
JFP 24 (4): 474–522, 2014. c© Cambridge University Press 2014

doi:10.1017/S0956796814000215 First published online 27 August 2014

474

PhD Abstracts

GRAHAM HUTTON

University of Nottingham, UK

(e-mail:)graham.hutton@nottingham.ac.uk)

Many students complete PhDs in functional programming each year, but there

is currently no common location in which to promote and advertise the resulting

work. The Journal of Functional Programming would like to change that!

As a service to the community, JFP is launching a new feature, in the form of a

regular publication of abstracts from PhD dissertations that were completed during

the previous year. To start this new feature off, we have reached back three years for

the first round of abstracts. The abstracts are freely available on the JFP website,

i.e. not behind any paywall, and do not require any transfer for copyright, merely a

license from the author. A dissertation is eligible if parts of it have or could have

appeared in JFP, that is, if it is in the general area of functional programming. The

abstracts are not reviewed.

We are delighted to publish 37 abstracts in this first round, and hope that JFP

readers will find many interesting dissertations in this collection that they might

not otherwise have seen. If a student or advisor would like to submit a dissertation

abstract for publication in this series, please contact the editor for further details.

Graham Hutton

PhD Abstract Editor

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 475

Flow-sensitivecontrol-flow analysis in linear-log time

MICHAEL D. ADAMS

Indiana University, USA

Date: October 2011; Advisor: R. Kent Dybvig
URL: http://search.proquest.com/docview/914424665

The flexibility of dynamically typed languages such as JavaScript, Python, Ruby,

and Scheme comes at the cost of run-time type checks. Some of these checks can

be eliminated via control-flow analysis. However, traditional control-flow analysis

(CFA) is not ideal for this task as it ignores flow-sensitive information that can be

gained from dynamic type predicates, such as JavaScript’s instanceof and Scheme’s

pair?, and from type-restricted operators, such as Scheme’s car. Yet, adding flow-

sensitivity to a traditional CFA worsens the already significant compile-time cost of

traditional CFA. This makes it unsuitable for use in just-in-time compilers.

In response, this dissertation presents a fast, flow-sensitive type-recovery algo-

rithm based on the linear-time, flow-insensitive sub-0CFA. The algorithm has been

implemented as an experimental optimization into Chez Scheme compiler, where

it has proven to be effective, justifying the elimination of about 60% of run-time

type checks in a large set of bench-marks. The algorithm processes on average over

100,000 lines of code per second and scales well asymptotically, running in only

O(n log n) time. This compile-time performance and scalability is achieved through

a novel combination of data structures and algorithms.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


476 G. Hutton

Finding the lazy programmer’s bugs

TRISTAN ALLWOOD

Imperial College London, UK

Date: January 2011; Advisor: Susan Eisenbach
URL: http://pubs.doc.ic.ac.uk/tristan-allwood-thesis/

Traditionally developers and testers created huge numbers of explicit tests,

enumerating interesting cases, perhaps biased by what they believe to be the current

boundary conditions of the function being tested. Or at least, they were supposed

to.

A major step forward was the development of property testing. Property testing

requires the user to write a few functional properties that are used to generate

tests, and requires an external library or tool to create test data for the tests.

As such many thousands of tests can be created for a single property. For the

purely functional programming language Haskell there are several such libraries;

for example QuickCheck, SmallCheck and Lazy SmallCheck.

Unfortunately, property testing still requires the user to write explicit tests.

Fortunately, we note there are already many implicit tests present in programs.

Developers may throw assertion errors, or the compiler may silently insert runtime

exceptions for incomplete pattern matches.

We attempt to automate the testing process using these implicit tests. Our

contributions are in four main areas: (1) We have developed algorithms to au-

tomatically infer appropriate constructors and functions needed to generate test

data without requiring additional programmer work or annotations. (2) To combine

the constructors and functions into test expressions we take advantage of Haskell’s

lazy evaluation semantics by applying the techniques of needed narrowing and lazy

instantiation to guide generation. (3) We keep the type of test data at its most

general, in order to prevent committing too early to monomorphic types that cause

needless wasted tests. (4) We have developed novel ways of creating Haskell case

expressions to inspect elements inside returned data structures, in order to discover

exceptions that may be hidden by laziness, and to make our test data generation

algorithm more expressive.

In order to validate our claims, we have implemented these techniques in Irulan,

a fully automatic tool for generating systematic black-box unit tests for Haskell

library code. We have designed Irulan to generate high coverage test suites and

detect common programming errors in the process.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 477

The mechanics of the grammatical framework

KRASIMIR ANGELOV

Chalmers University of Technology, Sweden

Date: February 2012; Advisor: Aarne Ranta
URL: http://www.cse.chalmers.se/ krasimir/phd-thesis.pdf

Grammatical Framework (GF) is a well known theoretical framework and a

mature programming language for description of natural languages. The GF

community is now growing rapidly and the range of applications is expanding.

Within the framework, there are computational resources for 26 languages created

from different people in different organizations. The coverage of the different

resources varies but there are complete morphologies and grammars for at least

18 languages. This advancement would not be possible without the continuous

development of the GF compiler and interpreter.

The demand for efficient and portable execution model for GF lead to major

changes in both the compiler and the interpreter. We developed a new low-level

representation called Portable Grammar Format (PGF) which is simple enough for

an efficient interpretation. Since it was already known that a major fragment of GF

is equivalent to Parallel Multiple Context-Free Grammar (PMCFG), we designed

PGF as an extension which adds to PMCFG distinctive features of GF such as

multilingualism, higher-order abstract syntax, dependent types, etc. In the process

we developed novel algorithms for parsing and linearization with PMCFG and a

framework for logical reasoning in first-order type theory where the proof search

can be constrained by the parse chart.

This monograph is the detailed description of the engine for efficient interpretation

of PGF and is intended as a reference for building alternative implementations or

as a foundation for the future development of PGF.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


478 G. Hutton

Modular implementation of programming languages and a
partial-order approach to infinitary rewriting

PATRICK BAHR

University of Copenhagen, Denmark

Date: December 2012; Advisor: Fritz Henglein
URL: http://tinyurl.com/kca9pzk

In this dissertation we study two independent areas of research: implementation of

programming languages on the one hand and infinitary rewriting on the other hand.

In the first part, titled Modular Implementation of Programming Languages, we

develop techniques for implementing programming languages in a modular fashion.

Within this problem domain, we focus on operations on typed abstract syntax trees

with the goal of developing a framework that facilitates the definition, manipulation

and composition of such operations. The result of our work is a comprehensive

combinator library that provides these facilities.

What sets our approach apart is the use of recursion schemes derived from

tree automata in order to implement operations on abstract syntax trees. In the

first two chapters we illustrate the power of this approach by showcasing tree

homomorphisms as basic building blocks for simple tree transformations. Tree

homomorphisms are a very limited form of tree automata that transform the

tree structure depending only on local information. Their simplicity allows us to

combine them with monadic effects, manipulate and combine them in a flexible

manner, and perform optimisations in the form of deforestation. In the second

chapter, we focus on the important issue of representing variable names and variable

binders using a carefully restricted form of higher-order abstract syntax.

In the third chapter, we move to more powerful tree automata, namely tree

transducers. In essence, tree transducers combine tree homomorphisms with the

capability of maintaining state information that is propagated downwards or

upwards trough the tree structure. Usually, these more powerful automata are

cumbersome to define as they combine different computational aspects: transforming

the tree structure and maintaining state information. We show, however, that these

automata can be constructed from simpler ones, namely tree homomorphisms and

simple state machines.

In the fourth chapter, we present a comprehensive and realistic application of

our library: a prototype implementation of a novel enterprise resource planning

system built around a family of domain-specific languages that make it possible to

customise the system in a highly flexible manner. The system combines several highly

integrated domain-specific languages, which are implemented using our library. Due

to the common underlying domain, there is a non-trivial amount of overlap between

the languages. With our library we are able to reuse implementations of functionality

that is shared between the different languages.

The second part of this dissertation, titled A Partial-Order Approach to Infinitary

Rewriting, is concerned with infinitary rewriting, a field that studies transfinite rewrite

sequences.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 479

In infinitary rewriting one gives meaning to infinite rewrite sequences by providing

a notion of convergence. That is, one defines what it means for an infinite rewrite

sequence to be well-behaved and what the limit of such a well-behaved rewrite

sequence is. To this end, one typically endows the term language with a metric and

derives convergence from the resulting metric space.

