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Value Sets of Sparse Polynomials

Igor E. Shparlinski and José Felipe Voloch

Abstract. We obtain a new lower bound on the size of the value set V ( f ) = f (Fp) of a sparse polyno-
mial f ∈ Fp[X] over a ûnite ûeld of p elementswhen p is prime. his bound is uniformwith respect to
the degree and depends on some natural arithmetic properties of the degrees of themonomial terms
of f and the number of these terms. Our result is stronger than those that can be extracted from the
bounds on multiplicities of individual values in V ( f ).

1 Introduction

he value set of a polynomial f (X) ∈ Fq[X] over a ûnite ûeld Fq of q elements, is
the set V ( f ) = { f (a) ∶ a ∈ Fq} and we deûne V( f ) = #V ( f ). he problem of
estimating V( f ) in terms of f has been actively studied for over a half a century;
see [BS-D59, CLMS61,Mil64,WSC93] for some classical results, and [MZ13] for a
brief survey. We also refer to [Kur09] for amore recent result about the distribution
of elements in V ( f ).
For example, it is known that

V( f ) ≥ ⌊
q − 1
deg f

⌋ + 1

(which is slightly more precise than the trivial bound V( f ) ≥ q/deg f based on the
fact that f (x) = c has at most deg f solutions for any c), and, in fact, polynomials
which attain equality in that bound are fully classiûed [CLMS61,Mil64]. Given ad-
ditional conditions on f , this lower bound can sometimes be improved, for example,
for a prime q = p; by [WSC93, Corollary 2.5] we have

V( f ) ≥ ⌊
p − 1
deg f

⌋ + ⌊
2(p − 1)
(deg f )2 ⌋ ,

provided that deg f ∤ p − 1. One can also ûnd in [WSC93] some nontrivial upper
bounds onV( f ), provided thatV( f ) < q, i.e., that f isnot a permutation polynomial.

In this paper, we study the question of bounding V( f ) from below as a function
of the number of terms in f , rather than its degree. Speciûcally, if

f (X) = a0 +
t

∑
i=1
a iXn i ,
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we want to estimate V( f ) in terms of t and q. When the degree of f is much higher
than t, the polynomial f is said to be sparse. One can bound the number of roots
of sparse polynomials [CFKLLS, Lemma 7], [Kel16, heorems 2.2 and 2.3] and con-
vert this to a lower bound on V( f ), as above. O�entimes, as described in [BCR16,
CGRW17], a sparse polynomial may have many roots. We prove, however, that for
q = p prime, one can give a nontrivial lower bound on V( f ), for f sparse, even when
equations of the form f (x) = a have many roots in Fp . In addition, this bound is
always better than the one obtained from the upper bound of [CFKLLS, Lemma 7]
or [Kel16,heorems 2.2 and 2.3] on the number of roots, when it applies, for t ≥ 9.

We obtain our results in three steps. First, using a monomial change of variables,
we reduce the degree of the polynomial [CFKLLS]. Second, we bound the number
of irreducible components of f (X) − f (Y) by adapting a result of Zannier [Zan07].
Finally, we use the results of [Vol89] to get our bounds.

We also give a special treatment in the case of binomials, via diòerent arguments,
and we obtain stronger results in that case.

2 Factors of Differences of Sparse Laurent Polynomials

We start with the following version of [Vol85, heorem 4], and refer to [St09] for
background on function ûelds. For example, we recall that the degree of an element
u of a function ûeld K over a ûeld of constants F is deûned as degu = [K ∶F(u)] if u
is not in F and zero otherwise. We also deûne the degree of the point (u1 ∶ ⋅ ⋅ ⋅ ∶ ut) in
a projective space over K as

deg(u1 ∶ ⋅ ⋅ ⋅ ∶ um) = maxdeg(∑
i
α iu i) ,

where the α i vary in an algebraic closure of F. Such a point deûnes amorphism from
the curve whose function ûeld is K to projective space and the degree of the point is
the degree of themorphism. Amorphism as above is classical in the sense of [SV86]
if there is a valuation ν of K and linear combinations w1 , . . . ,wt of u1 , . . . , ut with
coeõcients in F such that ν(w i) = i − 1 for i = 1, . . . , t.

