et al. 2020), confined viscoelastic flow
across twin cylinders (Hopkins, Haward & Shen 2021) and many more. In a similar
fashion, in our study, we focus on a spin-off of this classical fluid–structure interaction
problem. We perform simulations of a two-fluid–structure interaction (tFSI) problem
involving liquid–gas flow over a stationary cylinder. The cylinder is completely immersed
in the flowing liquid phase and is positioned in close proximity to the horizontal liquid–gas
interface. The introduction of a free surface in the form of a liquid–gas interface brings
about several intriguing effects via the interaction between disturbance flow originating
from the presence of a circular cylinder, buoyancy, viscosity contrast and surface tension.
Thus, unlike the traditional flow past a cylinder arrangement, the present tFSI problem is
characterised by a multi-dimensional control parameter space. Furthermore, the current
flow configuration is also representative of a typical arrangement encountered in offshore
structures (Reichl, Hourigan & Thompson 2005; Zhao et al. 2021).

In one of the first experimental studies, Sheridan, Lin & Rockwell (1997) investigated
the dynamics of uniform flow around a stationary cylinder positioned beneath a
free surface that separates air and water. Their study specifically examined flows
with Re ∼O(1000). In addition to Re, they introduced the Froude number Fr2 =
O(inertial forces)/O(gravitational forces) and the submergence depth h/D, representing
the gap between the cylinder, with a diameter of D, and the free surface at height h.
Parameters Fr and h/D are relevant for quantifying the dynamics of the free surface
and its interaction with the cylinder wake. Their particle image velocimetry uncovered
two distinct features within the wake region when the air–water interface was almost
undistorted (low Fr values) and located close to the cylinder surface. First, a stable jet-
like flow emanated from the gap between the top of the cylinder and the free surface.
Second, a noticeable downward bending of the mixing layer occurred at the bottom of
the cylinder. Additionally, specific {Fr, h/D} combinations were found to induce the
appearance of a wavy air–water interface and small-scale wave breaking. Nevertheless, the
core of their discussion primarily centred on the direct observations of vorticity dynamics
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in the immediate vicinity of the cylinder, spanning approximately three times the cylinder
diameter in the downstream direction.

Subsequently, several groups performed two-dimensional numerical studies of flow set-
ups involving circular (Reichl et al. 2005; Colagrossi et al. 2019; González-Gutierrez
et al. 2019; Wang et al. 2021; De Vita et al. 2021; Lin & Yao 2023), elliptic (Subburaj,
Khandelwal & Vengadesan 2018) and square (Karmakar & Saha 2020) cylinders for
relatively low Reynolds numbers (Re � 250). Notably, these two-dimensional simulations
exhibit flow features that are qualitatively similar to those observed in the experiments of
Sheridan et al. (1997). Using volume-of-fluid simulations, Reichl et al. (2005) mapped
the no-shedding and shedding wake states for different combinations of Fr and h/D. The
presence of the nearby free surface at the lower Fr and h/D values dampens the negative
vorticity originating from the upper half of the cylinder due to the reduced flow in the
gap between the cylinder and the free surface. The resulting negative vorticity rapidly
dissipates in the wake region, leading to the absence of vortex shedding. Furthermore,
when the free surface begins to deform at relatively larger values of Fr , interfacial
circulation counteracts the negative vorticity in the liquid phase. This, once again, leads to
a cylinder wake devoid of alternating vortices.

Reichl et al. (2005) also observed the development of curved areas on the free surface
near the cylinder despite the Fr values being well below unity, i.e. subcritical flow. Upon
examining the local Froude number in the gap above the cylinder surface, they found the
flow nearing the critical condition with the local Froude number approaching unity. This
observation explains the deviation of the free surface from the flat state, which was also
evident in the experiments of Sheridan et al. (1997). A detailed discussion about the onset
of vortex shedding and free-surface deformation was presented by González-Gutierrez
et al. (2019) using global stability analysis. It was shown that for elevated Froude numbers
(2 � Fr � 2.5), the presence of a nearby free surface makes the flow more susceptible
to instability, thereby bringing down the critical Reynolds number compared with the
traditional single-phase flow across a circular cylinder. Conversely, this trend is reversed
for Fr values below unity.

Besides flow states with and without vortex streets, Sheridan et al. (1997) and Reichl
et al. (2005) noted the existence of a metastable wake state in their studies, wherein the
liquid jet emerging from the gap between the cylinder and the free surface undergoes
oscillations. Later, Colagrossi et al. (2019) monitored the variation of the lift force
experienced by the cylinder in the metastable state for substantially longer times. The
time history indicated irregular oscillations in the lift force with a complete absence of
vortex shedding during certain time intervals. Moreover, Colagrossi et al. (2019) showed
that such a lift force signal contains one dominant frequency associated with the vortex
shedding and an additional order-of-magnitude-smaller frequency associated with the
oscillations of the jet. Interestingly, such metastable states also involve the entrainment
of air (or gas) bubbles, as seen in Reichl et al. (2005) and Colagrossi et al. (2019). Bubble
formation through free-surface breakup was also observed by Subburaj et al. (2018) for
an elliptic cylinder and González-Gutierrez et al. (2019) for a circular cylinder. However,
prior numerical studies did not account for surface tension in their simulations, which may
alter the interface dynamics.

Only recently, Guo et al. (2023) incorporated surface tension in free-surface simulations.
Their work focused on a rotating cylinder near the free surface for Fr values up
to 0.5, wherein they reported the entrainment of air bubbles in the cylinder wake.
These entrained air bubbles were found to vary from one to two orders of magnitude
smaller than the cylinder diameter. In the present work, we explore flow physics using
a more realistic set-up involving surface tension. Particularly for high Fr (�1) cases
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investigated in our study, where the liquid–gas interface starts to deform significantly
and break, the inclusion of surface tension is crucial. The presence of surface
tension introduces the Weber number W e =O(inertial forces)/O(surface tension forces)
and Bond number Bo =O(gravitational forces)/O(surface tension forces), providing a
complete description of the current tFSI problem, along with the parameters h/D and
Re. Also, note that Fr2 = W e/Bo.

Apart from low-Reynolds-number free-surface flows across cylinders, there have also
been some recent efforts to realise high-Reynolds-number scenarios in numerical studies.
Zhao et al. (2021) utilised large-eddy simulations for Re and Fr values in a range similar
to that investigated by Sheridan et al. (1997). They noted that at sufficiently high enough
Fr, the mean free-surface elevation in the downstream region of the cylinder becomes
significant, reaching 10 % of the cylinder diameter for Fr = 0.6 in their study. Later,
Alzabari, Wilson & Ouro (2023) conducted large-eddy simulations to gain insights into
vortex shedding behind a circular cylinder in shallow-water flows. Here, the interaction
between ground vortices and those shed from the cylinder becomes important, leading to
modifications in turbulent mixing and downstream free-surface dynamics.

In addition to rigid cylinders of various shapes, free-surface flows past spheres (Sareen
et al. 2018; Chizfahm et al. 2021; Rajamuni et al. 2021; De Vita et al. 2021; Hunt et al.
2023), flat plates (Hofman 1993; Díaz-Ojeda et al. 2019; Hu et al. 2023), hydrofoils (Iafrati
& Campana 2005) and transom sterns (Hendrickson et al. 2019; Yang et al. 2023) are also
focus points of ongoing work.

Our previous discussion on existing research showcases a growing interest in
free-surface/two-phase flows across bluff bodies. However, it is apparent that earlier
low-Reynolds-number numerical simulations on free-surface flow around a submerged
cylinder primarily concentrated on structural loads and vorticity dynamics near the
cylinder and weakly deformed interface. Moreover, occasional breakup events in
these studies lacked the restoring force exerted by surface tension, i.e. W e = ∞.
The present study focuses on the following key aspects to expand upon previous
research: (a) incorporating finite surface tension into the numerical formulation and
quantifying its influence on interfacial phenomena; (b) systematically mapping various
regimes of interface dynamics and associated wake structures for different values
of the parameters set {h/D, Re, We, Bo}; (c) presenting a unified discussion on the
hydrodynamic lift force experienced by the cylinder, considering its interplay with the
shape and deformability of the adjacent liquid–gas interface; (d) characterising the wave
patterns that emerge on the liquid–gas surface due to the presence of the cylinder; and
(e) examining the mechanisms responsible for gas entrainment in the cylinder’s wake,
alongside a detailed analysis of the Lagrangian statistics associated with the entrained gas
bubbles.

The structure of the rest of the article is organised as follows. Next, in § 2, we
introduce our flow set-up, computational framework and parametric details. Following
this, in § 3, we analyse our numerical findings and discuss the underlying physics of
the present tFSI problem. First, we examine the overall trends in the dynamics of the
liquid–gas interface and vorticity field alongside the hydrodynamic lift force acting on
the rigid cylinder. Subsequently, we take a closer look at interesting flow features in our
parameter space, such as wave formation and bubble entrainment. We also comment on
the bubble entrainment phenomenon in a three-dimensional setting by considering an
extreme scenario with the lowest submergence depth in our parameter space. Finally, we
wrap up our discussion with concluding remarks in § 4. A rigorous discussion on the
benchmarking and grid convergence of our two-dimensional flow solver is provided in
Appendix A.
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Figure 1. Computational set-up for free-surface flow past a stationary circular cylinder. The incoming
unidirectional uniform base flow impacts the cylinder, inducing flow disturbances in the downstream region.
Consequently, these disturbances may perturb the flat liquid–gas interface and the flowing gas layer in the
interfacial region.

2. Methods
The discussion of numerical techniques in this section pertains exclusively to the two-
dimensional simulation results presented in §§ 3.1–3.5. The numerical framework for the
three-dimensional case in § 3.6 will be detailed later within that subsection, alongside the
results.

2.1. Flow domain
The diagram showcasing the geometry of our flow domain is illustrated in figure 1. We
consider a square domain of size L , partially filled with a liquid of density ρ1 and dynamic
viscosity μ1. The remainder of the domain contains a gas of density ρ2 and dynamic
viscosity μ2. The box size L and property ratios (ρ1/ρ2 and μ1/μ2) are provided later
in this section. The interface (free surface) separating liquid and gas phases has surface
tension σ . The base state of the system corresponds to a steady uniform flow in the positive
x direction with a velocity magnitude U . Note that the uniform flow within the liquid phase
also drags the gas phase with it, giving rise to a flowing gas layer adjacent to the liquid–gas
interface, i.e. the two-phase mixing layer.

The base flow entering the computational domain is disturbed by the rigid circular
cylinder of diameter D, as shown in figure 1. Our objective is to examine the flow
perturbations resulting from the interaction between the flowing liquid and cylinder and
their impact on the dynamics of the liquid–gas interface. The cylinder is located at a
distance 10D from the inlet and h from the initially flat liquid–gas interface. The top
and bottom boundaries of our computational domain are treated as stress-free walls,
i.e. the free-slip condition. The inlet boundary condition is applied to the left edge of
the domain, allowing only the influx of the liquid phase with a prescribed velocity U
(Karmakar & Saha 2020; Guo et al. 2023), while the interface elevation is fixed at a
height h (see figure 1). This approach effectively models free-surface flow experiments
commonly conducted in water tunnels (Sareen et al. 2018; Hunt et al. 2023). At the
right edge of the domain, an outflow boundary condition is implemented. This involves
prescribing a Neumann boundary condition (zero normal gradient) for both the velocity u
and the volume fraction field C , along with a Dirichlet boundary condition (set to zero) for
the pressure p. Note that the present implementation of the outflow boundary condition
is realised by reshaping gravity as an interfacial force (Wroniszewski, Verschaeve &
Pedersen 2014; Popinet 2018).
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The validation study presented in Appendix A demonstrates that the implemented
outflow boundary condition yields results consistent with those of a previously published
numerical study that utilises a sponge region at the outlet. In our subsequent discussion
in § 3, we adopt a computational domain that is twice the size of the one used in the
validation study, minimising numerical artifacts associated with the outflow boundary
condition. Additionally, we exclude the downstream region within 20D from the outlet
from our analysis. As an additional verification, we also confirmed the consistency of
our results using an alternative formulation that employs a coarser mesh at the outlet to
artificially under-resolve flow structures, effectively functioning as a sponge region.