In this dissertation, we extend the established theory of infinitary rewriting in two

ways:

1. a novel approach to convergence in infinitary rewriting that replaces conver-

gence in a metric space with the limit inferior in a partially ordered set;

2. extending infinitary term rewriting to infinitary term graph rewriting.

To facilitate our study of convergence, we formulate a common framework

that abstracts from the notion of convergence, e.g. metric convergence, and the

underlying objects, e.g. terms or graphs. We show that, in this abstract framework,

many basic relations between termination and confluence properties known from

finite reductions still hold in the infinitary setting.

We then introduce a novel notion of convergence for infinitary rewriting based on

a partial order on terms. The infinitary rewriting theory is obtained by instantiating

the abstract framework with the limit inferior of the partial order as the notion

of convergence. We show correspondences between the established calculi based

on metric convergence and the newly developed calculi based on partial orders. In

particular, we show that the partial order approach is a conservative extension of the

metric approach. Moreover, we find that the partial order-based calculi have better

confluence and normalisation properties than the metric-based ones. In light of these

results we argue that the partial order approach is superior to the established metric

approach.

To compare the two approaches further, we consider so-called Böhm extensions,

which extend term rewrite systems with rules that contract certain terms to ⊥. Such

extensions were originally devised for infinitary term rewriting in order to re-obtain

normalisation and convergence properties, which are lost due to infinite rewrite

sequences. We show that metric infinitary term rewriting with Böhm extensions

coincides with partial order infinitary term rewriting.

Finally, we give the first rigorous treatment of infinitary term graph rewriting.

To this end we instantiate our abstract framework with term graphs. However,

devising suitable notions of convergence on term graphs turns out to be non-trivial

and we therefore explore different approaches. Among these different attempts we

distinguish two calculi – a metric-based one and a partial order-based one. We

show the appropriateness of these calculi by proving soundness and completeness

properties with respect to the corresponding infinitary term rewriting calculi. Also in

the setting of term graph rewriting the partial order approach shows advantages over

the metric approach: the completeness property for the metric calculus is weaker

than for the partial order calculus. This weakness is inherent in the metric notion

of convergence and is independent of the particular choice of the metric.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


480 G. Hutton

Parallel functional programming with mutable state

LARS BERGSTROM

University of Chicago, USA

Date: June 2013; Advisor: John Reppy
URL: http://manticore.cs.uchicago.edu/papers/bergstrom-phd.pdf

Immutability greatly simplifies the implementation of parallel languages. In the

absence of mutable state the language implementation is free to perform parallel

operations with fewer locks and fewer restrictions on scheduling and data replication.

In the Manticore project, we have achieved nearly perfect speedups across both Intel

and AMD manycore machines on a variety of benchmarks using this approach.

There are parallel stateful algorithms, however, that exhibit significantly better

performance than the corresponding parallel algorithm without mutable state. For

example, in many search problems, the same problem configuration can be reached

through multiple execution paths. Parallel stateful algorithms share the results

of evaluating the same configuration across threads, but parallel mutation-free

algorithms are required to either duplicate work or thread their state through a

sequential store. Additionally, in algorithms where each parallel task mutates an

independent portion of the data, non-conflicting mutations can be performed in

parallel. The parallel state-free algorithm will have to merge each of those changes

individually, which is a sequential operation at each step.

In this dissertation, we extend Manticore with two techniques that address these

problems while preserving its current scalability. Memoization, also known as function

caching, is a technique that stores previously returned values from functions, making

them available to parallel threads of executions that call that same function with

those same values. We have taken this deterministic technique and combined it with

a high-performance implementation of a dynamically sized, parallel hash table to

provide scalable performance. We have also added mutable state along with two

execution models — one of which is deterministic — that allow the user to share

arbitrary results across parallel threads under several execution models, all of which

preserve the ability to reason locally about the behavior of code.

For both of these techniques, we present a detailed description of their imple-

mentations, examine a set of relevant benchmarks, and specify their semantics.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 481

Call-by-need supercompilation

MAXIMILIAN C. BOLINGBROKE

University of Cambridge, UK

Date: July 2013; Advisor: Simon Peyton Jones and Alan Mycroft
URL: http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-835.html

This thesis shows how supercompilation, a powerful technique for transformation

and analysis of functional programs, can be effectively applied to a call-by-need

language. Our setting will be core calculi suitable for use as intermediate languages

when compiling higher-order, lazy functional programming languages such as

Haskell.

We describe a new formulation of supercompilation which is more closely

connected to operational semantics than the standard presentation. As a result

of this connection, we are able to exploit a standard Sestoft-style operational

semantics to build a supercompiler which, for the first time, is able to supercompile

a call-by-need language with unrestricted recursive let bindings.

We give complete descriptions of all of the (surprisingly tricky) components

of the resulting supercompiler, showing in detail how standard formulations of

supercompilation have to be adapted for the call-by-need setting.

We show how the standard technique of generalisation can be extended to the call-

by-need setting. We also describe a novel generalisation scheme which is simpler to

implement than standard generalisation techniques, and describe a completely new

form of generalisation which can be used when supercompiling a typed language

to ameliorate the phenomenon of supercompilers overspecialising functions on their

type arguments.

We also demonstrate a number of non-generalisation-based techniques that can

be used to improve the quality of the code generated by the supercompiler. Firstly,

we show how let-speculation can be used to ameliorate the effects of the work-

duplication checks that are inherent to call-by-need supercompilation. Secondly, we

demonstrate how the standard idea of rollback in supercompilation can be adapted

to our presentation of the supercompilation algorithm.

We have implemented our supercompiler as an optimisation pass in the Glasgow

Haskell Compiler. We perform a comprehensive evaluation of our implementation

on a suite of standard call-by-need benchmarks. We improve the runtime of the

benchmarks in our suite by a geometric mean of 42%, and reduce the amount of

memory which the benchmarks allocate by a geometric mean of 34%.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


482 G. Hutton

Stream fusion:
Practical shortcut fusion for coinductive sequence types

DUNCAN COUTTS

University of Oxford, UK

Date: 2011; Advisor: Oege de Moor
URL: http://tinyurl.com/k8pnqtf

In functional programming it is common practice to build modular programs by

composing functions where the intermediate values are data structures such as lists

or arrays. A desirable optimisation for programs written in this style is to fuse the

composed functions and thereby eliminate the intermediate data structures and their

associated runtime costs.

Stream fusion is one such fusion optimisation that can eliminate intermediate

data structures, including lists, arrays and other abstract data types that can be

viewed as coinductive sequences. The fusion transformation can be applied fully

automatically by a general purpose optimising compiler. The stream fusion technique

itself has been presented previously and many practical implementations exist.

The primary contributions of this thesis address the issues of correctness and

optimisation: whether the transformation is correct and whether the transformation

is an optimisation.

Proofs of shortcut fusion laws have typically relied on parametricity by making

use of free theorems. Unfortunately, most functional programming languages have

semantics for which classical free theorems do not hold unconditionally; additional

side conditions are required. In this thesis we take an approach based not on

parametricity but on data abstraction. Using this approach we prove the correctness

of stream fusion for lists – encompassing the fusion system as a whole, not merely

the central fusion law. We generalise this proof to give a framework for proving

the correctness of stream fusion for any abstract data type that can be viewed

as a coinductive sequence and give as an instance of the framework, a simple

model of arrays. The framework requires that each fusible function satisfies a simple

data abstraction property. We give proofs of this property for several standard list

functions.

Previous empirical work has demonstrated that stream fusion can be an optimi-

sation in many cases. In this thesis we take a more universal view and consider the

issue of optimisation independently of any particular implementation or compiler.

We make a semi-formal argument that, subject to certain syntactic conditions on

fusible functions, stream fusion on lists is strictly an improvement, as measured

by the number of allocations of data constructors. This detailed analysis of how

stream fusion works may be of use in writing fusible functions or in developing new

implementations of stream fusion.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 483

Foundations for behavioral higher-order contracts

CHRISTOS DIMOULAS

Northeastern University, USA

Date: January 2013; Advisor: Matthias Felleisen
URL: http://hdl.handle.net/2047/d20002848

Contracts are a popular mechanism for enhancing the interface of components. In

the world of first-order functions, programmers embrace contracts because they write

them in a familiar language and easily understand them as a pair of a pre-condition

and a post-condition. In a higher-order world, contracts offer the same expressiveness

to programmers but their meaning subtly differs from the familiar first-order notion.