Lemma 2.1 Let K be a function ûeld of genus g with a ûeld of constants F of charac-
teristic p and let S be a ûnite set of places of K. If u1 , . . . , ut are S-units of K, linearly
independent over F, satisfying

deg(u1 ∶ ⋅ ⋅ ⋅ ∶ ut) < p and u1 + ⋅ ⋅ ⋅ + ut = 1,

then

max
i=1, . . . ,t

degu i ≤
t(t − 1)

2
(2g − 2 + #S).

Proof he condition deg(u1 ∶ ⋅ ⋅ ⋅ ∶ ut) < p means that the degree of the correspond-
ing morphism is less than p and [SV86, Corollary 1.8] states that amorphism whose
degree is less than p is classical in the above sense. It also ensures that [Vol85, Equa-
tion (3)] holds and, with that, the proof of [Vol85,heorem 4] goes through verbatim
in the present situation, and its conclusion is the desired inequality. ∎
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We say a polynomial g(X ,Y) is a factor of a rational function f (X ,Y) if it is a
factor of its numerator (in lowest terms).

he following result and its proof aremotivated by a result of Zannier [Zan07]. We
recall that Zannier proved a conjecture of Schinzel to the eòect that a sparse polyno-
mial in characteristic zero is not the composition of two other polynomials except in
a few exceptional cases. his is achieved by investigating the factors of f (X) − f (Y)

for a sparse univariate polynomial f (X), which is directly related to our situation.

heorem 2.2 Let F be a ûeld of positive characteristic p and let

f (X) =
t

∑
i=1
a iXn i ∈ F(X)

be a nonconstant Laurent polynomial over F with a i ≠ 0 and nonzero integer exponents
n1 < ⋅ ⋅ ⋅ < nt with nt ≥ ∣n i ∣ for all i = 1, . . . , t. If h(X ,Y) is an irreducible polynomial
factor of f (X) − f (Y) of degree d not of the form X − αY or XY − α, α ∈ F, then

d ≥ min{
p

3nt
,
√

nt

t
} .

Proof Let X be a smooth model of the curve h = 0 and K/F its function ûeld. he
genus ofX is at most (d − 1)(d − 2)/2. On X , the functions x and y have at most d
zeros and d poles (on the line at inûnity), so they are S-units for some set S of places
of X with #S ≤ 3d, since x and y both have poles at the at most d points at inûnity,
where S is formed by these poles and by the two sets of at most d zeros of x and y.
Consider the functions xn i , yn i , for i ∈ {1, . . . , t},which are also S-units. Let u1 = xn t ,
u2 , . . . , um be a subset of these functions such that

u1 =
m

∑
i=2
c iu i , c i ∈ F ,

andm is minimal. Note that m ≤ 2t, as the equation f (x)− f (y) = 0 yields a relation
of this form with m = 2t, but 2t may not beminimal. Note also that m > 1.

If m = 2, then u2 is a power of y as, otherwise, h would be a polynomial in X,
which is clearly not possible. Let u2 = yn j . As we have xn t = c2 yn j on the curve h = 0,
we must have n j ≠ 0 and y = cxn t/n j for some c (as algebraic functions). Plugging
this into f (x) − f (y) = 0 and comparing powers of x, yields n j = nt or n1 (the latter
only if n1 = −nt). Consequently, h = X − αY or h = XY − α, α ∈ K, contrary to the
hypothesis, so m ≥ 3.