2.2. Conservation laws and computational implementation
Typically, computer simulations of multi-fluid problems involve independently solving the
Navier–Stokes equations for each fluid component. The solutions acquired for individual
fluid components must be matched at all fluid–fluid interfaces using the appropriate
kinematic and dynamic boundary conditions. In our study, we incorporate the one-fluid
formulation (Juric & Tryggvason 1998; Trujillo 2021), which employs only one set of
conservation laws for the entire computational domain in figure 1. The one-fluid approach
is facilitated by reshaping surface tension as a body force (Brackbill, Kothe & Zemach
1992), which vanishes in regions away from the fluid–fluid interface and thereby implicitly
capturing the Laplace pressure jump across the interface. Following this, we obtain the
flow continuity equation

∇·u = 0 (2.1)

and the momentum conservation equation

ρ

(
∂u
∂t

+ u·∇u
)

= −∇ p + ∇·
[
μ

(
∇u + (∇u)T

)]
+ ρg + σκδsn, (2.2)

where u, t , p, g = 〈0, g〉, κ = ∇·n, δs and n denote the velocity vector, time, pressure,
vector for the gravitational acceleration (see figure 1), interface curvature, interface delta
function and interface normal, respectively.

In addition to the time evolution of the flow field, we also need to track the movement
of the liquid–gas interface shown in figure 1. To accomplish this, we rely on the volume-
of-fluid (VOF) framework (Hirt & Nichols 1981). The VOF method utilises the volume
fraction field C(x, t) to detect liquid and gas phases in figure 1: C=1 for liquid and 0 for
gas. After each simulation time step, C is transported using the background flow field u
obtained from (2.1)–(2.2):

∂C

∂t
+ u·∇C = 0. (2.3)

Moreover, the fluid density ρ in (2.2) is calculated using the weighted average,
ρ=Cρ1+(1−C)ρ2, whereas the dynamic viscosity μ follows the harmonic mean,
μ−1=Cμ−1

1 +(1−C)μ−1
2 . In the context of the current liquid–gas system with significant

viscosity contrast, opting for the harmonic mean is more suitable (Tryggvason, Scardovelli
& Zaleski 2011; Fudge, Cimpeanu & Castrejón-Pita 2021). For interested readers, we
highlight that other equally effective interface capturing methods are also available, such
as level set (Gibou, Fedkiw & Osher 2018) and phase field (Patel & Stark 2023) techniques.

To incorporate (2.1)–(2.3) into our numerical simulations, we employ the open-
source finite-volume flow solver Basilisk (Popinet & Collaborators 2013–2024). Basilisk
utilises the classical time-splitting projection method (Chorin 1969) along with II-order
schemes for the spatial gradients. Furthermore, the viscous term in the momentum
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conservation (2.2) is computed implicitly, and the II-order Bell–Colella–Glaz unsplit
upwind scheme (Bell, Colella & Glaz 1989) is incorporated for the velocity advection term
un+(1/2)·∇un+(1/2), where the superscript n + (1/2) indicates the temporal discretisation
(Popinet 2009). The interface curvature κ required for the surface tension body force
in (2.2) is obtained using the height function approach (Popinet 2009). Also, the well-
balanced implementation of the surface tension force (Popinet 2018) ensures the mitigation
of spurious currents in our simulations. Finally, the advection of the volume fraction field
C in (2.3) is performed using a piecewise-linear geometrical VOF scheme (Scardovelli &
Zaleski 1999).

The last aspect we need to address in our framework is the treatment of the curved
immersed boundary corresponding to the stationary solid cylinder shown in figure 1. This
is not straightforward since all variables in (2.1)–(2.3) are defined on a Cartesian grid.
One of the popular approaches is to represent immersed boundaries using Lagrangian
markers and then couple them with the background Cartesian grid (Patel & Stark 2021;
Zhu et al. 2024). While this method is particularly effective for scenarios involving moving
immersed boundaries, for our current set-up with a stationary body, we follow the VOF-
based cut-cell method (Popinet 2003).

This approach introduces an auxiliary volume fraction field α(x) to distinguish between
solid and fluid regions: α=0 for solid and 1 for fluid. For mixed control volumes with
0 < α < 1, i.e. the cut cells, computations of gradients and fluxes are adjusted to account
for the presence of the solid boundary within the control volume (Johansen & Colella
1998; Popinet 2003), thereby enforcing the no-slip boundary condition on the surface
of the cylinder. The discrete representation of the solid–fluid boundary within control
volumes is achieved through piecewise linear reconstruction. Note that the liquid–
gas interface remains separate from the cylinder for all the cases investigated in the
present work. Thus, modelling of three-phase (solid–liquid–gas) contact line dynamics
is not required. Nonetheless, these specific cases are intriguing and will be investigated
separately in the subsequent part of this study.

2.3. Simulation parameters
In § 1, we outlined the qualitative definitions of the relevant non-dimensional governing
parameters for the problem set-up in figure 1. Here, we provide the mathematical form
of these non-dimensional numbers and discuss their numerical values employed in our
simulations. In our non-dimensional framework, we select the cylinder diameter D and the
magnitude of the incoming flow velocity U as the length and velocity scales, respectively,
which yields

Re = ρ1U D

μ1
, W e = ρ1U 2 D

σ
and Bo = ρ1gD2

σ
. (2.4)

Again, it is worth highlighting that by setting W e and Bo, we automatically fix the Froude
number Fr since Fr2 = W e/Bo = U 2/gD. Note that combinations of any two competing
forces from the set of four existing forces in the system – advection, viscous, gravity and
surface tension – give rise to six distinct dimensionless numbers. From these, we choose
Re, We and Bo as our independent parameters. The remaining three dimensionless numbers
are then determined automatically based on the selected values of Re, We and Bo.

The density and viscosity ratios between the liquid and gas phases are kept constant for
all numerical simulations discussed in § 3. The most ubiquitous liquid–gas combination
involving water and air exhibits ρ1/ρ2 ∼O(1000). Employing such a high density ratio
adds to the computational burden. To alleviate this, we follow Reichl et al. (2005) and set
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Figure 2. Flow disturbances resulting from the rigid cylinder drive the interface dynamics towards one or a
combination of the following states: (1) interfacial waves, (2) gas entrainment and (3) reduced deformation.
The transition between these emerging states is regulated by the submergence depth h/D and the Bond
number Bo. The remaining flow parameters are the Reynolds number Re = 150 and the Weber number W e =
1000. Instantaneous flow structures and interface shapes corresponding to various (Bo, h/D) combinations
highlighted by red squares are shown in figure 3.

ρ1/ρ2 = μ1/μ2 = 100 in our parametric study. These ratios are large enough to capture
the dynamics of a representative liquid–gas system. In our initial investigation on the
classification of interface topology, we set Re = 150 and W e = 1000, while Bo ranges
from 100 to 5000. Subsequently, at Bo = 1000, we discuss additional cases with the
Reynolds and Weber numbers in the ranges 50 � Re � 150 and 700 � W e � 1100. The
present values of Re in our simulations are well below Re� ≈ 190, which dictates the
transition from two- to three-dimensional flow (Barkley & Henderson 1996; Williamson
1996). Moreover, for W e = 1000 and Bo = 100, we get Fr ≈ 3.15 as the upper bound of
the Fr range in our simulations, which aligns well with Fr ranges in previous studies
involving tFSI (González-Gutierrez et al. 2019; Hendrickson et al. 2019) and free-surface
flows (Yu & Tryggvason 1990; Yu et al. 2019; Hendrickson, Yu & Yue 2022). Lastly,
the submergence depth h in our parameter space varies from D to 2.5D in increments of
0.25D.

In all two-dimensional simulations discussed in § 3, the domain size L in figure 1 is
set to 80D. To efficiently capture the interface and flow features throughout the entire
downstream domain, which spans 70D, we utilise the Basilisk library’s built-in adaptive
mesh refinement functionality (Popinet 2009; van Hooft et al. 2018). The maximum and
minimum mesh refinement levels are set to Lh=13 and Ll = 6, respectively, corresponding
to ≈102 uniform grid cells per cylinder diameter D when the mesh is fully refined. A more
in-depth discussion of our mesh refinement strategy, as well as the validation study and
grid convergence analysis, can be found in Appendix A.

3. Results and discussion

3.1. Emergent interface dynamics and associated wake structures
We begin our discussion by first classifying distinct free-surface/interface features
observed in our simulations. Figure 2 shows the state diagram summarising the emergent
interface dynamics for several combinations of the submergence depth h/D and the Bond
(Bo) number. The Reynolds (Re) and Weber (W e) numbers are fixed at 150 and 1000,
respectively, for all the cases. At the extreme ends of our Bo range, the liquid–gas interface
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either develops travelling interfacial waves (low Bo) or undergoes mild deformation (high
Bo and h/D). For intermediate values of Bo, we observe the entrainment of gas bubbles
in the liquid phase. The formation of gas bubbles in the entrainment state occurs via the
breakup of the liquid–gas interface, which is driven by the unsteady wake flow. It is evident
that a significant portion of our phase space in figure 2 is dominated by the gas entrainment
regime. To our knowledge, the systematic mapping and identification of various interface
regimes in figure 2 is being reported for the first time. Earlier two-dimensional numerical
studies (Reichl et al. 2005; Subburaj et al. 2018; Karmakar & Saha 2020) involving various
cylinder shapes mainly operated within the reduced deformation regime in figure 2.

Notably, the emergence of interfacial waves without breakup is rarely seen in our
parameter space, as it appears within a narrow band of 2 � h/D � 2.5 and 100 � Bo �
150. A gradual reduction in the submergence depth makes the interface more susceptible to
flow disturbances in the downstream region. Specifically, for a Bond number of Bo = 100,
the wave-like interfacial structures begin to break at a critical submergence depth of
h/D = 1.75, giving rise to a mixed regime characterised by the blend of interfacial
waves and gas entrainment (see figure 2). At Bo = 200, we observe a sudden transition
that eliminates the pure interfacial wave regime. At the same time, the mixed (waves
+ entrainment) regime also shrinks in the phase space, and the pure gas entrainment
regime appears. Subsequently, the gas entrainment regime sustains for 200 < Bo < 2000,
irrespective of the submergence depth. For Bo � 2000, the liquid–gas interface starts to
stabilise, as indicated by the onset of the reduced deformation regime in figure 2. At
Bo = 5000, the entrainment of gas bubbles takes place only when the interface is relatively
close to the cylinder. The transitions across different regimes in figure 2 are relatively sharp
at lower Bond numbers (Bo ∼O(100)) compared with higher values (Bo ∼O(1000)).

Having introduced the state diagram in figure 2, we now present snapshots of the
liquid–gas interface and vorticity field. Figure 3 illustrates a few such plots representing
various interface regimes outlined in figure 2. The (Bo, h/D) = (100, 2.5) combination in
figure 3(a1) corresponds to the interfacial wave regime (see figure 2). As the incoming flow
approaches and moves past the cylinder, it deflects the liquid–gas interface, as indicated
by the bulging of the interface near the cylinder. However, the shedding of vortices
is reminiscent of traditional single-phase flows past a cylinder. Therefore, the nearby
interface has little to no influence on the flow separation phenomenon. Subsequently,
in the wake region starting five diameters away from the cylinder, vortex pairs detached
from unstable shear layers begin to diffuse in the cross-stream direction. This exposes the
interface to the suction flow induced by a pair of clockwise (blue) and anticlockwise (red)
Strouhal vortices, pulling the interface into the liquid phase. Ultimately, a sawtooth-shaped
wavy interface becomes apparent.

A magnified view of an interface segment is shown in figure 3(a2). The penetration
depth of the interface tip into the flowing liquid is close to the cylinder radius when
measured relative to the undisturbed interface. Moreover, the wavelength of these pointed
regions on the wavy interface follows the size of vortex pairs in the streamwise direction,
repeating approximately every five diameters in figure 3(a1). The presence of the liquid–
gas interface hinders the vorticity diffusion in far-downstream regions. Over time,
clockwise vortices spread out at the top (near the interface) and exhibit a tail-like structure
at the bottom. On the other hand, anticlockwise vortices expand in the gap between the tails
of two neighbouring vortices (refer to the wake structure between streamwise coordinates
25 and 50 in figure 3a1). In our discussions, we deliberately refrain from analysing flow
structures between streamwise coordinates 50 and 70 to avoid potential numerical artifacts
stemming from boundary conditions.
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Figure 3. For caption see next page.
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Figure 3. (cntd). Instantaneous liquid–gas interface and wake structure represented by vorticity (ω) contours
(−3 �ωD/U � 3) across various submergence depth h/D and Bond (Bo) number combinations from figure 2.
The interface regime associated with each (Bo, h/D) combination (see figure 2) is labelled in the lower-left
corner. (a2,b2,c2,d2) Zoomed-in views of the piecewise continuous representation of liquid–gas interfaces in
(a1,b1,c1,d1). The remaining flow parameters are the Reynolds number Re = 150 and the Weber number W e =
1000. Note that Cartesian coordinates are in units of the cylinder diameter D. The width of the red-coloured
stripe in (b2,c2,d2) represents the size of the finest control volume in our quadtree-based simulations.
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Figure 3(b1) shows an example of the regime consisting of a combination of interfacial
waves and gas entrainment. It has the same Bond number, Bo = 100, as that in figure 3(a1),
but with a lower submergence depth of h/D = 1.25 (one-half of the previous case). For
the current parameters, the bulging of the liquid–gas interface near the cylinder is more
prominent due to the amplification of flow disturbances experienced by the interface
(compare figures 3a1 and 3b1). Furthermore, the vorticity-driven suction of the interface
is also enhanced, resulting in a wavy liquid–gas interface with increased curvature. At
the same time, unlike the previous case in figure 3(a1), the local pointed regions on the
wavy interface are unstable and undergo breakup. A close-up view of gas bubbles formed
through the breakup process is shown in figure 3(b2), wherein two different size groups of
the entrained gas bubbles are noticeable. Relatively large bubbles have sizes slightly below
the cylinder radius. However, for the remaining bubbles, the scale separation between their
sizes and the cylinder is more extreme.