For instance, it is unclear what the behavior of dependent contracts for higher-order

functions or of contracts for mutable data should be. As a consequence, it is difficult

to design monitoring systems for such higher-order worlds.

In response to this problem, this dissertation investigates complete monitors, a

formal framework for deciding if a contract system is correct. The intuition behind

the framework is that a correct contract system should:

• mediate the exchange of values between contracted components

• and blame correctly in case of contract violations.

The framework reveals flaws in the semantics for dependent contracts from the

literature and suggests a natural fix. In addition, this dissertation demonstrates the

usefulness of the framework for language design with a language with contracts for

mutable data and a language that mixes typed and untyped imperative programs.

The final contribution is the provably correct design of a novel form of contracts,

dubbed options contracts, that mix contract checking with random and probabilistic

checking.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


484 G. Hutton

Modular proof development in ACL2

CARL EASTLUND

Northeastern University, USA

Date: January 2013; Advisor: Matthias Felleisen
URL: http://www.ccs.neu.edu/racket/pubs/dissertation-eastlund.pdf

The ACL2 theorem prover combines a first-order dialect of LISP with an

automated proof engine for first-order logic. While ACL2 is logically quite pow-

erful, it can be difficult to build and maintain large models due to its ad hoc

systems for modularity, namespace management, logical encapsulation, and macro

expansion. I propose a new language, Refined ACL2, extending ACL2 with ex-

pressive component and macro systems designed to accommodate large-scale proof

development and flexible logical abstractions. The component system of Refined

ACL2 adapts many features of ML’s functors and signatures to ACL2. Com-

ponents support nesting, parameterization, translucent specification, and refine-

ment of abstract specifications with concrete definitions. Refined ACL2 inherits

Racket’s macro system; furthermore, macro definitions can be incorporated into

component specifications.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 485

Frontiers of multilingual grammar development

RAMONA ENACHE

University of Gothenburg, Sweden

Date: October 2013; Advisor: Aarne Ranta and Koen Claessen
URL: http://tinyurl.com/ks6ke7j

The thesis explores a number of ways for developing multilingual grammars writ-

ten in GF (Grammatical Framework). GF is a type-theoretical grammar formalism,

particularly suited for a multilingual setting and a dependently-typed functional

programming language, usually used for natural language applications. The GF

approach to language representation is inspired from compiler theory and separates

a grammar into the abstract syntax (semantic interlingua for the domain), and a

number of concrete syntaxes (usually corresponding to natural languages). This

representation allows direct translation between any pair of concrete languages, via

the abstract syntax, and a semantically-coherent representation of the domain across

languages.

The goal of this work is to enhance both the coverage of the grammars, in

terms of content and number of languages and to reduce the development effort by

automating a larger part of the process.

The first direction in grammar development targets the creation of general lan-

guage resources. These are the starting point for building domain-specific grammars

for the given language. Developing resource grammars gives a good overview on the

effort required and provides a solid base for subsequent experiments in automation.

Our work resulted in building computational grammars for Romanian and Swedish.

A further development step is multilingual domain-specific grammar creation.

The technique we employed is converting structured models into grammars, which

preserves the original structure of the model as a backbone of the grammar and

uses the general GF resources for a smooth multilingual verbalization of the model.

The use cases considered are an upper-domain ontology, a business model and an

ontology describing cultural heritage artifacts, each posing a different challenge and

illustrating a different aspect of GF grammars-ontology interoperability, and its

advantages on both sides.

An orthogonal approach to multilingual grammar development aims at increasing

the number of languages from a domain grammar. Our solution is an example-based

prototype which partially replaces grammar programming with feedback from native

informants and/or SMT tools (such as Google Translate).

Last but not least, as an attempt to not only enhance GF grammars, but also

use them in a novel way, we present the grammar-based hybrid system architecture

combining GF grammars and SMT systems. This marks some of the first steps in

using grammars for translating free text. As a side-effect of the work, we propose a

technique for building bilingual GF lexicon resources from SMT phrase tables.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


486 G. Hutton

Ask-Elle: A Haskell tutor

ALEX GERDES

Open Universiteit Nederland, The Netherlands

Date: November 2012; Advisor: Johan Jeuring
URL: http://tinyurl.com/mceu33u

Learning to program is challenging. A first course in programming is often a major

stumbling block and the results of such a course are often disappointing. There is

no final answer yet to the question how programming is learned best, and what

makes programming hard. There are many aspects to learning a new programming

language or paradigm. One important aspect is to practise programming, by making

programming exercises. A student learns from the feedback he receives on his

solutions. Preferably this feedback is given while the student is doing the exercise,

instead of giving feedback later. This feedback is usually given by a teacher or

assistant. Giving immediate feedback becomes hard when a teacher has to help

many students simultaneously. To support a teacher with this task many intelligent

programming tutors have been developed.

There exist programming tutors for a number of programming languages, such as

Java, Lisp, Prolog, Haskell, and many more. Evaluation studies have indicated that

working with a programming tutor supporting the construction of programs is more

effective when learning how to program than doing the same exercise ‘on your own’

using only a compiler. Using intelligent tutors requires less help from a teacher while

showing the same performance on tests. The immediate feedback given by many

of the tutors is to be preferred over the delayed feedback common in a classroom

setting. Despite the advantages of using intelligent programming tutors, they are not

widely used. Some tutors are well-developed and extensively tested in classrooms,

but most haven’t outgrown the research prototype phase, and are not maintained

any more. Furthermore, deploying an intelligent tutor in a course is often hard for

a teacher. Most teachers want to adapt or extend an intelligent programming tutor

to their needs. Adding an exercise to a tutor requires investigating which strategies

can be used to solve the exercise, what the possible solutions are, and how the tutor

should react to behaviour that doesn’t follow the desired path. All this knowledge

then has to be translated into the internals of the tutor, which implies a substantial

amount of work.

In this thesis we investigate the following research questions: how can we design

and implement a functional programming tutor that automatically gives semantically

rich feedback to students incrementally solving an exercise, to which teachers can

easily add exercises, in which teachers can easily fine-tune feedback?

We have built a functional programming tutor for Haskell, named Ask-Elle,

in which we address these research questions. Ask-Elle is an interactive system

that supports the stepwise development of simple functional programs and targets

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 487

beginning computer science students. A notable feature of our tutor is that the hints

and feedback given at intermediate steps are derived automatically from teacher-

specified annotated solutions and non-solutions for a problem. This reduces the

work required for using the tutor, and allows a teacher to use his favourite exercises.

Furthermore, the order in which a student constructs a program using our tutor is

quite flexible. The tutor is offered as a web application, which further reduces the

burden to use it.

Using Ask-Elle, students learning functional programming

• develop their programs incrementally,

• receive feedback about whether or not they are on the right track,

• can ask for a hint when they are stuck,

• see how a complete program is stepwise constructed.

Ask-Elle itself is implemented as a functional program, and uses fundamental

concepts from software technology such as rewriting, parsing, strategies, program

transformations and higher-order combinators such as the fold. The tutor is

built on top of our general software framework for specifying domain reasoners,

and uses the Helium compiler for Haskell. Helium gives excellent syntax-error

and type-error messages, and reports dependency analysis problems in a clear

way.

For any programming problem there are many solutions. Some of these solutions

are syntactical variants of each other, but other solutions implement different ideas

to solve a problem. A teacher can specify her exercises in Ask-Elle by giving a set of

model solutions for a problem. A model solution is a program that an expert writes,

using good programming practices. Our tutor supports the incremental construction,

in a top-down fashion, of model solutions. It recognises incomplete versions of these

solutions, together with all kinds of syntactical variants. The tutor aims to be as

flexible as possible for teachers as well as for students. For example, a student may

use her own names for functions and variables, and may use different, but equivalent,

language constructs.