he u i are functions on X and are thus elements of K, and we have that
deg(u1 ∶ ⋅ ⋅ ⋅ ∶ um−1) ≤ 3dnt , since each coordinate is a monomial in x or y or their
inverses to a power at most nt . If 3dnt ≥ p, the desired result follows immediately. If
3dnt < p, then by Lemma 2.1, using that degu1 ≥ nt , we get

nt ≤ degu1 ≤ (m(m + 1)/2)(d(d − 3) + 3d) ≤ d2m2
≤ d2 t2 ,

proving the desired result. ∎
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3 Value Sets of Sparse Polynomials

Herewe only concentrate on the case of a prime ûeld Fp , where p is a prime. We start
with the following simple application of the Dirichlet pigeonhole principle (see also
the proof of [CFKLLS, Lemma 7]).

Lemma 3.1 For an integer S ≥ 1 and arbitrary integers n1 , . . . , nt , there exists a
positive integer s ≤ S, such that

sn i ≡ m i (mod p − 1) and ∣m i ∣ ≤ pS−1/t , i = 1, . . . , t.

Proof We cover the cube [0, p − 1]t by at most S cubes with the side length pS−1/t .
herefore, at least two of the vectors formed by the residues ofmodulo p−1 of the S+1
vectors (sn1 , . . . , snt), s = 0, . . . , S , fall in the same cube. Assume they correspond to
S ≥ s1 > s2 ≥ 0. It is easy to see that s = s1 − s2 yields the desired result. ∎

For a sparse polynomial

(3.1) g(x) =
r

∑
i=1
b iXk i ∈ Fp[X]

with r ≥ 2 elements b1 , . . . , br ∈ F∗p and integer exponents k1 , . . . , kr ∈ Z let us denote
by T(g) the number of distinct zeros of g in F∗p , that is, the number of solutions to
the equation g(x) = 0, x ∈ F∗p . By [CFKLLS, Lemma 7] we have

(3.2) T(g) ≤ 2p1−1/(r−1)D1/(r−1)
+ Or(p1−2/(r−1)D2/(r−1)

),

where

(3.3) D = min
1≤i≤r

max
j≠i

gcd(k j − k i , p − 1).

and Or( ⋅ ) indicates that the implied constant may depend on r.
Kelley recently gave a version of (3.2) without an error term, which is slightly

more convenient for our applications [Kel16, heorem 2.3] (see also the follow-up
discussion).

Lemma 3.2 For g(x) ∈ Fp[X] is of the form (3.1), we have

T(g) ≤ 2(p − 1)1−1/(r−1)D1/(r−1) ,

where D is given by (3.3).

Our main tool is the following bound of [Vol89, heorem (i)] on the number of
points on curves over Fp .

Lemma 3.3 Let F(X ,Y) ∈ Fp[X ,Y] be an absolutely irreducible polynomial of de-
gree d with p1/4 < d < p. hen

#{(x , y) ∈ F2
p ∶ F(x , y) = 0} ≤ 4d4/3p2/3 .
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We also use that, by the Cauchy inequality,

p2
= (∑

a∈Fp

#{x ∈ Fp ∶ f (x) = a})
2

≤ V( f ) ∑
a∈V ( f )

(#{x ∈ Fp ∶ f (x) = a})
2

= V( f )#{(x , y) ∈ F2
p ∶ f (x) = f (y)} .

(3.4)

See also [Vol89, Lemma 1] for a similar argument.
We are now ready to estimate V( f ). We present our bound and necessary condi-

tions in fully explicit forms. However, we trade some possible improvements of nu-
merical constants and dependencies on t (which we treat as a secondary parameter)
in favour of the brevity and simplicity of the argument.

heorem 3.4 For any prime p ≥ 5 and integers 1 ≤ n1 , . . . , nt < p − 1 that satisfy the
following conditions,

(i) max1≤ j<i≤t gcd(n j − n i , p − 1) ≤ 2−t2(p − 1),
(ii) gcd(n1 , . . . , nt , p − 1) = 1,
and for any polynomial

f (X) =
t

∑
i=1
a iXn i ∈ Fp[X] with a i ≠ 0, i = 1, . . . , t,

we have

V( f ) ≥ min{(
3p
t
)

2/3
,
1
12

p4/(3t+4)
} .