Following the birth of gas bubbles, a portion of them is transported away from the
interface into the flowing liquid with the help of Strouhal vortices, as seen near the
bottom-right corner in figure 3(b1). Given the size of these bubbles, their buoyancy
lacks the necessary strength to assist them in escaping Strouhal vortices. In contrast
to interfacial waves observed in figure 3(a1), the emerging deformation pattern along
the liquid–gas interface in figure 3(b1) is non-uniform. More importantly, we observe
entirely different wake structures in figures 3(a1) and 3(b1). In the present case, vortices
emerging from shear layers quickly approach the interface. For example, in figure 3(b1),
notice the clockwise vortex hitting the interface in the downstream location 10 diameters
away from the cylinder. Subsequently, the suction effect resulting from Strouhal vortices
bends the interface downward (towards the liquid phase), which in turn pushes Strouhal
vortices in the negative y direction, consequently leading to a tilted vortex street (refer
to the wake structure between streamwise coordinates 5 and 30 in figure 3b1). Also,
observe the rotation of vortex pairs as they get advected by the background flow in the
streamwise direction. Eventually, the strength of Strouhal vortices decays as they travel
further downstream, allowing the interface to regain the elevation via buoyancy and
surface tension.

The influence of gravity becomes more substantial with a gradual increment in the Bond
number. For large enough Bond numbers, the stabilising gravitational force dominates over
the suction effect generated by wake vortices, suppressing the interface from distorting in
the faraway wake regions and eliminating the emergence of interfacial waves. However,
depending on the value of the Bond number, the interface in the immediate vicinity of
the cylinder may still deform and eventually break. This leads to the gas entrainment
regime indicated in figure 2. Figure 3(c1) demonstrates one such gas entrainment state
for (Bo, h/D) = (1000, 2.5). The value of h/D is identical to that in figure 3(a1), but the
current Bo is 10 times larger. The stabilisation of the interface is evident in figure 3(c1),
as it retains its original elevation corresponding to h/D = 2.5 in locations away from
the cylinder. On the contrary, flow disturbances prevail near the cylinder and lead to gas
entrainment.

In figure 3(c1), the build-up of the anticlockwise vorticity beneath the curved liquid–
gas interface is evident within the gas entrainment zone. The accumulated vorticity near
the deformed interface subsequently disperses along the adjacent undisturbed interface in
the downstream area. Figure 3(c2) provides an enlarged view of the entrained bubbles.
The multi-scale nature of gas bubbles is apparent, similar to our earlier observation in
figure 3(b2). Remarkably, there are no traces of gas bubbles in the wake region covering the
vortex street (see figure 3c1). The entrainment process in figure 3(c1) occurs sufficiently
away from wake vortices. Thus, newly formed gas bubbles are able to rise freely with the
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help of buoyancy and eventually merge with the free surface, resulting in a wake devoid of
gas bubbles. Lastly, we observe oblique Strouhal vortices in distant wake locations starting
25 diameters away from the cylinder (see figure 3c1).

Flow features within the gas entrainment regime alter dramatically with the reduction
in the submergence depth. One such representative case is demonstrated in figure 3(d1)
for (Bo, h/D) = (2000, 1). Note that h/D = 1 is the lowest submergence depth in our
parameter space. Unlike the previous gas entrainment example, the shedding of periodic
vortices is suppressed, and we no longer observe the von Kármán-like vortex street.
Instead, the wake region is dominated by the shear flow, as indicated by the gradually
thinning anticlockwise vorticity layer in the liquid phase (see figure 3d1). At the cylinder
top, the incoming flow within the liquid phase separates from the liquid–gas interface,
forming a detached shear layer characterised by anticlockwise vorticity. This layer, in
conjunction with the clockwise vorticity layer attached to the cylinder, forms a downward
jet-like flow between the cylinder’s top surface and the interface. Simultaneously, the shear
layer at the lower surface of the cylinder also aligns itself with the emerging jet-like flow,
as visible in figure 3(d1). The detached anticlockwise vorticity layer near the interface
dominates the clockwise vorticity layer at the upper surface of the cylinder, ultimately
merging with the shear layer at the bottom of the cylinder in the downstream region.
Notably, the lateral extension of the top and bottom shear layers attached to the cylinder
spans multiple diameters in the wake region.

At lower submergence depths, the gas entrainment zone relocates closer to the cylinder
in the upstream direction (compare figures 3c1–c2 and 3d1–d2). In addition, the breakup
mechanism leading to the entrainment of gas bubbles also alters significantly with the
variation in the submergence depth. A more elaborated discussion on the gas entrainment
phenomenon follows later in this section. We point out that Sheridan et al. (1997) also
reported the development of a jet-like flow in their experimental work, albeit in a flow
set-up with Re ∼O(1000) (see § 1 for a summary of Sheridan et al. (1997)).

The last three snapshots in figure 3 correspond to the highest Bond number value of
Bo = 5000 in our investigation. The interface dynamics and the vortex shedding from
shear layers remain decoupled for h/D = 2.5 in figure 3(e). Unlike Bo = 100 and 1000
cases with the same submergence depth (see figure 3a1,c1), the liquid–gas interface
does not deform when the liquid moves past the cylinder. We also do not observe
any pronounced interfacial perturbations in farther wake regions, which is consistent
with the previous Bo = 1000 case in figure 3(c1) with a similar h/D value. However,
contrary to this Bo = 1000 example, at Bo = 5000 we see pairs of alternating Strouhal
vortices that are nearly symmetric with respect to the centreline passing through the
cylinder, reminiscent of the traditional von Kármán vortex street (see wake structures
in figure 3c1,e). We suspect that the production of interfacial vorticity near the gas
entrainment zone perturbs newly shed Strouhal vortices. In figure 3(c1), one can notice the
interfacial vorticity connecting with the vortex street near the wake location approximately
10 diameters away from the cylinder, followed by the tilting of wake vortices in further
downstream locations. Conversely, at Bo = 5000, the lack of interface deformation and
breakup inhibits the generation of interfacial vorticity, and therefore wake vortices remain
undisturbed in figure 3(e).

Upon lowering the submergence depth to h/D = 1.5 while keeping Bo fixed at 5000,
the wake structure alters in distant wake locations. The cross-stream diffusion of Strouhal
vortices gets hindered by the nearby liquid–gas interface. As a result, the vortex street
transitions into a pair of parallel shear layers with opposite vorticity, as evident in
figure 3(f ). There are also additional subtle changes in the dynamics. First, the liquid–
gas interface near the rear part of the cylinder undergoes mild distortion, generating

1008 A10-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.162


K. Patel, J. Sun, Z. Yang and X. Zhu

interfacial vorticity in the liquid phase. Second, occasional breakup events occur in the
region where the interface is distorted, forming liquid droplets, which then drift inside the
gas boundary layer. Notice very small dot-like droplets in figure 3(f ) between locations
15 and 45 diameters away from the cylinder (readers are advised to magnify the figure in
the online version to see this clearly). However, there is no entrainment of gas bubbles.
Third, the interaction of clockwise Strouhal vortices with the interface creates localised
vorticity concentration spots within the gas boundary layer, giving rise to enhanced
velocity gradients, visible as dark-red hot spots in figure 3(f ).

We continue our discussion at the same Bo and place the interface at height h/D = 1.
The resulting interface features for this parameter combination are characterised by
the gas entrainment state. Our numerical result in figure 3(g) shows small-scale gas
bubbles dispersed in the wake region, and the presence of liquid droplets in the gas
boundary layer is also visible. The bubbles and droplets formed via the interface breakup
appear to be of similar size. More importantly, the wake structure in the present case
modifies dramatically compared with a typical von Kármán wake. Overall, it represents an
intermediate state between complete and no vortex shedding cases observed in previous
(Bo, h/d) combinations, e.g. see figures 3(e) and 3(d1). It is evident from figure 3(g)
that clockwise Strouhal vortices emerging from the top shear layer rapidly vanish in the
wake region, leading to a partial vortex shedding state wherein the downstream region
contains only anticlockwise Strouhal vortices. As the newly shed anticlockwise Strouhal
vortex is advected downstream, it merges with the previously shed vortex, forming a larger
circulating region. Prior numerical studies have also reported a qualitatively similar wake
state with partial shedding (Reichl et al. 2005; Subburaj et al. 2018; Karmakar & Saha
2020). As pointed out by Reichl et al. (2005), the weakening or annihilation of clockwise
Strouhal vortices is enabled by the nearby opposite interfacial vorticity originating through
deformation of the interface. In addition to the present case, clearer evidence showcasing
such cross-annihilation of vorticity can be observed in figure 3(d1), where the clockwise
vorticity layer at the top of the cylinder is dominated by the adjacent shear layers with
opposite vorticity. In addition to cross-annihilation, the transport of vorticity flux across
the liquid–gas interface also contributes to the dissipation of Strouhal vortices residing in
the interfacial region (Rood 1994; Lundgren & Koumoutsakos 1999).

3.2. Implications of the liquid–gas interface on hydrodynamic lift
Following our earlier qualitative discussion on interface and wake dynamics, we now focus
on quantifying various aspects of flow physics. A key response parameter in fluid–structure
interaction problems is the hydrodynamic load exerted by the fluid moving past the body
under a given flow condition. We are particularly interested in the hydrodynamic lift force
experienced by the cylinder, expressed in its non-dimensional form as Cl = 2Fy/ρ1U 2 D,
where Fy represents the vertical hydrodynamic load (excluding buoyancy) exerted on the
cylinder. For a stationary cylinder placed deep within a flowing liquid, the lift force follows
a cyclic pattern due to the periodic shedding of symmetric vortices, causing the net lift
force to vanish over one shedding cycle. However, as shown in figure 3, the presence of
a deformable boundary in the form of a liquid–gas interface can significantly alter the
flow dynamics, potentially affecting the fluid forces acting on the stationary cylinder. For
instance, the biased nature of the lift force signal from our validation study in Appendix A
already hints at the influence of the liquid–gas interface.

In figure 4, we present various measurements characterising the lift force signal to
systematically illustrate the impact of the liquid–gas interface on hydrodynamic lift. The
primary plot in figure 4(a) shows the variation in mean (Cl ) and root-mean-square (RMS;
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Figure 4. Effect of the submergence depth h/D and the Bond number (Bo) on the hydrodynamic lift force
experienced by the cylinder at constant Reynolds (Re) and Weber (W e) numbers of 150 and 1000, respectively.
The labels Cl , Cl , C RM S

l and f D/U denote the instantaneous non-dimensional lift force, the time-averaged
value of Cl , the RMS of the Cl time series relative to Cl and the non-dimensional primary frequency of cyclic
fluctuations in Cl , respectively. The inset in (c) displays the interface shapes at the moment of peak downward
lift for Bo = 2000 and 5000 with h/D = 1.5.

C RM S
l ) values of the lift signal for different submergence depths h/D at a constant Bond

number Bo = 100. These (Bo, h/D) combinations are situated on the extreme left of
our state diagram, where the phase space is characterised by the presence of interfacial
waves, either with or without gas entrainment (see figure 2). As shown in figure 4(a), the
net lift force on the cylinder is marginal since Cl remains close to zero across all h/D
values, similar to the behaviour seen in laminar single-phase flows over a fixed cylinder
with Cl → 0. However, the fluctuations around the mean lift force (C RM S

l ) decay as the
submergence depth is reduced. Likewise, the non-dimensional frequency f D/U of the
fluctuating lift force shows a decreasing trend as the interface gets closer to the cylinder,
as plotted in the inset of figure 4(a). Overall, under low-Bo conditions, C RM S

l and f D/U
show significant differences compared with the single-phase flow observations reported in
table 1.
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C RM S
l f D/U

Present work 0.362 0.183
Qu et al. (2013) 0.355 0.184
Chen et al. (2020) 0.363 0.181
Duong et al. (2022) 0.359 0.188

Table 1. Root-mean-square lift coefficient C RM S
l and dimensionless frequency f D/U of the lift force signal

in conventional single-phase flow around a stationary circular cylinder at a Reynolds number Re = 150.