The tutor generates feedback based on a set of model solutions for a particular

programming problem. A teacher can adapt feedback by annotating the model

solutions. This requires translating annotated model solutions to a form which

we can use to track intermediate student steps. We use programming strategies to

track the intermediate steps taken by a student. A strategy, or procedure, to solve

an exercise often consists of multiple steps. For example, developing an explicit

recursive function on lists often consists of introducing a case distinction between

the empty list and the non-empty list, and a recursive call in the non-empty list case,

amongst others. A strategy may also contain a choice between different (sequences

of) steps, such as either using a higher-order function, or an explicit recursive

definition. Sometimes, the order in which the steps are performed is not relevant, as

long as they are performed at some point.

We have developed a strategy language for describing procedures as rewrite

strategies. Our strategy language is domain independent, and has been used to

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


488 G. Hutton

describe strategies for exercises in mathematics, logic, and biology, in addition to

programming. A strategy for a functional program describes how a student should

construct a functional program for a particular problem. The basic elements of

the strategy language are rewrite or refinement rules. We use these strategies to

support students using our intelligent programming tutor to incrementally develop

a program.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 489

First-class models: On a noncausal language for higher-order
and structurally dynamic modelling and simulation

GEORGE GIORGIDZE

University of Nottingham, UK

Date: Oct 2012; Advisor: Henrik Nilsson
URL: http://etheses.nottingham.ac.uk/2554/

The field of physical modelling and simulation plays a vital role in advancing

numerous scientific and engineering disciplines. To cope with the increasing size and

complexity of physical models, a number of modelling and simulation languages

have been developed. These languages can be divided into two broad categories:

causal and noncausal. Causal languages express a system model in terms of directed

equations. In contrast, a noncausal model is formulated in terms of undirected

equations. The fact that the causality can be left implicit makes noncausal languages

more declarative and noncausal models more reusable. These are considered to be

crucial advantages in many physical domains.

Current, mainstream noncausal languages do not treat equational models as first-

class values; that is, a model cannot be parametrised on other models or generated

at simulation runtime. This results in very limited higher-order and structurally

dynamic modelling capabilities, and limits the expressiveness and applicability of

noncausal languages.

This thesis is about a novel approach to the design and implementation of

noncausal languages with first-class models supporting higher-order and structurally

dynamic modelling. In particular, the thesis presents a language that enables: (1)

higher-order modelling capabilities by embedding noncausal models as first-class

entities into a functional programming language and (2) efficient simulation of

noncausal models that are generated at simulation runtime by runtime symbolic

processing and just-in-time compilation. These language design and implementation

approaches can be applied to other noncausal languages. This thesis provides a

self-contained reference for such an undertaking by defining the language semantics

formally and providing an in-depth description of the implementation. The language

provides noncausal modelling and simulation capabilities that go beyond the state of

the art, as backed up by a range of examples presented in the thesis, and represents

a significant progress in the field of physical modelling and simulation.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


490 G. Hutton

Concurrent pattern unification

THOMAS PAUL GIVEN-WILSON

University of Technology, Sydney, Australia

Date: August 2012; Advisor: Barry Jay
URL: http://tinyurl.com/mr5tjue

Ever since Milner showed that Church’s λ-calculus can be subsumed by π-calculus,

process calculi have been expected to subsume sequential computation. However,

Jay and Given-Wilson show that extensional sequential computation as represented

by λ-calculus is subsumed by intensional sequential computation characterised

by pattern-matching as in SF-calculus. Given-Wilson, Gorla and Jay present a

concurrent pattern calculus (CPC) that adapts sequential pattern-matching to sym-

metric pattern-unification in a process calculus. This dissertation proves that CPC

subsumes both intensionality sequential computation and extensional concurrent

computation, respectively SF-calculus and π-calculus, to complete a computation

square. A behavioural theory is developed for CPC that is then exploited to prove

that CPC is more expressive than several representative sequential and concurrent

calculi. As part of its greater expressive power, CPC provides a natural language

to describe interactions involving information exchange. Augmenting the pattern-

matching language bondi to implement CPC yields a Concurrent bondi that is able

to support web services that exploit both sequential and concurrent intensionality.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 491

Manifest contracts

MICHAEL GREENBERG

University of Pennsylvania, USA

Date: December 2013; Advisor: Benjamin Pierce
URL: http://repository.upenn.edu/edissertations/468/

Eiffel popularized design by contract, a software design philosophy where pro-

grammers specify the requirements and guarantees of functions via executable pre-

and post-conditions written in code. Findler and Felleisen brought contracts to

higher-order programming, inspiring the PLT Racket implementation of contracts.

Existing approaches for runtime checking lack reasoning principles and stop short

of their full potential–most Racket contracts check only simple types. Moreover, the

standard algorithm for higher-order contract checking can lead to unbounded space

consumption and can destroy tail recursion. In this dissertation, I develop so-called

manifest contract systems which integrate more coherently in the type system, and

relate them to Findler-and-Felleisen-style latent contracts. I extend a manifest system

with type abstraction and relational parametricity, and also show how to integrate

dynamic types and contracts in a space efficient way, i.e., in a way that doesn’t destroy

tail recursion. I put manifest contracts on a firm type-theoretic footing, showing that

they support extensions necessary for real programming. Developing these principles

is the first step in designing and implementing higher-order languages with contracts

and refinement types.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


492 G. Hutton

Type inference, Haskell and dependent types

ADAM MICHAEL GUNDRY

University of Strathclyde, UK

Date: December 2013; Advisor: Conor McBride
URL: http://tinyurl.com/kzxamvd

This thesis studies questions of type inference, unification and elaboration for

languages that combine dependent type theory and functional programming. Lan-

guages such as modern Haskell have very expressive type systems, allowing the

programmer a great deal of freedom. These require advanced type inference and

unification algorithms to reconstruct details that were left implicit, and suitable

representation of the evidence delivered by such algorithms.

The first part proposes an approach to unification and type inference, based

on information increase in dependency-ordered contexts, and keeping careful track

of variable scope. Two existing systems are reviewed: the Hindley-Milner type

system, and units of measure in the style of Kennedy. Subtle issues relating to

let-generalisation become clearer as a result. Using the same approach, an algorithm

is described for Miller pattern unification in a full-spectrum dependent type theory,

forming a foundation for the elaboration of dependently typed languages.

The second part introduces inch, a language that extends Haskell with type-

level data and functions, and dependent product types. Type-level numbers and

arithmetic operations are specifically considered, as a particularly useful source

of applications, such as the perennial example of vectors (length-indexed lists).

The increased expressivity in the source language is matched by a suitable core

language of evidence, into which inch programs can be translated. This language is

based on System FC, the existing core language used by GHC, adapted to clarify

the relationships between the type and term levels. It gives a coherent operational

semantics to both levels, allowing shared data and dependent functions, but retaining

a clear phase distinction. The contextual approach of the first part of the thesis is

used to specify the elaboration of inch into the evidence language, and applications

of inch based on type-level arithmetic are demonstrated.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 493

Types with potential:
polynomial resource bounds via automatic amortized analysis

JAN HOFFMANN

Ludwig Maximilian University of Munich, Germany

Date: October 2011; Advisor: Martin Hofmann
URL: http://edoc.ub.uni-muenchen.de/13955/

A primary feature of a computer program is its quantitative performance char-

acteristics: the amount of resources such as time, memory, and power the program

needs to perform its task. Concrete resource bounds for specific hardware have many

important applications in software development but their manual determination is

tedious and error-prone.

This dissertation studies the problem of automatically determining concrete

worst-case bounds on the quantitative resource consumption of functional

programs.

Traditionally, automatic resource analyses are based on recurrence relations.

The difficulty of both extracting and solving recurrence relations has led to the

development of type-based resource analyses that are compositional, modular, and

formally verifiable. However, existing automatic analyses based on amortization or

sized types can only compute bounds that are linear in the sizes of the arguments

of a function.

This work presents a novel type system that derives polynomial resource bounds

from first-order functional programs. As pioneered by Hofmann and Jost for linear

bounds, it relies on the potential method of amortized analysis. Types are annotated

with multivariate resource polynomials, a rich class of functions that generalize

non-negative linear combinations of binomial coefficients. The main theorem states

that type derivations establish resource bounds that are sound with respect to the

resource-consumption of programs which is formalized by a big-step operational

semantics.