Proof We chose the integer parameter

(3.5) S = ⌈p3t/(3t+4)⌉ ,

and deûne s and m1 , . . . ,mt as in Lemma 3.1.
Clearly we can assume that p4/(3t+4) ≥ 2, as otherwise the bound is trivial. Hence

we observe that

(3.6) S ≤ ⌈p/2⌉ = (p + 1)/2 < p − 1

for p ≥ 5, which we have assumed.
We see that the condition (i) guarantees that

2t+1
(p − 1)1−1/(r−1)( max

1≤ j<i≤t
gcd(n j − n i , p − 1))

1/(t−1)
< p − 1.

Hence, by Lemma 3.2 there is c ∈ F∗p such that

(3.7) ∑
i∈I

a i cn i ≠ 0,

for all non-empty sets I ⊆ {1, . . . , t}.
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We now ûx some c ∈ F∗p satisfying (3.7) and for the above s, we consider the poly-
nomial f (cX s). hen the values of f (cX s) in F∗p coincide with those of

g(X) =
t

∑
i=1
b iXm i with b i = a i cn i , i = 1, . . . , t,

and, a�er collecting like powers of X, we consider two situations.
Case 1: he polynomial g(X) is a constant function.

Case 2: he polynomial g(X) is of positive degree.
We observe that due to condition (3.7), the number of terms of g(X) is exactly the

same as the number of distinct values among m1 , . . . ,mt .
In Case 1, if g(X) is a constant, then m1 = ⋅ ⋅ ⋅ = mt = 0 and thus using that

sn i ≡ m i ≡ 0 (mod p − 1), i = 1, . . . , t, we also see that

s gcd(n1 , . . . , , nt , p − 1) ≡ 0 (mod p − 1).

his, togetherwith condition (ii), imply that S ≥ s ≥ p−1,which is impossible by (3.6).
We now consider Case 2, that is, when g(X) is a nontrivial Laurent polynomial.

Furthermore, making, if necessary, the change of variable X → X−1, without loss of
generality, we can assume that

mt = max{∣m1∣, . . . , ∣mt ∣} > 0.

We now derive an upper bound on

N = #{(x , y) ∈ F2
p ∶ g(x) = g(y)} ,

which is based on heorem 2.2.
If

√
mt ≤

tp
3mt

,

then mt ≤ (tp/3)2/3, and the result is trivial as we immediately obtain

(3.8) N ≤ mt p ≤ (t/3)2/3p5/3 .
Hence, we now assume that

(3.9)
√

mt >
tp

3mt
.

First, in order to apply heorem 2.2, we need to investigate the factors of
g(X) − g(Y) of the form X − αY or of the form XY − α with α in the algebraic
closure of Fp .

In fact, for an application to N , only factors of these formswith α ∈ Fp are relevant.
Let Gs ⊆ F∗p be the multiplicative subgroup of elements α ∈ Fp with αs = 1.

Note that Gs is a subgroup of elements ofmultiplicative order gcd(s, p − 1), and thus
#Gs = gcd(s, p − 1). We show that, for some γ ∈ Fp , the factors of g(X)− g(Y) of the
form X − αY and XY − α satisfy α ∈ Gs and α ∈ γGs , respectively.
Clearly, if g(X) − g(Y) has a factor of the form X − αY , then g(X) − g(αX) is

identical to zero. Since g(X) is not constant, we see that α ≠ 0. Hence, denoting by
m themultiplicative order of α in F∗p , we see that by condition (ii) we have

m ∣ gcd(m1 , . . . ,mt , p − 1) = gcd(sn1 , . . . , snt , p − 1) = gcd(s, p − 1).
Hence, α ∈ Gs .
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he factors of g(X) − g(Y) of the form XY − α, α ∈ K imply that g(X) − g(α/X)

is identically zero. his may occur only if, for each i = 1, . . . , t, there exists j = 1, . . . , t
with m i = −m j and αm i = b i/b j . In particular, there is some β ∈ F∗p (which may
depend on m1 , . . . ,mt) such that