The decline in C RM S
l and f D/U with h/D in figure 4(a) can be explained using

the argument put forward by Green & Gerrard (1993), which has also been previously
employed by Reichl et al. (2005) and Karmakar & Saha (2020). Prior to the shedding
of a Strouhal vortex, the tail of the shear layer takes the form of a vorticity blob,
which gradually grows as fluid continues to accumulate. Eventually, this blob of vorticity
detaches from the shear layer, and a vortex emerges. Green & Gerrard (1993) pointed out
that the frequency of vortex shedding is linked to the time required for the build-up of
the vorticity blob, which is regulated by the flow speed near the back of the cylinder. In
figure 3(a1,b1), we already noted that the incoming flow pushes the liquid–gas interface
away from the cylinder, causing the gap between the cylinder and the interface to expand.
This expansion of the gap, which is more pronounced at lower h/d values, relaxes the
incoming flow. In other words, the average streamwise velocity within the gap decreases.
Such alterations in fluid transport around the cylinder delay the formation of Strouhal
vortices and affect their strength, which is reflected through a reduction in C RM S

l and
f D/U observed in figure 4(a).

Figure 4(b) summarises the lift force statistics for data points along the right edge of
the state diagram at Bo = 5000 (see figure 2). Unlike the previous case at Bo = 100, most
(Bo, h/D) combinations in figure 4(b) fall within a regime where interface deformation
is minimal. This substantial reduction in deformability alters the lift force characteristics
significantly. Firstly, the mean lift force Cl in figure 4(b) remains non-zero, with Cl
increasing sharply as h/D decreases, leading to a considerable net lift force in the
negative y direction. Additionally, C RM S

l and f D/U both intensify when transitioning
from Bo = 100 to Bo = 5000 at a given h/D. In figure 4(b), C RM S

l and f D/U increase
as the interface height decreases, peaking at h/d = 1.5 before rapidly declining for h/D
values below 1.5. Interestingly, this also coincides with the regime transition at h/D = 1.5
for Bo = 5000 in figure 2. Overall, C RM S

l and f D/U across all submergence depths in
figure 4(b) surpass the corresponding values in table 1 for the single-phase configuration.
These patterns can be reasoned using our earlier qualitative insights derived from the
observations of Green & Gerrard (1993). However, here, we adopt a quantitative approach
to substantiate the validity of our argument.

Figures 5(a1) and 5(a2) present the time series of the average streamwise gap velocity

Ug(t)

U
= 1

h(t) − D/2

y=h(t)∫
y=D/2

ux (y, t)|x=0

U
dy (3.1)

from our simulations for submergence depths h/D = 1.5 and 1, where ux denotes the
x component of the flow field. Both Ug/U time series show cyclic fluctuations around
mean values of U g/U = 1.24 and 1.14 for h/D = 1.5 and 1, respectively. In comparison,
for single-phase flow with virtual heights (no actual interface) h/D = 1.5 and 1, U g/U
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Figure 5. Temporal evolution of the average streamwise gap velocity Ug/U , the non-dimensional lift force Cl
and the front stagnation angle θ , which varies clockwise with θ = 0 located at the front of the cylinder on the
horizontal centreline. Velocity Ug is calculated using the velocity profile along the vertical centreline between
the top of the cylinder and the liquid–gas interface. In (a), U g denotes the temporal mean of Ug . The Reynolds
and Weber numbers are set to Re = 150 and W e = 1000. The remaining parameters are indicated in individual
plots.

values are 1.11 and 1.07. This suggests that as h/D decreases, the gap above the cylinder
also narrows due to weak deformation of the liquid–gas interface, leading to a significant
increase in U g/U compared with its single-phase counterpart (approximately 12 % for
h/D = 1.5 and 7 % for h/D = 1). This increase amplifies the magnitude C RM S

l and
frequency f D/U of lift force fluctuations compared with the single-phase flow scenario,
as evident from figure 4(b) and table 1. Furthermore, the higher U g/U at h/D = 1.5
compared with h/D = 1 explains the larger values of C RM S

l and f D/U at h/D = 1.5.
Lastly, upon performing a similar exercise for the combination (Bo, h/D) = (100, 1.25)

in figure 4(a), we obtain U g/U = 0.96, further corroborating our claim surrounding the
work of Green & Gerrard (1993).

Following our discussion on lift force fluctuations, we now discuss the origin of the
non-zero mean lift force Cl seen in figure 4(b). In single-phase flows, the incoming fluid
halts at the front of the cylinder, creating a stagnation point. Once the system reaches
a dynamic steady state through periodic vortex shedding, this stagnation point oscillates
slightly. For instance, at Re = 150, the stagnation point oscillates ≈1.8◦ to either side of
the horizontal centreline passing through the cylinder. These oscillations are symmetric,
and thus, over one vortex shedding cycle, the combined effect of stagnation pressure and
low wake pressure results in a net drag force acting along the positive x direction while
Cl → 0. However, this symmetry breaks down when a liquid–gas interface is introduced.
Figures 5(b1) and 5(b2) show the evolution of the instantaneous lift force Cl and the
stagnation angle θ for h/D = 1.5 and 1 at Bo = 5000. Here, the stagnation point no
longer oscillates symmetrically but instead concentrates in the upper left quadrant of the
cylinder. Consequently, the vertical component of the force from the stagnation pressure
does not vanish over one shedding cycle, contributing to a sustained non-zero mean
lift force. Essentially, the displacement of the stagnation point due to the liquid–gas
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interface introduces bias in the lift force signal, making Cl non-zero. As h/D decreases,
the stagnation point shifts further into the upper left quadrant, moving away from the
horizontal centreline, which increases Cl even more (see figures 4b and 5b2).

Figure 4(c) shows the variation in the mean lift force Cl for multiple Bond numbers
and submergence depths. At h/D = 2.5, the difference in Cl across various Bo values is
marginal. Notably, they all fall within the reduced deformation regime indicated in figure 2.
However, as h/D decreases, the Cl values for different Bond numbers start to diverge.
This branching occurs within the h/D range marked by the red zone in figure 4(c), and
it corresponds to the regime transition as Bo varies for a specific h/D (see figure 2). For
instance, while switching from h/D = 2.5 to 2.25, Bo = 2000 transitions from the reduced
deformation to the gas entrainment regime, while remaining Bo values still exhibit reduced
deformation of the interface (see figure 2). This transition at h/D = 2.25 is reflected
in figure 4(c) by the increased Cl for Bo = 2000 compared with other Bond numbers.
Similar branching patterns are observed for h/D = 1.75 and 1.5 as Bo = 3000 and 4000
transition to the gas entrainment state. At h/D = 1.5, a significant spread in Cl is visible,
with more deformable interfaces (lower Bond numbers) producing higher lift forces. To
understand this, we examine the instantaneous interface shapes for Bo = 2000 and 5000
in figure 4(c). It is observed that at Bo = 2000, the interface deformation near the back
of the cylinder reorients the flow towards the cylinder in the negative y direction, thereby
generating a higher downward lift force compared with the weakly deformed interface at
Bo = 5000. As h/D decreases below 1.5, the trend reverses within the blue zone on the
left in figure 4(c), where all Bo curves start to converge. Note that for h/D < 1.5, all Bo
values in figure 4(c) belong to the gas entrainment state. At h/D = 1, all Bo points nearly
collapse with similar Cl values, except for Bo = 2000, indicating a minimal impact of
interface deformability. Overall, the net lift force Cl (approximately) exhibits a quadratic
variation with the submergence depth h/D (see the black curve in figure 4c).

Previously, we noted that at Bo = 2000, vortex shedding ceases when the liquid–
gas interface is lowered to the submergence depth h/D = 1 (see figure 3d1). This is
also evident through the temporal variation of the lift force in figure 4(d), as cyclic
fluctuations in Cl disappear, and Cl remains nearly constant over time. However, when
Bo is increased to 3000, cyclic fluctuations in Cl reappear, as shown in figure 4(d).
This particular combination of Bo = 3000 and h/D = 1 exhibits partial vortex shedding
similar to that shown in figure 3(g). Another peculiar characteristic of this case is the
variability in the peak-to-peak amplitude of the lift force signal over time (see Bo = 3000
curve in figure 4d), hinting at the presence of two distinct time scales in the system.
The smaller of the two time scales is related to cyclic fluctuations in the lift force,
which stems from the periodic shedding of vortices. The second time scale is linked to
relatively gradual temporal changes in the peak-to-peak amplitude of lift force cycles.
For the physical interpretation of the second time scale, we look at velocity magnitude
contours in figure 6(a1,a2) corresponding to two different time instances marked by black
circles in figure 4(d). As illustrated in figure 6(a1), the jet emerging through the gap above
the cylinder separates from the liquid–gas interface near the back of the cylinder. On
the contrary, at a later time in figure 6(a2), it remains attached to the interface. These
temporal changes in the orientation of the jet affect the lift force acting on the cylinder and
introduce a new time scale associated with jet oscillations. Such metastable states were
initially observed in the experiments by Sheridan, Lin & Rockwell (1995; 1997), which
we introduced earlier in § 1.

To better quantify the metastable dynamics observed at Bo = 3000 and h/d = 1, we
analyse the amplitude–frequency spectrum of the lift force signal using the Fourier
transform, as shown in figure 6(b). The spectrum reveals a dominant frequency
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Figure 6. (a1,a2) Instantaneous snapshots of velocity magnitude |u| within the liquid phase. Intensified
colour indicates heightened velocity, with dark red representing the highest velocity within the domain. (b)
Discrete Fourier transform of the lift force signal. The simulation parameters are {Re, We, Bo, h/D} =
{150, 1000, 3000, 1}.

f1 D/U = 0.212, which is consistent with the frequency range reported for other com-
binations of Bo and h/D in figure 4(a,b), indicating its connection to the vortex shedding.
In the lower-frequency range, there is a notable amplitude peak at f2 D/U = 0.0254,
which likely represents the signature of the metastable jet. Earlier, Sheridan et al. (1995)
qualitatively estimated f2/ f1 ∼O(10−2) in their experiments at high Reynolds numbers.
In contrast, numerical simulations by Reichl et al. (2005) and Colagrossi et al. (2019),
conducted at lower Reynolds numbers and without surface tension, reported f2/ f1 ∼
O(10−1). Our simulation, which includes surface tension, also yields f2/ f1 ∼O(10−1),
aligning with the findings of Reichl et al. (2005) and Colagrossi et al. (2019). The
parameters Re, Fr and h/D in the present case closely match those in their simulations.
To resolve the discrepancy in reported f2/ f1 values, further work needs to be done in the
high-Reynolds-number range, although this is beyond the scope of the present article. We
note that although high-Reynolds-number simulations are expensive, experimental set-ups
are prone to contamination of the liquid–gas interface, which can dramatically influence
the dynamics, as pointed out by Reichl et al. (2005). Recently, Zhao et al. (2021) performed
simulations in the turbulent regime but without considering surface tension.

3.3. Interfacial waves at Bo = 100
The remainder of our discussion in this article focuses on specific features of the liquid–
gas interface observed in our parameter space. In this subsection, we analyse interfacial
waves at a fixed Bond number Bo = 100 for two submergence depths: h/D = 2.5 and
1.25, as marked in figure 2. Apart from the intensity of interfacial disturbances, a notable
distinction between these cases is the breakup of the interface, observed only at h/D =
1.25 (see snapshots in figure 3).