Simple local type rules allow for an efficient inference algorithm for the type

annotations which relies on linear constraint solving only. This gives rise to an

analysis system that is fully automatic if a maximal degree of the bounding

polynomials is given. The analysis is generic in the resource of interest and

can derive bounds on time and space usage. The bounds are naturally closed

under composition and eventually summarized in closed, easily understood

formulas.

The practicability of this automatic amortized analysis is verified with a publicly

available implementation and a reproducible experimental evaluation. The experi-

ments with a wide range of examples from functional programming show that the

inference of the bounds only takes a couple of seconds in most cases. The derived

heap-space and evaluation-step bounds are compared with the measured worst-case

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


494 G. Hutton

behavior of the programs. Most bounds are asymptotically tight, and the constant

factors are close or even identical to the optimal ones. For the first time we are

able to automatically and precisely analyze the resource consumption of involved

programs such as quick sort for lists of lists, longest common subsequence via

dynamic programming, and multiplication of a list of matrices with different, fitting

dimensions.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 495

Compiling concurrency correctly:
Verifying software transactional memory

LIYANG HU

University of Nottingham, UK

Date: June 2012; Advisor: Graham Hutton
URL: http://etheses.nottingham.ac.uk/3348/

Concurrent programming is notoriously difficult, but with multi-core processors

becoming the norm, is now a reality that every programmer must face. Concurrency

has traditionally been managed using low-level mutual exclusion locks, which are

error-prone and do not naturally support the compositional style of programming

that is becoming indispensable for today’s large-scale software projects.

A novel, high-level approach that has emerged in recent years is that of software

transactional memory (STM), which avoids the need for explicit locking, instead

presenting the programmer with a declarative approach to concurrency. However,

its implementation is much more complex and subtle, and ensuring its correctness

places significant demands on the compiler writer.

This thesis considers the problem of formally verifying an implementation of

STM. Utilising a minimal language incorporating only the features that we are

interested in studying, we first explore various STM design choices, along with the

issue of compiler correctness via the use of automated testing tools. Then we outline

a new approach to concurrent compiler correctness using the notion of bisimulation,

implemented using the Agda theorem prover. Finally, we show how bisimulation

can be used to establish the correctness of a low-level implementation of software

transactional memory.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


496 G. Hutton

Generic constraints for type-safe embedded programming

WILL JONES

Imperial College London, UK

Date: May 2013; Advisor: Tony Field
URL: http://pubs.doc.ic.ac.uk/will-jones-phd-thesis/

Domain-specific languages (DSLs) are everywhere, with applications in areas such

as parser generation, music synthesis, parallel programming and even the design

of domain-specific languages. However, while the pay-off in using a DSL may be

substantial, the cost of introducing a language may be made prohibitively high by

the need to construct a supporting toolchain.

A common tactic is to embed a DSL into a general-purpose host programming

language. Existing infrastructure such as a language’s compiler or type system may

be re-used, provided that the embedding accurately captures the properties of the

DSL. While the rich type systems and orthogonal abstraction features of modern

functional languages have proved particularly capable in this regard, they are not

without their shortcomings. Building type-safe functions defined over an embedded

DSL can introduce application-specific type constraints that end up being imposed

on the DSL data types themselves. At best, these constraints are unwieldy and at

worst they can limit the range of DSL expressions that can be built.

In this thesis we tackle the problem of accurately embedding a DSL’s type system

into that of the purely functional language Haskell. We present a framework for

expressing application-specific constraints at the point of a DSL expression’s use

rather than when the DSLs embedding is defined. We show how our framework can

be applied more generally to capture arbitrary properties of a DSL expression and,

in certain cases, how we may subsequently prove additional safety properties such

as the totality of a function which operates over DSL expressions. We evaluate our

techniques by illustrating their use in constructing a DSL for heterogeneous parallel

programming. However, our methods have potentially wider applications such as

context-dependent computation, which are also discussed.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 497

Executable refinement types

KENNETH KNOWLES

University of California, Santa Cruz, USA

Date: March 2014; Advisor: Cormac Flanagan
URL: http://arxiv.org/abs/1403.3336

Precise specifications are integral to effective programming practice. Existing

specification disciplines such as structural type systems, dynamic contracts, and

extended static checking all suffer from limitations such as imprecision, false

positives, false negatives, or excessive manual proof burden. New ways of expressing

and enforcing program specifications are needed.

Towards that end, this dissertation introduces executable refinement types and

establishes their metatheory and accompanying implementation techniques. Exe-

cutable refinement types enrich structural type systems with basic types refined by

semi-decidable predicates. Through the lens of executable refinement types, we also

address the broader problem of theory and implementation for undecidable type

systems.

To establish a firm foundation for the study of executable refinement types,

this dissertation presents a full formal account of their metatheory. Type checking

for executable refinement types is undecidable. Nonetheless, they fulfill standard

metatheoretical correctness criteria including type soundness and extensional equiv-

alence.

To perform type checking for executable refinement types we introduce hybrid type

checking, a type enforcement strategy broadly applicable to undecidable type systems.

Hybrid type checking enforces specifications via static analysis where possible and

dynamic type casts where necessary. We prove that for any decidable approximation

of executable refinement types, either: (1) Hybrid type checking catches some errors

statically which the decidable approximation would miss, or (2) the decidable

approximation rejects some correct program which hybrid type checking would

accept.

To perform type reconstruction for executable refinement types, we radically

revise the usual notion of type reconstruction. Typeability is undecidable because

it subsumes type checking. Instead, we propose a more precise definition of type

reconstruction as a typeability-preserving transformation. For decidable type systems,

our definition coincides with the previous. Using our generalized notion of type

reconstruction, we demonstrate that type reconstruction for executable refinement

types is decidable even though type checking is not! We show this by providing

a syntactic type reconstruction algorithm reminiscent of strongest postcondition

calculation.

To enlarge the class of programs for which type checking is decidable, we formalize

the notion of compositional reasoning for types systems. Because standard dependent

types perform non-compositional reasoning, type checking is undecidable even when

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


498 G. Hutton

all types appearing in a program fall in a decidable specification language. We present

a variant of dependent types which uses existential types to achieve compositional

reasoning. Even restricted to compositional reasoning, our type system is exact:

It can give any term a type that completely classifies that term up to contextual

equivalence. When reasoning compositionally, if all the annotations in a program

fall into a decidable language, then type checking is decidable. We show this with a

type checking algorithm for such programs.

Atop these theoretical foundations we implement Sage, a language blending exe-

cutable refinement types, dynamic typing, and first-class types. Sages implementation

includes standard type-checking machinery, compile-time computation, automatic

theorem proving, dynamic contract checking, and a database of run-time failures

which inform the hybrid type checker for future runs. Preliminary experiments

indicate that Sage is effective at verifying many common examples statically in a

reasonable amount of time. Moreover, every run-time failure in Sage can occur at

most once: From then onwards it becomes a compile time failure.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 499

Less is more: Generic programming theory and practice

JOSÉ PEDRO MAGALHÃES

Utrecht University, The Netherlands

Date: September 2012; Advisor: Johan Jeuring, Doaitse Swierstra and Andres Löh
URL: http://dspace.library.uu.nl/handle/1874/254098

Abstraction is ubiquitous in computer programming. To allow programmers to

abstract from details, several programming languages have been developed. Such

languages are a precise way to express commands to a computer, and eventually

are translated into the only primitive operations that the computer understands.

The automatic translation process from one programming language to another is

the task of a compiler, itself a program which reads programs in one input language

and outputs programs in another language. Compilers can be chained together, to

collectively bring a program from a very high-level programming language (abstract

and convenient for human reasoning) down to machine language (low-level and

ready to be executed by the computer).

The work of this thesis concerns a special class of very high-level programming

languages, namely statically-typed purely functional languages. In such languages,

the computation to be performed is described by functions that take input and

produce output. The evaluation of a program thus consists of evaluating calls to

these functions. This paradigm is rather distant from the machine language at the

core of the computer. The machine language deals with sequences of instructions,

conditional operations, and loops. A functional language deals with function

application, composition, and recursion. We choose functional programming as the

starting point for our research because we believe it lends itself perfectly to express

abstraction, leading to shorter and more understandable computer programs. This

allows the programmer to express complex behaviour in a simple fashion, resulting

in programs that are easier to adapt, compose, maintain, and reason about, all

desirable properties for computer programs.