αgcd(m1 , . . . ,m t ,p−1)
= β,

which puts α in some ûxed coset Gs . Hence, there are at most s ≤ S such values of α
that contribute at most

(3.10) N0 ≤ pS

to N .
We proceed to get an upper estimate on N and notice that any further contribution

to N may only come from factors of g(X)− g(Y), not of the form X − αY or XY − α.
Since m1 , . . . ,mt are as in Lemma 3.1, we have

(3.11) mt ≤ pS−1/t .

Hence, for the degrees d j = deg h j of all such factors h1 , . . . , hk of g(X) − g(Y) via
heorem 2.2 and the inequality (3.9), we derive that

d j ≥ {
p

3mt
,
√

mt

t
} =

p
3mt

≥
1
3
S1/t , j = 1, . . . , k.

In particular, there are

k ≤
2mt

min{d1 , . . . , dk}
≤ 3pS−2/t

such factors.
Let N1 and N2 be contributions to N from the factors h j of degree d j < p1/4 and

d j ≥ p1/4, respectively.
If a factor h has degree d < p1/4, then the number of rational points on h = 0 is at

most 2p by theWeil bound [Lor96, Section X.5, Equation (5.2)], so those factors all
together contribute

(3.12) N1 ≤ 2
k

∑
j=1

d j<p1/4

p ≤ 2kp ≤ 6p2S−2/t .

he factors with degree d ≥ p1/4 contribute 4d4/3p2/3 by Lemma 3.3 and, in total
they contribute

N2 ≤ 4
k

∑
j=1

d j≥p1/4

d4/3
j p2/3 .

Using the convexity of the function z ↦ z4/3 and then extending the range of sum-
mation to polynomials of all degrees and recalling (3.11), we obtain

(3.13) N2 ≤ 4p2/3
(

k

∑
j=1
d j)

4/3
≤ 4m4/3

t p2/3
≤ 4p2S−4/(3t) .
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Combining (3.10), (3.12), and (3.13), we obtain N ≤ pS + 10p2S−4/(3t) , which, with
the choice of S as in (3.5), implies that

p3t/(3t+4)
≤ S < 2p3t/(3t+4)

becomes

(3.14) N < 12p(6t+4)/(3t+4) .

Combining (3.8) and (3.14) with (3.4), we obtain the result. ∎

We now consider the case of binomials in more detail.

heorem 3.5 If f (X) = X+aXn ∈ Fp[X], d = gcd(n, p−1), and e = gcd(n−1, p−1),
then V( f ) ≥ max{d , p/d , e , p/e}.

Proof Assume that d ≤ p1/2. here exists a positive r ≤ (p − 1)/d with rn/d ≡ 1
(mod (p − 1)/d) so that rn ≡ d (mod p − 1). Hence, if x = ur , then f (x) = g(u),
where g(u) = ur + aud .

he equation g(u) = g(v) has degree max{r, d} in v so g(u) = g(v) thus has at
most

pmax{r, d} ≤ pmax{(p − 1)/d , d} ≤ p2
/d

solutions, as d ≤ p1/2. By (3.4), we have V( f ) ≥ p2/pd = p/d. If d > p1/2, note that
d > p/d.

Now regardless of the size of d, notice that for distinct d-th roots of unity, that is,
for u with ud = 1, the values f (u) = u + a are pairwise distinct. hus V( f ) ≥ d.