Figure 7 illustrates the colour-coded variation of interface elevation y/D in space and
time relative to the unperturbed interface height h/D. Starting at the location x/D = 0
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Figure 7. Spatio-temporal evolution of interfacial perturbations for submergence depths (a) h/D = 2.5 and (b)
h/D = 1.25 at a Bond number Bo = 100. These (Bo, h/D) coordinates belong to the interfacial wave regime,
where gas entrainment is observed at h/D=1.25 and absent at h/D=2.5 (see figure 2). The Reynolds and
Weber numbers are fixed at Re = 150 and W e = 1000.

above the cylinder, the interface undergoes static deformation with relative elevation
(y − h)/D approaching the size of the cylinder for both h/D values. As we enter
the wake region, beginning around x/D = 5, the interface deformation becomes time-
dependent regardless of h/D when recorded at a given x/D. However, the temporal
deformation pattern varies depending on the value of h/D. For instance, at x/D = 10,
the interface oscillates on either side of the unperturbed height for h/D = 1.25, whereas
for h/D = 2.5, it always fluctuates above the unperturbed height. The transition from
static to time-varying deformation arises due to the influence of periodically shed Strouhal
vortices. Further downstream, both cases exhibit interface oscillations below their original
elevation h/D, which is indicated by the extended blue region spanning several diameters
in figure 7. As Strouhal vortices weaken, the interface attempts to regain the original
elevation. However, the recoil from buoyancy and surface tension leads to an overshoot
in elevation before reaching the equilibrium, reminiscent of the damped oscillations of a
standing gravity or capillary wave (Prosperetti 1981). The overshoot is evident through
the red-coloured band between x/D = 35 and 45. At any given time, on a length scale
approaching the extent of the vortex street (filtering out small-scale features), we can notice
one large-scale interfacial wave represented by two peaks situated near x/D = 0 and 45
(red zones in figure 7), and a valley in between (blue zone). This is also visible through
snapshots in figure 3. As we refine this coarse-grained description by adopting a length
scale comparable to or smaller than the cylinder diameter, small-scale deformation waves
become apparent, which ride on the large-scale wave.

Another interesting point to note from figure 7 is the orientation of the emerging pattern.
The orientation of various contour levels corresponding to different elevations provides
a measure of the phase speed c. Based on this, the inverse slope of the yellow line in
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figure 7(a) yields c = �x/�t = 0.92U , indicating a lag between the motion of the bulk
liquid and interfacial waves. A similar phase speed is also observed at a lower submergence
depth in figure 7(b). However, in the mid-downstream area, high-amplitude deformations
with negative relative elevation move at a different phase speed of c = 0.82U , as suggested
by the magenta line in figure 7(b). From snapshots in figure 3(a,b), we estimate the
wavelength of the deformation pattern to be λ≈ 5D in both cases.

Following the linear theory of travelling capillary–gravity waves (Lighthill 1978), the
phase speed cr of a capillary–gravity wave relative to still liquid is given by(

cr

U

)2

=
(

2π

W e

) (
D

λ

)
︸ ︷︷ ︸
surface-tension-

driven

+
(

Bo

2πW e

) (
λ

D

)
︸ ︷︷ ︸

gravity-driven

, (3.2)

where λ denotes the wavelength (note that Bo/W e = 1/Fr2). Using the phase speed
relation (3.2), we derive the minimum phase speed of a realisable capillary–gravity
wave relative to still liquid: cr

m/U = (4Bo/W e2)1/4. Given Bo = 100 and W e = 1000,
we obtain cr

m = 0.14U , which is about 1.75 times the relative phase speed U − c shown by
the yellow line in figure 7, potentially hinting at a markedly different nature of the present
interfacial waves. The relative phase speed associated with the magenta line in figure 7(b)
is above the threshold phase speed cr

m , although it occurs far from the region of wave onset.
Note that cr and cr

m are derived under the assumption that the circular cylinder is absent
and are valid solely for sinusoidal waveforms.

We also compare the observed interfacial waves with the classical Kelvin–Helmholtz
(KH) instability, neglecting the effects of gravity and surface tension. According to linear
theory, the wave propagation speed for KH instability is cKH = (ρ1U1 + ρ2U2)/(ρ1 + ρ2)
(Drazin 2002), where the subscripts 1 and 2 denote the liquid and gas phases, respectively,
as shown in figure 1. By substituting U1 = U and U2 = 0, we find cKH = 0.99U , which
reasonably approximates the wave speed corresponding to the yellow line in figure 7.
It should be noted that cKH does not account for the influence of the cylinder on KH
instability, and the mixing layer in the interfacial region is absent. A refined version of
the KH wave speed, referred to as the Dimotakis speed (Dimotakis 1986) and commonly
used in previous studies (Orazzo, Coppola & de Luca 2011; Hoepffner, Blumenthal &
Zaleski 2011; Odier et al. 2015; Ling et al. 2017), is expressed as cDimotakis = (

√
ρ1U1 +√

ρ2U2)/(
√

ρ1 + √
ρ2). The estimate cDimotakis = 0.9U for the present case aligns well

with the range of phase speeds indicated by the yellow and magenta lines in figure 7.
To further our analysis, we investigate the temporal variations in the interface

height at the streamwise positions x/D = 10 and 22.5. Table 2 reports the dominant
frequencies associated with the cyclic fluctuations in interface elevation for submergence
depths h/D = 2.5 and 1.25, which align closely with the vortex shedding frequencies.
This correspondence suggests that the the emergence of interfacial waves observed in
figure 3(a1,b1) is indeed driven by periodic shedding of Strouhal vortices. Therefore, we
refer to these waves as Strouhal waves.

3.4. Gas entrainment at Bo = 1000
In the present subsection, we focus on the gas entrainment regime observed at Bo = 1000
in figure 2. Before proceeding, we recommend that readers review the brief note in
Appendix B on interface breakup and coalescence dynamics in simulations.

We analyse various statistics related to entrained gas bubbles and liquid droplets formed
through bubble collapse, such as their total counts, positions and size distributions.
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f D/U

h/D Interface fluctuations Vortex shedding
2.5 0.1719 (at x/D=10) 0.1730

0.1718 (at x/D=22.5)
1.25 0.1579 (at x/D=10) 0.1588

0.1570 (at x/D=22.5)

Table 2. Dimensionless frequency f D/U corresponding to interface oscillations and vortex shedding in the
interfacial wave regime at Re = 150, W e = 1000 and Bo = 100.

Nevertheless, computing these quantities is not trivial since the liquid–gas interface is
captured implicitly with the help of the volume fraction field C . To detect bubbles and
droplets, existing algorithms in the literature (Herrmann 2010; Chan et al. 2021; Gao
et al. 2021) scan through the domain and first identify a grid point with C = 0 (for bubble
detection) or 1 (for droplet detection). They then successively search for neighbouring grid
points with the same value of C until the boundary of the bubble or droplet is detected.
This completes the detection of one bubble or droplet. To identify remaining bubbles or
droplets, the same two steps are repeated in a loop by excluding grid points belonging to
already detected bubbles or droplets.

In our two-dimensional simulations, bubble and droplet statistics are gathered in
the post-processing stage using a non-iterative detection algorithm implemented within
Matlab�. For a given volume fraction field snapshot, Matlab� facilitates the extraction of
the coordinates tied to isolines of different contour levels. Using this, we are able to obtain
the coordinates of C = 0.5 isolines in the domain, effectively converting our Eulerian
interface representation into an equivalent Lagrangian description. In the resulting family
of isolines, one of the isolines corresponds to an open curve representing the primary
liquid–gas interface, which we eliminate from our subsequent calculations. The remaining
isolines are closed curves representing either bubbles or droplets. To bifurcate them into
bubbles and droplets, we examine the value of C at grid cells close to the centroid of each
curve. Finally, using the coordinates of individual curves, Matlab� readily provides the
area enclosed by them, from which we derive the diameter d of an equivalent circle with
the same area, giving us the measure of the size of individual bubbles and droplets. Note
that we only focus on the detection of bubbles and droplets; we do not track individual
bubbles and droplets as time elapses. Lastly, all the statistics in our subsequent discussion
are derived by monitoring bubbles and droplets in a subdomain ranging from −D to 8D
in the x direction and −5D to 5D in the y direction.

We first examine the number of bubbles and droplets at a given time instance, denoted
as N , in the wake region (note that N does not represent the instantaneous count of freshly
formed bubbles or droplets). Two such time series are demonstrated in figure 8(a1,a2) for
submergence depths h/D = 2.5 and 1. A notable spike in bubble count is observed around
tU/D = 25 and 30 for h/D = 2.5 and 1, respectively. As the flow around the cylinder
develops with time, we see oscillations in the instantaneous bubble count for h/D = 2.5.
On the other hand, the variation of N with time remains relatively uniform for h/D = 1.
These trends can be attributed to corresponding wake states, characterised by periodic
and no vortex shedding at h/D = 2.5 and 1, respectively. The average bubble count N
amplifies by a factor of ≈4 when the interface is shifted from h/D = 2.5 to 1, indicating a
substantial rise in gas entrainment. Conversely, the droplet production appears to be only
marginally affected by the change in h/D, as both cases in figure 8(a1,a2) have nearly
identical average droplet counts N .
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Figure 8. (a1,a2) Temporal variation of the number of bubbles and droplets N in the wake region. Here N
is the temporal mean of N . (b1,b2) Collection of bubble coordinates recorded over the time interval 20 �
tU/D � 100. High-density regions with tightly clustered bubble coordinates are marked in red, whereas those
with low bubble density are shown in blue. (c1,c2) Multi-scale bubble-size distributions resulting from the gas
entrainment phenomenon. The black curves with green shaded areas show bubble-size distributions fitted to
the histograms. Here

∑N denotes the total bubble count over the time interval 20 � tU/D � 100, and d is
the equivalent bubble diameter, as explained in the main text. The Reynolds and Weber numbers are fixed at
Re = 150 and W e = 1000. The remaining parameters are indicated in individual plots.

To visualise the gas entrainment process over the time interval 20 � tU/D � 100, we
plot the bubble coordinates identified by our detection algorithm and colour-code them
based on their clustering in the flow domain (see Eilers & Goeman (2004) for details).
The red colour implies dense clusters of bubbles, and vice versa for blue. This provides
a spatial distribution of bubbles, analogous to a joint probability distribution in physical
space, as shown in figure 8(b1,b2) for submergence depths h/D = 2.5 and 1. Interestingly,
one can also notice the travel paths of different bubbles through trajectories emerging
from coordinates. At h/D = 2.5, bubbles are concentrated in a narrow region near the
liquid–gas interface. Most gas bubbles are produced where the coordinates are marked in
red and yellow in figure 8(b1). Some newly produced bubbles travel downstream parallel
to the interface, while others rise to the interface due to buoyancy and collapse, which is
evident through trajectories terminating near the interface. When the submergence depth is
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Figure 9. Formation of a plunging wave at the onset of gas entrainment. The simulation parameters are {Re,
We, Bo, h/D} = {150, 1000, 1000, 2.5}. Note that Cartesian coordinates are in units of the cylinder diameter
D.
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reduced to h/D = 1, there is a significant spread in bubble distribution in the wake region,
spanning about a couple of diameters in the y direction. The area with high bubble density
(red-coloured coordinates) expands and shifts its orientation compared to the h/D = 2.5
case, suggesting a different nature of the interface breakup process, which will be explored
further in our subsequent discussion. The merging of gas bubbles with the free surface
(i.e. bursting bubbles) still persists at h/D = 1, but more bubbles are transported to distant
wake regions than at h/D = 2.5 (mainly during the early stages).
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Figure 11. (a1-4–c1-4) Various interface breakup mechanisms associated with the production of multi-scale gas
bubbles in the gas entrainment regime. (d1-4) Birth of film droplets via the collapse of an entrained gas bubble.
The simulation parameters are {Re, We, Bo, h/D} = {150, 1000, 1000, 2.5}.

To complete the basic statistical description of the gas entrainment process, we examine
the bubble-size distributions shown in figure 8(c1,c2) for submergence depths of h/D =
2.5 and 1. These distributions are based on bubbles observed over the time interval
20 � tU/D � 100. The entrainment of gas bubbles begins at tU/D ≈ 4 and ≈14 for
h/D = 1 and 2.5, respectively. In the initial stages of entrainment, large gas bubbles may
form, particularly at lower h/D values, resulting in outliers. To circumvent these anoma-
lies, we begin our observations at tU/D = 20 for both cases. The size distributions show
two preferred bubble sizes for each submergence depth, indicated by two peaks on either
side of the equivalent bubble diameter d/D = 0.05 in figure 8(c1,c2). The upper bound
of the bubble-size distribution is d/D = 0.3, regardless of h/D. While gas entrainment at
h/D = 1 results in a higher bubble count (see figure 8a1,a2), entrainment at h/D = 2.5
tends to produce larger bubbles (d/D � 0.1) more frequently. For bubble sizes below
d/D = 0.05, there is no significant difference in size distributions between h/D = 2.5
and 1.
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Figure 12. Instantaneous snapshot of the primary liquid–gas interface, entrained gas bubbles, film droplets and
shear layers (vorticity isolines in red and blue) arising from the cylinder. The inset provides a close-up view of
the gas finger. The simulation parameters are indicated in the plot.