We focus on one specific form of abstraction. Computer programs manipulate

data, which can either be primitive machine data (such as integer or fractional

numbers) or programmer-defined data (such as lists, trees, matrices, images, etc.).

There is only a small number of primitive datatypes, but a potentially infinite

number of programmer-defined data. The structure of the latter data depends on

the problem at hand, and while some structures appear very often (such as sequences

of values), others are truly specific to a particular problem.

Some kind of functionality is generally desired for all types of data. Reading

and storing files to the disk, for instance, is as important for machine integers as

it is for complex healthcare databases, or genealogy trees. And not just reading

and writing files: testing for equality, sorting, traversing, computing the length,

all are examples of functionality that is often desired for all kinds of data. Most

programming languages allow defining complex datatypes as a form of abstraction,

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


500 G. Hutton

but few provide good support for defining behaviour that is generic over data. As

such, programmers are forced to specify this behaviour over and over again, once

for each new type of data, and also to adapt this code whenever the structure of

their data changes. This is a tedious task, and can quickly become time-consuming,

leading some programmers to write programs to generate this type of functionality

automatically from the structure of data.

We think that a programming language should allow programmers to define

generic programs, which specify behaviour that is generic over the type of data.

Moreover, it should automatically provide generic behaviour for new data, eliminat-

ing the need for repeated writing and rewriting of trivial code that just specialises

general behaviour to a particular type of data. It should do so in a convenient way

for the programmer, leading to more abstract and concise programs, while remaining

clear and efficient. This leads us to the two research questions we set out to answer:

1. There are many different approaches to generic programming, varying in

complexity and expressiveness. How can we better understand each of the

approaches, and the way they relate to each other?

2. Poor runtime efficiency, insufficient datatype support, and lack of proper lan-

guage integration are often pointed out as deficiencies in generic programming

implementations. How can we best address these concerns?

We answer the first question in the first part of this thesis. We start by picking

a number of generic programming approaches and define a concise model for each

of them. We then use this model to formally express how to embed the structural

representation of data of one approach into another, allowing us to better understand

the relation between different approaches. The second part of this thesis deals with

answering the second question, devoting one chapter to analysing and mitigating

each of the practical concerns.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 501

Syntax and models of a non-associative
composition of programs and proofs

GUILLAUME MUNCH-MACCAGNONI

Université Paris Diderot, France

Date: December 2013; Advisor: Pierre-Louis Curien
URL: http://tel.archives-ouvertes.fr/tel-00918642

The thesis is a contribution to the understanding of the nature, role, and

mechanisms of polarisation in programming languages, proof theory and categorical

models. Polarisation corresponds to the idea that we can relax the associativity of

composition, and underlies many models of computation.

In our demonstration, we introduce duploids, which model polarisation directly.

These compositional structures, unlike categories, do not always require composition

to be associative, and they are shown to be in correspondence with adjunctions. Then,

we obtain a fine-grained decomposition of continuation-passing-style translations.

As an application, we explain how polarisation accounts for evaluation order in

models of delimited control operators. We also show how polarisation explains

constructiveness-related phenomena in proof theory, through a formulae-as-types

interpretation of an involutive negation.

The cornerstone of our approach is an interactive term-based representation of

proofs and programs (L calculi ) which exposes the structure of polarities. It is based

on the correspondence between abstract machines and sequent calculi, and it aims at

synthesising various trends: the modelling of control, evaluation order and effects in

programming languages, the quest for a relationship between categorical duality and

continuations, and the interactive notion of construction in proof theory. We give a

gentle introduction to our approach which only assumes elementary knowledge of

simply-typed λ calculus and rewriting.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


502 G. Hutton

Type classes and instance chains: A relational approach

J. GARRETT MORRIS

Portland State University, USA

Date: June 2013; Advisor: Mark P. Jones
URL: http://archives.pdx.edu/ds/psu/9917

Type classes, first proposed during the design of the Haskell programming

language, extend standard type systems to support overloaded functions. Since

their introduction, type classes have been used to address a range of problems,

from typing ordering and arithmetic operators to describing heterogeneous lists and

limited subtyping. However, while type class programming is useful for a variety

of practical problems, its wider use is limited by the inexpressiveness and hidden

complexity of current mechanisms. We propose two improvements to existing class

systems. First, we introduce several novel language features, instance chains and

explicit failure, that increase the expressiveness of type classes while providing more

direct expression of current idioms. To validate these features, we have built an

implementation of these features, demonstrating their use in a practical setting and

their integration with type reconstruction for a Hindley-Milner type system. Second,

we define a set-based semantics for type classes that provides a sound basis for

reasoning about type class systems, their implementations, and the meanings of

programs that use them.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 503

A quest for exactness:
Program transformation for reliable real numbers

PIERRE NERON

Ecole Polytechnique, France

Date: October 2013; Advisor: Gilles Dowek and César Muñoz
URL: http://tinyurl.com/nefstw5

The notion of real number is firmly related with the notion of infinity, which

is not compatible with the finiteness of computers memory. This limitation has

been overcome in different ways. Since the introduction of computable numbers by

Alan Turing in 1936, many representations of real and computable numbers have

been studied. The most common way to deal with real numbers in programming

languages is to use the floating point numbers as described in the IEEE 754

standard. For example, the 64 bits representation includes one bit for the sign,

eleven for the exponent and fifty-two for the mantissa. However, this standard only

represents a finite number of real numbers and therefore many rounding issues arise.

In particular, none of the usual operations is always exact and therefore the result

of the computation of an arithmetic expression with floating point numbers may

differ from the value of this expression on real numbers.

Many techniques, from program analysis to program transformation and com-

pilation schemes, have been developed to ensure the reliability of programs using

finite representations of real numbers. However exact computations using these

representation is out of scope. Exact computation may be achieved using dynamic

representations such as streams of integers or polynomial representations of alge-

braic numbers but these representations require an unbounded amount of memory

or unbounded computations.

There is at least one main reason why computations with real numbers have

been so thoroughly studied. Real numbers are used to describe the physical world

and many systems, namely cyber-physical systems, are used to control physical

entities. From cars to airplanes, from medical robots to GPS chips, human develops

thousands of such cyber-physical systems. Moreover, many of these systems are

embedded and require a high level of safety since any failure may lead to dramatic

consequences. Such critical systems often have constraints to ensure that the

programs terminate and do not fail due to lack of memory, therefore exact

computation techniques mentioned previously they are not suitable for use in such

embedded systems.

In this thesis, we investigate a solution to the problem of computation with real

numbers in embedded systems based on program transformation. The transforma-

tion we propose aims at removing square root and division operations from straight

line programs (i.e. programs with no loops), such as those used in aeronautics, in

order to allow exact computation over real numbers with the addition, subtraction

and multiplication operations. These operations can be performed exactly in em-

bedded programs since static analysis allows us to predict the memory required for

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


504 G. Hutton

exact computation using a fixed point representation. This transformation does not

allow to compute a real number with an arbitrary precision (the program sqrt(2)

will still return a rounded value of
√

2), however it allows the system to compute

exactly Boolean expressions that are built with comparisons between arithmetic

expressions. Computing exactly Boolean expressions protects the control flow of the

program from any rounding errors. This prevents the program effective behavior to

diverge completely from its expected behavior, i.e. the one assuming the numbers

are genuine real numbers. Therefore the programs produced by our transformation

are somehow continuous, the effective returned value being, in the worst case, a

rounding of the expected one and, if the program returns a Boolean value, then this

value is exact.

This transformation algorithm relies on two fundamental algorithms. The first

is a particular case of quantifier elimination on real closed fields, it eliminates

square roots and divisions in Boolean expressions. The second solves a specific anti-

unification problem that we called constrained anti-unification in order to reduce

the size of the produced code. This anti-unification algorithm uses the axioms of

a theory of the arithmetic and a directed acyclic graph representation in order to

compute common template that allow us to optimize the size of the produced code.

The constrained anti-unification algorithm is also used to extend the transformation

to a richer language allowing function definitions using a partial inlining.