Similarly, there exists an integer s with s(n − 1)/e ≡ 1 (mod (p − 1)/e) so that
sn ≡ e + s (mod p− 1). Hence, if x = us , then f (x) = h(u), where h(u) = us + aue+s .
he equation h(u) = h(v) becomes, with v = tu, the same as us + aue+s = tsus +

aue+s te+s , and we get that either u = 0 or 1+ aue = ts + aue te+s , which has at most pe
solutions. By (3.4), we have V( f ) ≥ p2/pe = p/e.
Furthermore, we now ûx a non-zero e-th power c with 1 + ac ≠ 0. Clearly, for

distinct e-th roots of c, that is, for u with ue = c, the values f (u) = u(1 + ac) are
pairwise distinct, and we can also add f (0) = 0. hus V( f ) ≥ e.

he result now follows. ∎

We now immediately obtain the following.

Corollary 3.6 If f (X) = X + aXn ∈ Fp[X], then V( f ) ≥ p1/2.

4 Comments

heorem 3.5 extends,with the same proof, to arbitrary ûnite ûelds. On the other hand,
heorem 3.4 is false as stated for arbitrary ûnite ûelds. Indeed, the trace polynomial
T(X) = X +X p + ⋅ ⋅ ⋅+X pt−1

has T(Fpt) = Fp , so V(T) = q1/t if q = pt . If the linearity
is to be avoided for some reason, then the trace polynomial can be combined with a
monomial X(q−1)/d for some divisor d.
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Clearly, for f (X) = X(q−1)/d + T(X), any element in V ( f ) is of the form u + v,
where u ∈ V (X(q−1)/d) and v ∈ V (T). Hence, we have

V( f ) ≤ V(X(q−1)/d
)V(T) = (d + 1)p.

We note that one can use Lemma 3.2 directly in combination with (3.4). How-
ever, in the best possible scenario this approach can only give a lower bound of order
p1/(t−1), which is always weaker than that ofheorem 3.4 for t ≥ 9.

If p is a prime such that (p − 1)/2 is also prime, then it follows from heorem 3.5
that, for f (X) = X + aXn , a ≠ 0, 2 ≤ n ≤ p − 1, we have V( f ) ≥ (p − 1)/2. It can
be proved that equality is attained if n = p − 2 and a is a non-square. In this case the
pre-image of non-zero elements of Fp has zero or two elements and the pre-image
of zero has three elements. A diòerent example is f (X) = X − X(p+1)/2, which has
V( f ) = (p+ 1)/2 and the pre-image of 0 has (p+ 1)/2 elements and other pre-images
have zero or one elements.
For arbitrary primes, we have the following. Assume that d ∣ (p − 1) and consider

f (X) = X+aX1+(p−1)/d . Choose a, if possible, such that ((1 + a)/(1 + ζa))(p−1)/d
= ζ

for all ζ with ζd = 1. If x(p−1)/d
1 = 1 and xζ = (1 + a)x1/(1 + ζa), then x(p−1)/d

ζ = ζ and
f (xζ) = f (x1) and it follows that V( f ) = 1 + (p − 1)/d.

To see when we can ûnd such a, let cζ be such that c(p−1)/d
ζ = ζ with ζd = 1.

Consider the curve given by the systemof equations (1+u)/(1+ζu) = cζvdζ in variables
u and vζ , indexed by ζ ≠ 1 with ζd = 1. A rational point with u = a ≠ 0 provides the
necessary a. he genus of this curve is at most dd/2 so by the Weil bound on the
number of Fp-rational points on curves [Lor96, Section X.5, Equation (5.2)], there
is such a point if p > d2d . his construction succeeds if d ≤ c log p/(log log p) with
some absolute constant c > 0.

We conclude by posing a question about estimating the image size of polynomi-
als of the form F(X) = ∏

t
i=1(Xn i + a i). Although most of our technique applies in

this case as well, investigating linear factors of F(cX s) − F(cY s) seems to be more
complicated.
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