While the multi-scale nature of the bubble-size distributions in figure 8(c1,c2) is
intriguing, understanding its origin is equally crucial. To explore this, we examine the
breakup dynamics of the liquid–gas interface at different submergence depths. Figure 9
shows the formation of the initial interfacial wave at a submergence depth of h/D = 2.5.
As the flow around the cylinder develops, it draws the interface towards the cylinder and
creates a valley, as seen in figure 9(a). Subsequently, this valley shifts in the downstream
direction due to the background flow (see figure 9b), giving rise to a wave crest in
figure 9(c–e). When the wave crest reaches a certain height, it bends downward due to
gravity (figure 9f –h) and eventually impacts the liquid–gas interface. Similar features have
been observed in previous two- and three-dimensional numerical studies on deep-water
waves (Deike, Popinet & Melville 2015; Mostert, Popinet & Deike 2022). Interfacial waves
similar to that in figure 9 are named plunging waves.

Figure 10 illustrates the changes in the vertical position of the crest and valley of
the plunging wave depicted in figure 9. Just before the wave breaks, its vertical span,
from valley to crest, approaches the cylinder’s diameter. Reducing the Bondnumber to
500 creates relatively tall plunging waves, and vice versa for a lower Webernumber of
700. We notice that the formation of similar plunging breakers occurs frequently for
the submergence depth of h/D = 2.5. Figure 11(a1–a4) shows one such sequence of a
plunging breaker at a later time, leading to the entrainment of a gas bubble. Typically,
bubbles entrained by plunging breakers are larger than d/D = 0.05, which explains the
presence of larger bubbles in the bubble-size distribution for h/D = 2.5 in figure 8(c1).
Moreover, bubble coalescence also contributes to the appearance of larger bubbles in the
size distribution.

In addition to plunging breakers, we also observe surfing breakers, as shown in
figure 11(b1–b4). Surfing breakers are characterised by a finger-like wavefront gliding
along the primary liquid–gas interface with a thin gas layer in between. This gas layer
continuously releases air bubbles from its tail due to the movement of the wavefront
and bulk liquid, introducing smaller bubbles with sizes d/D < 0.05 in the bubble-size
distribution for h/D = 2.5. Additionally, the breakup of larger bubbles due to flow
disturbances generates more small bubbles, as seen in figure 11(c1–c4). Our findings
on various breakup mechanisms and their effects on the bubble-size distribution are
qualitatively similar to those reported by Chan et al. (2019) for the production of multi-
scale gas bubbles in turbulent breaking waves. Finally, the sequences in figure 11(d1–d2)
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Figure 13. Impact of the Reynolds (Re) and Weber (W e) numbers on the time-averaged bubble count N and
size d/D in the gas entrainment regime for submergence depths h/D = 2.5 and 1. The Bond number is fixed
at Bo = 1000. The time averaging is performed over the interval 20 � tU/D � 100. The black vertical bars
indicate ±10 % variations in d/D. Insets in (a1,a2) and (b1) show the time series of the number of bubbles N
in the wake region for W e = 700 and Re = 50, respectively. The top inset in (b2) illustrates an instantaneous
snapshot of the primary liquid–gas interface, entrained gas bubbles and shear layers arising from the cylinder
at Re = 50. The bottom inset in (b2) provides a zoomed-in view of the gas finger shown in the top inset.

show how droplets are formed due to the bubble collapse. The formation of such film
droplets is also observed in experiments on bursting bubbles (Lhuissier & Villermaux
2012; Shaw & Deike 2024).

Contrary to h/D = 2.5, the entrainment of gas bubbles at h/D = 1 is driven by a
different mechanism. As shown in figure 12, there is no vortex shedding at h/D = 1.
Instead, shear layers formed due to the cylinder, although stable, tilt downward in the
direction of the jet-like flow coming out of the gap above the cylinder. Subsequently, the
flow within the gap drags the interface with it and forms a gas finger shown in figure 12
(also refer to figure 3d1,d2 with similar dynamics). This gas finger continuously emits
bubbles from its end via the interface breakup and creates a train of small bubbles with
sizes typically less than d/D = 0.05. The train of newly formed bubbles travels along
the path indicated by the brown arrows. During their transport, these bubbles frequently
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coalesce with other bubbles, forming larger ones. Eventually, fairly large bubbles deviate
from their initial path and begin to rise vertically, as indicated by the grey arrows. The
life cycle of a bubble ends when it collapses at the free surface. Thus, the bubble-size
distribution for h/d = 1 is regulated by the number of coalescence cascades each bubble
undergoes. Relatively large bubbles can appear only through coalescence events. On the
other hand, some bubbles do not coalesce and remain small. Such small bubbles drift in
the background flow. For instance, notice gas bubbles between x/D = 5 and 7 in figure 12,
which are trapped in the circulation formed by the incoming flow and backflow.

We note that Colagrossi et al. (2019) previously reported the entrainment of gas bubbles
at h/D = 0.9, W e = ∞, Fr = 0.55 and Re = 180. However, their work did not provide
detailed bubble statistics or explore the entrainment mechanism, as their main objective
was a numerical comparison of various flow solvers. To further our analysis of gas
entrainment at h/D = 1, we also explore a three-dimensional case in § 3.6.

3.5. Influence of W e and Re on gas entrainment
In this subsection, we briefly discuss the effects of the Weber (W e) and Reynolds (Re)
numbers on gas entrainment, specifically within the ranges 700 � W e � 1100 and 50 �
Re � 150. In principle, for any fixed value of the Reynolds number, the Weber number
can be independently adjusted by modifying the surface tension σ , for instance, using
surfactants. We use the time-averaged bubble count N and size d/D as indicators of
gas entrainment intensity. At a Bond number of Bo = 1000 and a submergence depth of
h/D = 2.5, decreasing the Weber number gradually reduces the formation of gas bubbles,
with N approaching zero (see figure 13a1). Meanwhile, the time-averaged bubble size
d/D fluctuates with W e but remains within the ±10 % bound when measured relative
to any fixed W e. This indicates that changes in N alone provide a qualitative estimate
of the entrained gas volume. Additionally, at W e = 700, gas bubble production becomes
intermittent, resulting in a cylinder wake devoid of gas bubbles (N = 0) during specific
time intervals. This is evident from the time series in the inset of figure 13(a1).

When the submergence depth is reduced to h/D = 1 in figure 13(a2), the behaviour of
N becomes irregular. For instance, increasing W e from 1000 to 1100 causes N to drop.
However, this reduction is compensated by a corresponding increase in d/D. Similarly,
a slight rise in N from W e = 800 to 700 is balanced by a corresponding reduction in
d/D. Compared to the h/D = 2.5 case shown in figure 13(a1), surface tension is less
effective in suppressing the wake bubble count at h/D = 1. At the same time, d/D drops
by ≈28 % when switching from W e = 1100 to 700. We hypothesise that a broader range
of Weber numbers may need to be explored in figure 13(a2) to identify a clear trend in the
variation of N at h/D = 1. This is because the influence of flow disturbances on the free
surface is already more pronounced for the small gap ratio of h/D = 1 compared with the
h/D = 2.5 case shown in figure 13(a1). As a result, the effect of change in surface tension
on N may not be immediately apparent and could lead to a non-monotonic trend with only
minor variations in N . Previously, in figure 8(a2) for W e = 1000, we noted a spike in the
bubble count N at the start of gas entrainment. Conversely, at W e = 700, surface tension
stabilises the onset of gas entrainment, leading to a smoother start without any notable
spike, as indicated by the time series in the inset of figure 13(a2).

Figure 13(b1) illustrates the effect Re on gas entrainment with parameters {We, Bo,
h/D} = {1000, 1000, 2.5}. The time-averaged bubble count N and size d/D show
marginal variation in the range 100 � Re � 150 but drops sharply for Re < 100. At the
lowest Re of 50, several changes in dynamics are observed. First, the entrainment of gas
bubbles occurs in a sporadic fashion, as shown in the inset of figure 13(b1). Second, an
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Figure 14. Instantaneous snapshot of the liquid–gas interface and the vorticity field at tU/D = 200 for
{Re, We, Bo, h/D} = {50, 1000, 1000, 2.5}. Note that Cartesian coordinates are in units of the cylinder
diameter D.

instantaneous snapshot of the wake structure in figure 14 reveals the absence of vortex
shedding. Third and most importantly, we see the emergence of an interfacial wave in
the wake region (see figure 14), differing from the localised deformation seen at higher
Reynolds numbers (e.g. see figure 3c1). This wave pattern at Re = 50 is static relative
to the background flow, but the wave crest near x/D = 5 in figure 14 is unstable and
undergoes occasional small-scale wave breaking, entraining gas bubbles for short intervals
(see inset in figure 13b1).

To characterise the interfacial wave in figure 14, we again use Lighthill’s linear theory
of travelling capillary–gravity waves (Lighthill 1978) as a reference (equation (3.2)).
Given W e = Bo = 1000, the influence of the surface-tension-driven component in (3.2)
is negligible. Substituting cr = −U in (3.2) results in a gravity wave characterised by
λ/D = 2π , which aligns with the spacing between the initial two wave crests in figure 14.
Moving further from the cylinder, the distance between consecutive wave crests decreases
by about 0.5D. Similar to our findings, Sheridan et al. (1995; 1997) also reported the
excitation of stationary interfacial waves caused by the presence of the cylinder in their
experiments.

Finally, in figure 13(b2), we examine a submergence depth of h/D = 1. The time-
averaged bubble sizes d/D are in the similar range as previous combinations of {Re, W e,
h/D}. For 100 � Re � 150, the time-averaged bubble count N almost reaches a plateau.
Interestingly, for Re < 100, we observe the amplification in N , in contrast to h/D = 2.5 in
figure 13(b1). To understand this, we recall our discussion on the mechanism responsible
for the entrainment of gas bubbles at h/D = 1, where it was noted that the production
of gas bubbles is driven by the breakup of the gas finger (see figure 12). Lowering
the Reynolds number increases the thickness of vorticity layers on the cylinder surface,
promoting the formation of a very long gas finger due to shear flow in the gap, as shown in
the insets of figure 13(b2) for Re = 50. In this case, the gas finger is as long as the cylinder
diameter D. Also, compare the relative sizes of gas fingers and vorticity layers close to the
cylinder at Re = 50 in figure 13(b2) and at Re = 150 in figure 12. The tail of the longer
gas finger at Re = 50 is more unstable than the shorter finger at Re = 150, leading to more
frequent interface breakups. Consequently, this results in more gas bubbles being entrained
over time at lower Reynolds numbers.

3.6. Gas entrainment in a three-dimensional flow set-up
In this final subsection, we provide an outlook on bubble production through gas
entrainment in a three-dimensional configuration. For the range of Reynolds numbers
investigated in this study, the occurrence of three-dimensional flow structures is unlikely
(Barkley & Henderson 1996; Williamson 1996). However, the role of dimensionality
in interfacial phenomena involving topological changes, such as breakup events, cannot
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be determined a priori. If dimensional effects prevail to a greater extent, they may
substantially influence the trends associated with various statistical properties of the
entrained gas bubbles. Thus, to build further on our two-dimensional findings in the last
two subsections, we demonstrate a three-dimensional case with parameters Re = 150,
W e = 1000, Bo = 1000 and h/d = 1. This particular parameter combination represents
one of the extreme scenarios since it produces a relatively large quantity of gas bubbles
through entrainment, as seen in figures 8 and 13. Notably, for h/D = 2.5, entrained gas
bubbles penetrate to a shallower depth in the liquid phase compared with h/D = 1 and
instead merge with the free surface relatively quickly (see figure 8b1,b2). Consequently, the
impact of dimensionality on gas entrainment is expected to be short-lived for h/D = 2.5.

The current version of Basilisk (2013–2024) does not support the use of the
cut-cell module (see § 2) for three-dimensional multi-processor simulations involving
immersed boundaries. Thus, we utilise the Computational Air-Sea Tank (CAS-Tank)
solver, developed by Yang, Lu & Wang (2021), to simulate three-dimensional liquid–gas
flow. Similar to the Basilisk library, CAS-Tank employs the VOF method for capturing
the liquid–gas interface. Additionally, CAS-Tank incorporates the level-set function to
compute geometrical parameters such as interface normal and curvature. The coupling
between VOF and level set is achieved using the methodology proposed by Sussman
& Puckett (2000). Moreover, the numerical stability of CAS-Tank is enhanced by
implementing the mass–momentum consistent scheme introduced by Nangia et al. (2019).
For those interested in recent studies on free-surface flows using CAS-Tank, we refer the
reader to Li, Yang & Zhang (2024) and Lu et al. (2024). Finally, the no-slip boundary
condition at the curved liquid–cylinder boundary is enforced using the level-set-based
sharp interface representation of the solid cylinder. See Cui et al. (2017) for further
details.