In order to still ensure the high level of safety required by the programs we are

willing to transform, we also proved the correctness of this transformation in the

PVS proof assistant. Indeed formal proof assistants enable the higher levels of safety

and security for programs. They are used to prove properties about the behavior of

these programs and ensure the correctness of such proofs more reliably than any

human certification. We used the PVS proof assistant to show that the algorithm

we presented not only effectively eliminates square roots and divisions but also

preserves the semantics of the programs we transform. This allows us to ensure

that the behavior of the transformed program is exactly the same as the expected

behavior of the input program. Therefore, all the properties satisfied by this input

program still hold on the transformed one.

The complete algorithm is not entirely proven in the PVS proof assistant, its

correctness depends on that of the anti-unification algorithm. However, this proof

is sufficient to built a proof strategy that eliminates square roots and divisions

in the formulas used by the PVS proof checker. Moreover, in our transformation

scheme, we provide a mechanism to generate correctness lemmas that state the

semantics preservation between the variable definitions of the input and the output

programs, these lemmas being quite easy to prove using the proof strategy we defined.

Therefore this transformation outputs not only the transformed program but also

a proof that this transformed program is semantically equivalent to the input one.

Such a transformation is called a certifying transformation. Finally, we present how

our algorithm has been able to transform a complete PVS specification of a conflict

detection algorithm for air traffic management that is part of the ACCoRD system

developped at NASA Langley.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 505

Bidirectional data transformation by calculation

HUGO PACHECO

Universidade do Minho, Portugal

Date: September 2012; Advisor: Manuel Alcino Pereira da Cunha and José Nuno Fonseca de Oliveira
URL: http://hdl.handle.net/1822/20995

The advent of bidirectional programming, in recent years, has led to the devel-

opment of a vast number of approaches from various computer science disciplines.

These are often based on domain-specific languages in which a program can be

read both as a forward and a backward transformation that satisfy some desirable

consistency properties.

Despite the high demand and recognized potential of intrinsically bidirectional

languages, they have still not matured to the point of mainstream adoption.

This dissertation contemplates some usually disregarded features of bidirectional

transformation languages that are vital for deployment at a larger scale. The

first concerns efficiency. Most of these languages provide a rich set of primitive

combinators that can be composed to build more sophisticated transformations.

Although convenient, such compositional languages are plagued by inefficiency

and their optimization is mandatory for a serious application. The second relates to

configurability. As update translation is inherently ambiguous, users shall be allowed

to control the choice of a suitable strategy. The third regards genericity. Writing

a bidirectional transformation typically implies describing the concrete steps that

convert values in a source schema to values a target schema, making it impractical

to express very complex transformations, and practical tools shall support concise

and generic coding patterns.

We first define a point-free language of bidirectional transformations (called

lenses), characterized by a powerful set of algebraic laws. Then, we tailor it to

consider additional parameters that describe updates, and use them to refine the

behavior of intricate lenses between arbitrary data structures. On top, we propose the

Multifocal framework for the evolution of XML schemas. A Multifocal program

describes a generic schema-level transformation, and has a value-level semantics

defined using the point-free lens language. Its optimization employs the novel

algebraic lens calculus.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


506 G. Hutton

Static guarantees for coordinated components:
A statically typed composition model for stream-processing networks

FRANK PENCZEK

University of Hertfordshire, UK

Date: September 2012; Advisor: Sven-Bodo Scholz and Clemens Grelck
URL: http://uhra.herts.ac.uk/handle/2299/9046

Does your program do what it is supposed to? Without running the program

providing an answer to this question is much harder if the language does not support

static type checking. Of course, even if compile-time checks are in place only certain

errors will be detected: compilers can only second-guess the programmers intention.

But, type based techniques go a long way in assisting programmers to detect errors

in their computations earlier on.

The question if a program behaves correctly is even harder to answer if the

program consists of several parts that execute concurrently and need to com-

municate with each other. Compilers of standard programming languages are

typically unable to infer information about how the parts of a concurrent program

interact with each other, especially where explicit threading or message passing

techniques are used. Hence, correctness guarantees are often conspicuously absent.

Concurrency management in an application is a complex problem. However, it is

largely orthogonal to the actual computational functionality that a program realises.

Because of this orthogonality, the problem can be considered in isolation. The

largest possible separation between concurrency and functionality is achieved if a

dedicated language is used for concurrency management, i.e. an additional program

manages the concurrent execution and interaction of the computational tasks of

the original program. Such an approach does not only help programmers to focus

on the core functionality and on the exploitation of concurrency independently, it

also allows for a specialised analysis mechanism geared towards concurrency-related

properties.

This dissertation shows how an approach that completely decouples coordination

from computation is a very supportive substrate for inferring static guarantees

of the correctness of concurrent programs. Programs are described as streaming

networks connecting independent components that implement the computations of

the program, where the network describes the dependencies and interactions between

components. A coordination program only requires an abstract notion of compu-

tation inside the components and may therefore be used as a generic and reusable

design pattern for coordination. A type-based inference and checking mechanism

analyses such streaming networks and provides comprehensive guarantees of the

consistency and behaviour of coordination programs. Concrete implementations

of components are deliberately left out of the scope of coordination programs:

Components may be implemented in an external language, for example C, to

provide the desired computational functionality. Based on this separation, a concise

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 507

semantic framework allows for step-wise interpretation of coordination programs

without requiring concrete implementations of their components. The framework

also provides clear guidance for the implementation of the language. One such

implementation is presented and hands-on examples demonstrate how the language

is used in practice.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


508 G. Hutton

Interactive functional programming

ROLAND PERERA

University of Birmingham, UK

Date: June 2013; Advisor: Paul Levy
URL: http://etheses.bham.ac.uk/4209

We outline a vision for a new kind of execution environment where applications

can be debugged and re-programmed while they are being used. The overall

concept we call interactive programming. In contrast to most other systems for

live programming, interactive programming presents execution to the user as a live,

explorable document. In contrast to the edit-and-continue features found in many

debuggers, and to systems for patching software dynamically, we utilise a notion of

retroactive update, where the computation transitions to a new consistent state when

the program changes, rather than a hybrid of old and new. What changed in the

execution is always explicit and visible to the user. Retroactive update relates our

work to incremental computation.

We develop some key components of interactive programming in the setting of

a pure, call-by-value functional language. We illustrate our ideas via a proof-of-

concept implementation called LambdaCalc. Several important components of the

overall vision, including efficient incremental update, scaling to realistic programs,

supporting effectful programs, and dealing with non-termination, are left for future

work. We implemented a comprehensive visualisation subsystem in LambdaCalc

itself, but further performance work is required for this to be the basis of a working

user interface.

Our specific achievements are as follows. First, we show how to reify the execution

of a program into a live document which can be interactively decomposed into both

sequential steps and parallel slices. We give a novel characterisation of forward and

backward dynamic slicing and show that for a fixed computation, the two problems

are described by a Galois connection. We extend the notion of slicing to reified

computations, and formalise what it is for a slice of a computation to “explain”

some part of a value. We show how being able to slice a computation interactively

can help debugging.

Second, we introduce a novel execution indexing scheme which derives execution

differences from program differences. Our scheme supports the wholesale reorgani-

sation of a computation via operations such as moves and splices. The programmer

is able to see the consequences of edits on the intensional structure of the execution.

Where possible, node identity is preserved, allowing an edit to be made whilst an

execution is being explored and the changes to be reflected in the user’s current

view of the execution. This allows the user to see the impact of code changes while

debugging. We illustrate this using figures generated by our implementation. Our

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 509

self-hosted visualisation code is able to compute differences in visualisations, which

we use to visualise differences in computations.

We conclude with a discussion of some of the challenges facing the proposed

paradigm: space requirements, visualising large computations and data structures,

computational effects, and integrating with environments that lack support for

retroactive update.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


510 G. Hutton

Multi-parameter and optional type classes for Haskell

RODRIGO GERALDO RIBEIRO

Federal University of Minas Gerais, Brazil

Date: July 2013; Advisor: Carlos Camarão de Figueiredo and Lucı́lia Camarão de Figueiredo
URL: http://tinyurl.com/n5d4got

The introduction of multi-parameter type classes in Haskell — instead of just

in the language’s mostly used compiler (the Glasgow Haskell Compiler), as occurs

nowadays — has been delayed due to problems related to ambiguity (which occur

due to the lack of type specialization during type inference) and to the existence of

distinct language extensions to handle the problem, namely functional dependencies

and type families.