The size of the computational domain is set to 45D, 30D and 3D in the x (streamwise),
y (transverse) and z (spanwise) directions, respectively. The current domain size in the
x and y directions yields the same lift force as the previously used larger domain of
80D × 80D in two-dimensional simulations. From figure 12, it is evident that interface
breakup and bubble formation occur near the cylinder, while the downstream liquid–gas
interface further from the cylinder remains undisturbed. Furthermore, no vortex shedding
is observed for the current parameters. Based on these observations from a previous two-
dimensional simulation, we employ a combination of uniform and non-uniform Cartesian
grids in our three-dimensional simulation. A refined uniform grid with a resolution of
0.025D (40 grid cells per D) is applied within the subdomain extending in the ranges
−1.5 � x/D � 8.5, −3 � y/D � 3 and −1.5 � z/D � 1.5 (the origin is positioned at
the cylinder’s centre). Beyond this subdomain, the grid gradually coarsens towards the
domain boundaries, reaching a maximum grid size of 0.18D at the edges. Using a
two-dimensional simulation, it has been verified that further refining the uniform mesh
resolution to 0.0166D (60 grid cells per D) does not alter the breakup dynamics or the
lift force. Lastly, a periodic boundary condition is applied in the spanwise direction, while
the boundary conditions in the remaining directions are consistent with those used in the
two-dimensional set-up.

Resolving three-dimensional flow and interface features at a moderate resolution within
a small subdomain around the cylinder already leads to a substantial number of grid
cells (55.728 × 106 grid cells in the present case), demanding considerable computational
resources. Unlike prior two-dimensional simulations, conducting an extensive parametric
study in a three-dimensional set-up is not a viable option. Therefore, as an extension of
our two-dimensional observations, we present only one model case where the system’s
three-dimensional nature is crucial to interface dynamics.
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Figure 15. (a) Volume rendering of the vorticity field surrounding the cylinder and entrained gas bubbles
in a three-dimensional flow setting. (b) Production of EGRs by interface breakup and the subsequent
fragmentation of EGRs into bubbles in the wake region. The simulation parameters are {Re, We, Bo, h/D}
= {150, 1000, 1000, 1}.

Figure 15(a) provides an instantaneous snapshot of the vorticity field along with gas
bubbles in the wake of the cylinder. Similar to the two-dimensional case shown in
figure 12, one can observe tilted vorticity layers emerging from the cylinder’s surface.
The vorticity layer formed due to the flow separation at the deformed liquid–gas interface
is also visible in figure 15(a). This interfacial vorticity enters the wake region and
spreads horizontally, forming what can be described as a vorticity carpet. Additionally,
the interfacial vorticity plays a role in the cross-annihilation of the vorticity layer at the
top of the cylinder and prevents vortex shedding, which is identical to our observation
in figure 3(d1). Although a similar vorticity annihilation mechanism is also present in
figure 12, we have not shown the interfacial vorticity there to maintain a clear visualisation
of gas bubbles. The qualitative similarities in flow structures between two- and three-
dimensional set-ups are further substantiated by the lift coefficient Cl with values of
−0.355 and −0.3452 for the two- and three-dimensional cases, respectively.

In a three-dimensional set-up, liquid flow in the gap above the cylinder generates a
gas finger (see figure 15), similar to the two-dimensional result shown in figure 12.
However, three-dimensional effects become apparent during the entrainment process. The
breakup of the gas finger in figure 15(b1,b2) leads to the formation of cylindrical gas rolls
(labelled as entrained gas roll(EGR)), unlike the planar bubbles observed in figure 12. The
successive breakup of the gas finger creates a train of EGRs, analogous to the train of
planar bubbles seen in figure 12. These EGRs subsequently undergo fragmentation due
to background flow disturbances. A partially fragmented gas roll, EGR1, is highlighted in
figure 15(b1). Later, in figure 15(b2), EGR1 undergoes complete fragmentation, leaving no
remnants. Simultaneously, the fragmentation of the next gas roll in the sequence begins, as
indicated by the partially fragmented EGR2 in figure 15(b2). The ongoing fragmentation
of EGRs results in a swarm of rising bubbles in the wake region. Thus, it is clear that the
breakup mechanisms differ significantly between two- and three-dimensional flows.

We also collect bubble statistics using the detection algorithm developed by Herrmann
(2010). A brief discussion on the implementation of the bubble detection method within
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Figure 16. Projection of bubble coordinates onto the (a1) xy and (a2) xz planes in a three-dimensional gas
entrainment process. Both projections include a collection of bubble coordinates recorded over the time window
�tU/D = 80. High-density regions with tightly clustered bubble coordinates are marked in red, whereas those
with low bubble density are shown in blue. (b1,b2) Bubble-size (d/D) distributions resulting from the gas
entrainment phenomenon. Here N , P(d) and aN denote the number of bubbles, time-averaged bubble-size
density and size of the finest computational cell, respectively. The black curve with green shaded area in (b1)
shows the bubble-size distribution fitted to the histograms. The simulation parameters are {Re, We, Bo, h/D}
= {150, 1000, 1000, 1}.

the CAS-Tank solver can be found in Appendix C. Figure 16 shows the distribution of
entrained rolls and bubbles in the wake. Unlike the two-dimensional result shown in
figure 8(b2), the high-concentration regions in figure 16(a1) are positioned away from
the location where the gas finger breaks. This shift is due to the fragmentation of EGRs
into multiple bubbles, which occurs a few diameters away from the gas finger. The
spread of entrained bubbles in the y direction in figure 16(a1), which is about twice the
cylinder diameter, remains consistent with the two-dimensional case shown in figure 8(b2).
Observing the bubble distribution from above in figure 16(a2) reveals a spanwise wave-like
periodic pattern of high-concentration regions with a wavelength of ≈D. The wavelength
of this pattern is linked to how the perturbations at the interface of EGRs develop and the
subsequent breakup process. However, further investigation is needed to verify whether
the spanwise domain size affects the wavelength. The time-averaged bubble count in the
present three-dimensional case is N = 536.07, which is higher than the two-dimensional
bubble count in figure 8(a2), as expected. The mean bubble sizes are d/D = 0.05 and
0.059 for the two- and three-dimensional cases, which are still of the same order. However,
gas entrainment in the three-dimensional system yields bubbles with a mean size 18 %
larger than that of the two-dimensional counterpart.

The consequences of distinction in the breakup mechanisms between two- and
three-dimensional cases become apparent upon examining corresponding bubble-size
distributions shown in figures 8(c2) and 16(b1). The two-dimensional size distribution
(figure 8c2) loses its bimodal nature in a three-dimensional setting (figure 16b1). In three
dimensions, most bubbles do not form directly from the free surface; instead, they result
from the breakup of EGRs. Additionally, bubbles in the wake region are more densely
packed in three dimensions due to a significantly higher bubble count. This increased

1008 A10-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.162


Journal of Fluid Mechanics

density can dampen the subsequent fragmentation of bubbles caused by background flow
disturbances, leading to larger bubbles and a modified size distribution compared with the
two-dimensional entrainment case.

Building on existing studies of bubble entrainment and multi-phase turbulent flows
(Deane & Stokes 2002; Hendrickson et al. 2019; Mostert et al. 2022; Di Giorgio, Pirozzoli
& Iafrati 2022; Roccon, Zonta & Soldati 2023; Li et al. 2024), we investigate how the
time-averaged bubble-size density

P(d)= 1
(80D/U )

⎛
⎜⎝

t+80D/U∫
t

N (d, t; b)

V b
dt

⎞
⎟⎠ (3.3)

varies with the diameter d/D of the entrained bubbles. Using a bin radius of b = 0.005D
in (3.3), we compute P(d) by gathering statistics within a fluid volume V , defined as a
cuboid extending in the ranges 0 � x � 8D, −3D � y � h and −1.5D � z � 1.5D.

Figure 16(b2) presents the time-averaged bubble-size density, P(d), for bubble sizes
d/D exceeding the size of the finest grid cell, aN . Previous studies across various
turbulent flow scenarios have established that P(d) typically follows a −10/3 power
law (Dean & Stokes 2002; Roccon et al. 2023; Li et al. 2024). However, in the current
case with unsteady laminar flow and ongoing air entertainment, P(d) declines more
rapidly with increasing d/D, as indicated by the −9/2 power law in figure 16(b2). Such
a deviation from the −10/3 power law is not unprecedented and was recently observed
by Hendrickson et al. (2019) in their large-eddy simulation study of the canonical stern
geometry. A comprehensive investigation into the scaling behaviour of P(d) for different
combinations of dimensionless parameters in the current set-up is planned for future
work.

4. Summary and concluding remarks
We presented a tFSI study involving liquid–gas flow across a stationary circular cylinder,
extending the classical single-phase flow set-up. Our work builds on previous numerical
investigations of a similar flow configuration by incorporating a liquid–gas interface that
has finite surface tension and varies in deformability across a broad range of Bond (Bo)
numbers. We placed particular emphasis on classifying the emergent interface dynamics.
At fixed Reynolds and Weber numbers of Re = 150 and W e = 1000, respectively, we
identified three distinct interface regimes within the parameter space defined by 100 �
Bo � 5000 and the submergence depth 1 � h/D � 2.5: (1) the appearance of interfacial
waves, (2) the entrainment of gas bubbles and (3) the reduced deformation state. We
provided a detailed description of mechanisms triggering the formation of waves and
bubbles while highlighting the interplay among interface dynamics, hydrodynamic lift
and wake structures. Interfacial waves are described in terms of amplitude, transverse
fluctuation frequency and phase speed of interfacial deformation. Meanwhile, the process
of bubble entrainment is quantified through the bubble count in the wake region and their
size distribution.

Travelling interfacial waves, characterised by spatially varying deformation patterns, are
observed at the lower end of our Bo range. In this regime, initial deflection of the interface
occurs when the liquid phase moves past the cylinder. Subsequently, the amplitude of
interfacial perturbations grows in the downstream region due to the suction effect resulting
from pairs of alternating Strouhal vortices, giving rise to a sawtooth-shaped wavy interface
with tips pointing into the liquid phase. At the lowest value of Bo (=100) and the highest
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value of h/D (=2.5) in our investigation, the interfacial wave has an amplitude slightly
larger than the cylinder radius and a wavelength of about five times the cylinder diameter,
which is dictated by the size of vortex pairs. Upon reducing the value of h/D, the pointed
regions of the wavy interface break and form gas bubbles, which are then transported
deep into the flowing liquid via vortices in the wake region. Furthermore, we notice
that pronounced interface deformation tilts the vortex street, thereby altering the shape
and orientation of vortex pairs in the wake region. Regardless of whether the interfacial
waves break, their phase speed remains lower than the background flow. Moreover, the
transverse interface fluctuations have the same frequency as the vortex shedding at any
streamwise location. In this wavy interface regime, the expansion of the gap above the
cylinder due to the interface deformation relaxes the incoming flow, which in turn brings
down the frequency f D/U and strength C RM S

l of cyclic fluctuations in the lift force.
However, the interface has a very marginal effect on the net lift force experienced by the
cylinder.

For intermediate values of Bo, the gas entrainment state is achieved irrespective of
h/D, which is characterised by the continuous production of multi-scale gas bubbles
near the cylinder through interface breakup. Depending on the value of the {Bo, h/D}
combination, we observe full, partial and no vortex shedding states in the gas entrainment
regime. The entrainment of gas bubbles occurs through one of two breakup mechanisms,
depending on the h/D ratio. At Bo = 1000 and h/D = 2.5, bubbles are created through
plunging and surfing breakers, with plunging breakers entraining relatively larger bubbles,
thereby leading to a multi-scale bubble-size distribution. Once formed, many bubbles
undergo breakup and coalescence. Eventually, they rise to the free surface and burst,
creating film droplets. Remarkably, a similar cycle involving wave breaking, entrainment
of multi-scale bubbles and droplet generation through bursting bubbles is also seen at the
ocean–atmosphere interface (Deane & Stokes 2002; Deike 2022). At a lower h/D value of
unity, a gas finger forms due to a jet-like flow originating from the gap above the cylinder.
The breakup of this gas finger results in the entrainment of small bubbles. Some of these
bubbles grow in size through successive coalescence events, again leading to a multi-
scale size distribution. A reduction in the Weber number attenuates bubble entrainment
regardless of h/D. A similar trend is observed for the Reynolds number, but only at
h/D = 2.5. Flows with relatively low Reynolds numbers (<100) facilitate the formation of
a longer and more unstable gas finger at h/D = 1, resulting in an increased time-averaged
bubble count N .

We also demonstrated the similarities and differences in wake structure and gas
entrainment between two- and three-dimensional flows at Bo = 1000 and h/D = 1.
Although the vorticity field remains similar in both cases, three-dimensional effects
become prominent during the interface breakup in the entrainment process, which also
alters the bubble-size distribution and time-integrated spatial distribution of bubble
concentration in the wake region. Despite variations in the breakup mechanisms, the mean
bubble sizes in two- and three-dimensional configurations remain of the same order, with
larger bubbles in the latter case.

The liquid–gas interface exhibits weak deformation for extreme Bo values in our range.
However, unlike conventional single-phase flow across a cylinder, the time-averaged lift
force Cl does not vanish in the gas entrainment and reduced deformation states. Instead, it
amplifies with decreasing h/D, along with f D/U and C RM S

l . The net lift force is induced
due to the broken symmetry of the forward stagnation point. The transition from reduced
deformation to the gas entrainment regime at a constant h/D enhances Cl due to the
interface deformation near the back of the cylinder.
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It is evident that our canonical flow set-up, which involves fluid–structure interaction
and two-fluid flow, exhibits a rich variety of interfacial phenomena and flow structures.
This flow problem has the potential to motivate further studies. A natural extension of our
work would be to systematically examine the transition from two- to three-dimensional
interface dynamics and flow states. Additionally, in the bubble entrainment regime, one
can investigate gas dissolution in the liquid phase through entrained bubbles and study
foam production at the interface due to non-coalescing bubbles, both of which are
more complex and computationally challenging problems with interesting flow physics.
Understanding the implications of surface wettability for partially submerged cylinders is
also of great interest.
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Appendix A. Simulations on adaptive quadtree meshes: validation and grid
convergence
To accelerate our two-dimensional computations, we incorporate dynamically evolving
quadtree grids (Popinet 2003, 2009). This allows us to fine-tune grid resolution within
specific areas of our flow domain at each simulation time step. One such example
of an instantaneous quadtree mesh from one of our simulations is illustrated in
figure 17, together with the cylinder and the deformed liquid–gas interface. A hierarchical
arrangement of control volumes is evident. More importantly, one can notice that finer
control volumes are concentrated near the cylinder, in the wake region and close to the
interface to resolve the boundary layer, vorticity ω and interface curvature, respectively.
This adjustment of local grid resolution is automated through Basilisk’s wavelet-based
grid refinement algorithm (Schneider & Vasilyev 2010; van Hooft et al. 2018). This
strategy determines the local grid refinement level to maintain discretisation error below
a predefined threshold ε for a given flow parameter F . Subsequently, a grid cell is
subdivided into four equal-sized control volumes to step up the local resolution and vice
versa, giving rise to a tree-grid structure in figure 17. The cell refinement (or coarsening)
process continues until the discretisation error falls below (or above) the threshold ε.
Otherwise, it terminates when the maximum (or minimum) refinement level Lh (or
Ll ) prescribed in the simulation is attained. One can compare our dynamically refined
mesh with the traditional fully refined static uniform mesh using the parameter N =
D2Lh /L , which represents the number of equal-sized control volumes per unit cylinder
diameter D.

To benchmark our numerical implementation, we follow Colagrossi et al. (2019) and
set ρ1/ρ2 = 1000, μ1/μ2 = 100, L = 40D, h = 0.9D, Re = 180, σ = 0 and Fr = 0.3.
Note that ρ1/ρ2 = 1000 applies exclusively to this particular test case. Simulations in
§ 3 are performed with ρ1/ρ2 = 100, as noted previously in § 2. In this test case, we
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Figure 17. A zoomed-in view of the instantaneous quadtree cell distribution close to the cylinder (grey-
coloured circle) and the curved liquid–gas interface (red-coloured line). Hints of the underlying flow structure
are visible through the quadtree mesh.

Cl±C ′
l f D/U

Present work (VOF) Lh=11 −0.4005±0.69 0.193
Lh=12 −0.4080±0.73 0.193

Colagrossi et al. (2019) SPH −0.3700±0.77 0.209
LSM −0.4100±0.74 0.190
VOF −0.4100±0.80 0.192

Table 3. Time-averaged lift coefficient Cl , amplitude C ′
l and non-dimensional frequency f D/U of the

fluctuating lift force computed from the present VOF-based simulations on quadtree grids (Lh = 11 and 12)
and the findings published by Colagrossi et al. (2019) using three different numerical schemes: smoothed
particle hydrodynamics (SPH), level-set method (LSM) and VOF. The simulation parameters are ρ1/ρ2 = 1000,
μ1/μ2 = 100, L = 40D, h = 0.9D, Re = 180, σ = 0 and Fr = 0.3.

maintain an error threshold of ε = 0.001 and select F = {C, α, κ, ω, u} for the mesh
adaption in our simulations. The resulting time variation of the lift coefficient Cl =
2Fy/ρ1U 2 D is plotted in figure 18(a), where Fy is the vertical hydrodynamic load
(excluding buoyancy) experienced by the cylinder. Hydrodynamic lift obtained from our
quadtree-based simulations converges for the grid resolutions of Lh = 11 and 12, as
indicated by overlapping curves in figure 18(a). In both cases, the lowest grid refinement
level is kept at Ll = 6. As one can notice, the lift force signal in figure 18(a) is
biased towards negative values. This pronounced downward lift is a consequence of the
nearby liquid–gas interface. The comparison of our time-averaged lift coefficient Cl
with the published results of Colagrossi et al. (2019) is provided in table 3. Moreover,
an instantaneous vorticity field and the liquid–gas interface are shown in figure 18(b)
at the instance of maximum lift in figure 18(a). Coefficient Cl and the observed
interface deformation in our simulation closely align with the numerical findings of
Colagrossi et al. (2019) (see table 3 and figure 18b). Interested readers can further refer
to figure 9 in Colagrossi et al. (2019) for a qualitative comparison of our vorticity field in
figure 18(b).

In summary, a grid resolution of N ≈ 51 adequately captures the flow within the
gap between the cylinder and the liquid–gas interface and, thereby, hydrodynamic lift.
However, for scenarios involving high Froude numbers where the liquid–gas interface
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Lh = 11 (N ≈ 51) Lh = 12 (N ≈ 102) Present work Colagrossi et al.

Figure 18. (a) Temporal evolution of the lift coefficient Cl for ρ1/ρ2 = 1000, μ1/μ2 = 100, L = 40D, h =
0.9D, Re = 180, σ = 0 and Fr = 0.3. Here Lh indicates the highest refinement level of a quadtree mesh, and
N denotes the number of uniformly spaced grid points per unit cylinder diameter D in figure 1. (b) Snapshot
of the vorticity pattern around the cylinder and weakly deformed liquid–gas interface (green-coloured curve).
Orange circles highlight the free surface profile extracted from Colagrossi et al. (2019). Note that Cartesian
coordinates in (b) are in units of the cylinder diameter D.

breaks and very small droplets and bubbles form, we opt for a finer mesh resolution
of N ≈ 102. This finer resolution allows us to resolve droplets and bubbles that are two
orders of magnitude smaller than the cylinder. For two-dimensional simulations detailed
in § 3, we expand our domain size to L = 80, doubling the current domain size while
maintaining the resolution at N ≈ 102 by setting Lh = 13. A larger flow domain is crucial
to observe wake and interface dynamics far downstream from the cylinder. Throughout
our simulations, we keep ε and F the same as for the current test case. While surface
tension modelling is not required for the current test case in figure 18, since σ = 0, it is
worth noting that the Basilisk library has already been tested on several other stringent
free-surface problems involving surface tension (Deike et al. 2015; Mostert et al. 2022;
Tang, Adcock & Mostert 2024).

Before closing our discussion, we add a couple of remarks. Firstly, in order to precisely
resolve wake vortices and free-surface deformation across the entire downstream region,
one cannot rely on conventional non-uniform grids, as employed in previous tFSI studies
(Reichl et al. 2005; Colagrossi et al. 2019; Karmakar & Saha 2020). In the current set-
up, discretising the entire computational domain using a uniform Cartesian grid will yield
≈67 million grid cells. Thus, adaptive mesh refinement is likely the only viable alternative
to resolve extended downstream regions accurately at an affordable computational cost.
Secondly, our two-dimensional numerical formulation incorporates the potential form of
the gravitational body force in (2.2), which has a mathematical structure similar to that of
the surface tension body force (see Popinet (2018) for further details). This is particularly
advantageous for reducing spurious currents in free-surface flow simulations, as seen in
Wroniszewski et al. (2014).

Appendix B. Interface breakup and coalescence in VOF simulations
In practice, the breakup and merging of fluid interfaces can be influenced by
intermolecular forces, particularly when the gap between approaching interface segments
shrinks to the nanometre scale. For instance, bubble-bursting experiments reveal that the
film thickness at the moment of breakup typically measures a few micrometres, rendering
the effects of intermolecular forces negligible in these cases (Lhuissier & Villermaux
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2012). Conversely, experiments involving the collision of millimetric droplets demonstrate
that as the droplets approach each other, the surrounding fluid in the gap is squeezed
radially outward, reducing the gap between droplet interfaces to nanometre scales. At this
point, van der Waals forces become dominant, driving the coalescence of the droplets
(Chesters 1991).

In two-fluid simulations employing interface-capturing methods like the VOF, phase-
field or level-set approaches, breakup and coalescence events are inherently numerical
(Roccon et al. 2023). Interfaces break or coalesce when their separation falls below the
grid size. As the grid resolution is refined, these numerical events converge towards
the physical phenomena. This principle applies to existing numerical studies of bubble
entrainment and droplet production caused by free-surface breaking (Deike et al. 2015,
2018; Brasz et al. 2018; Hendrickson et al. 2019; Yu et al. 2019; Chan et al. 2021;
Mostert et al. 2022; and many more). Despite the absence of intermolecular interactions
in simulations, the numerical interface dynamics in such interface-resolved studies has
shown good agreement with experimental and natural flow observations, albeit with
the possibility of a slightly enhanced coalescence rate (Roccon et al. 2023). We point
out that incorporating molecular-level effects often has minimal impact on the breakup
and coalescence of interfaces, as these processes occur rapidly (Tryggvason et al.
2011).

Drawing on prior works, we anticipate that our simulated breakup and coalescence
dynamics will closely mirror real-world behaviour. Nevertheless, the precise answer to the
potential role of intermolecular forces in the interface dynamics in the present set-up can
only be assessed with the help of experimental investigations. Extreme scenarios requiring
macroscopic flow to be resolved down to scales dominated by intermolecular forces
remain virtually unattainable in traditional multi-phase flow simulations, even when using
adaptive mesh refinement (Thomas, Esmaeeli & Tryggvason 2010) and high-performance
computing (Roccon et al. 2023).

Finally, in the gas entrainment regime, the smallest bubbles and droplets that current
simulations can resolve with reasonable accuracy are approximately the size of the finest
computational cell, a capability facilitated by the mass-preserving properties of the VOF
framework (Scardovelli & Zaleski 1999; Popinet 2009; Yang et al. 2021; Riviére et al.
2021).

Appendix C. Detection of entrained gas bubbles in CAS-Tank solver
In this study, the bubble identification technique introduced by Herrmann (2010) is
employed to detect and characterise individual bubbles within a three-dimensional multi-
phase flow simulation performed using the CAS-Tank solver (Yang et al. 2021). The
procedure initiates with an iterative algorithm that systematically traverses the domain,
whereupon each detected bubble is assigned a unique identifier, denoted as id, following
the band generation method. This algorithm progressively expands from the initial seed
point in concentric layers, encompassing adjacent cells until the entire continuous bubble
structure is fully identified.

Upon the completion of tagging a continuous bubble, the identifier id is
incremented, and the algorithm searches for the next untagged cell containing the
gas phase to initiate the identification process for the subsequent bubble. This
process continues until all bubbles within the domain have been uniquely labelled.
A comprehensive lookup table is then generated, indexing all identified bubbles for further
analysis.
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The physical characteristics of the bubbles, including their volume, centre of mass and
velocity, are subsequently calculated according to the following equations:

Vid =
∑

tagi =id

Fi (B)VBi , (C1)

xid = 1
Vid

∑
tagi =id

xi Fi (B)VBi , (C2)

uid = 1
Vid

∑
tagi =id

ui Fi (B)VBi . (C3)

Here, for a bubble tagged with id, the symbol B denotes the group of grid cells constituting
the bubble. Also, Fi (B) is the cell volume fraction within cell i , VBi represents the volume
of cell i while xi and ui denote the cell centroid coordinates and velocity of cell i ,
respectively.
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