This thesis discusses the problem of ambiguity in Haskell and proposes a type

system for Haskell that supports the definition of multi-parameter type classes

without the need of any extensions.

An alternative definition of ambiguity is proposed for Haskell, where the existence

of more than one instance (i.e. more than one type derivation) for the same type of

an expression is considered only when overloading is, or should have been, resolved.

We identify this condition by the presence of unreachable variables in constraints

on the type of the expression (the condition that nowadays characterizes ambiguity

in Haskell). Ambiguity becomes then an error that arises due to the existence of two

or more instances but only for expressions for which there is no context in which

they could be placed that would allow a selection between one of these instances.

This is in full agreement with Haskell’s context-dependent overloading policy, where

overloading resolution depends not only on the types of expressions but also on the

context of occurrence.

Adopting our approach to ambiguity detection in Haskell would eliminate the

need of using functional dependencies or type families for the specific purpose of

dealing with ambiguity. It would also enable Haskell compilers to provide more

helpful ambiguity-related error messages.

Algorithms for constraint set satisfiability and simplification of Haskell type

class constraints are used during type inference in order to allow the inference

of more accurate types and to detect ambiguity. Both constraint set satisfiability

and simplification are in general undecidable, and the use of these algorithms may

cause non-termination of type inference. The thesis presents algorithms for these

problems that terminate on any given input, based on the use of a criterion that is

tested on each recursive step of the constraint-set satisfiability algorithm. The use of

this criterion eliminates the need of imposing syntactic conditions on Haskell type

class and instance declarations in order to guarantee termination of type inference

in the presence of multi-parameter type classes, and allows program compilation

without the need of compiler flags for lifting such restrictions. Undecidability of

the problems implies the existence of instances for which the algorithm incorrectly

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 511

reports unsatisfiability, but we are not aware of any practical example where this

occurs.

The definition of overloaded symbols is also allowed without the need of specifying

a type class. In this case, the least generalization of the types of available definitions,

computed by a simple anti-unification algorithm, is used as the overloaded symbol’s

type.

A type inference algorithm that is sound and complete with respect to the proposed

type system (and the revised definition of constraint-set satisfiability, that makes it

a decidable relation) is presented and implemented.

(Dissertation language: Portuguese)

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


512 G. Hutton

Lightweight modular staging and embedded compilers: Abstraction
without regret for high-level high-performance programming

TIARK ROMPF

École Polytechnique Fédérale de Lausanne, Switzerland

Date: July 2012; Advisor: Martin Odersky
URL: http://infoscience.epfl.ch/record/180642

Programs expressed in a high-level programming language need to be translated to

a low-level machine dialect for execution. This translation is usually accomplished by

a compiler, which is able to translate any legal program to equivalent low-level code.

But for individual source programs, automatic translation does not always deliver

good results: Software engineering practice demands generalization and abstraction,

whereas high performance demands specialization and concretization. These goals

are at odds, and compilers can only rarely translate expressive high-level programs to

modern hardware platforms in a way that makes best use of the available resources.

Explicit program generation is a promising alternative to fully automatic transla-

tion. Instead of writing down the program and relying on a compiler for translation,

developers write a program generator, which produces a specialized, efficient, low-

level program as its output. However, developing high-quality program generators

requires a very large effort that is often hard to amortize.

In this thesis, we propose a hybrid design: Integrate compilers into programs so

that programs can take control of the translation process, but rely on libraries of

common compiler functionality for help.

We present Lightweight Modular Staging (LMS), a generative programming

approach that lowers the development effort significantly. LMS combines program

generator logic with the generated code in a single program, using only types

to distinguish the two stages of execution. Through extensive use of component

technology, LMS makes a reusable and extensible compiler framework available

at the library level, allowing programmers to tightly integrate domain-specific

abstractions and optimizations into the generation process, with common generic

optimizations provided by the framework. Compared to previous work on program

generation, a key aspect of our design is the use of staging not only as a front-end,

but also as a way to implement internal compiler passes and optimizations, many

of which can be combined into powerful joint simplification passes.

LMS is well suited to develop embedded domain specific languages (DSLs)

and has been used to develop powerful performance-oriented DSLs for demanding

domains such as machine learning, with code generation for heterogeneous platforms

including GPUs. LMS has also been used to generate SQL for embedded database

queries and JavaScript for web applications.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 513

Trace-based just-in-time compilation for
lazy functional programming languages

THOMAS SCHILLING

University of Kent, UK

Date: April 2013; Advisor: Simon Thompson
URL: http://tinyurl.com/p6nosau

This thesis investigates the viability of trace-based just-in-time (JIT) compilation

for optimising programs written in the lazy functional programming language

Haskell. A trace-based JIT compiler optimises only execution paths through the

program, which is in contrast to method-based compilers that optimise complete

functions at a time. The potential advantages of this approach are shorter compila-

tion times and more natural interprocedural optimisation.

Trace-based JIT compilers have previously been used successfully to optimise

programs written in dynamically typed languages such as JavaScript, Python, or Lua,

but also statically typed languages like Java or the Common Language Runtime

(CLR). Lazy evaluation poses implementation challenges similar to those of dynamic

languages, so trace-based JIT compilation promises to be a viable approach. In this

thesis we focus on program performance, but having a JIT compiler available can

simplify the implementation of features like runtime inspection and mobile code.

We implemented Lambdachine, a trace-based JIT compiler which implements

most of the pure subset of Haskell. We evaluate Lambdachines performance using

a set of micro-benchmarks and a set of larger benchmarks from the “spectral”

category of the Nofib benchmark suite. Lambdachines performance (excluding

garbage collection overheads) is generally about 10 to 20 percent slower than GHC

on statically optimised code. We identify the two main causes for this slow-down:

trace selection and impeded heap allocation optimisations due to unnecessary thunk

updates.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


514 G. Hutton

Towards safe and efficient functional reactive programming

NEIL SCULTHORPE

University of Nottingham, UK

Date: July 2011; Advisor: Henrik Nilsson
URL: http://etheses.nottingham.ac.uk/1981/1/thesis.pdf

Functional Reactive Programming (FRP) is an approach to reactive programming

where systems are structured as networks of functions operating on time-varying

values (signals). FRP is based on the synchronous data-flow paradigm and supports

both continuous-time and discrete-time signals (hybrid systems). What sets FRP

apart from most other reactive languages is its support for systems with highly

dynamic structure (dynamism) and higher-order reactive constructs (higher-order

data-flow). However, the price paid for these features has been the loss of the safety

and performance guarantees provided by other, less expressive, reactive languages.

Statically guaranteeing safety properties of programs is an attractive proposition.

This is true in particular for typical application domains for reactive programming

such as embedded systems. To that end, many existing reactive languages have type

systems or other static checks that guarantee domain-specific constraints, such as

feedback being well-formed (causality analysis). However, compared with FRP, they

are limited in their capacity to support dynamism and higher-order data-flow. On

the other hand, as established static techniques do not suffice for highly structurally

dynamic systems, FRP generally enforces few domain-specific constraints, leaving

the FRP programmer to manually check that the constraints are respected. Thus,

there is currently a trade-off between static guarantees and dynamism among reactive

languages.

This thesis contributes towards advancing the safety and efficiency of FRP by

studying highly structurally dynamic networks of functions operating on mixed

(yet distinct) continuous-time and discrete-time signals. First, an ideal denotational

semantics is defined for this kind of FRP, along with a type system that captures

domain-specific constraints. The correctness and practicality of the language and

type system are then demonstrated by proof-of-concept implementations in Agda

and Haskell. Finally, temporal properties of signals and of functions on signals are

expressed using techniques from temporal logic, as motivation and justification for

a range of optimisations.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 515

Amortised resource analysis for lazy functional programs

HUGO MIGUEL OLIVEIRA ROMUALDO SIMÕES

Universidade do Porto, Portugal

Date: February 2014; Advisor: António Mário da Silva Marcos Florido and Kevin Hammond
URL: http://hdl.handle.net/10216/71806

This thesis describes the first successful attempt, of which we are aware, to define

an automatic, type-based static analysis of resource bounds for lazy functional

programs. Lazy evaluation allows improved modularity of programs, but often makes

resource usage difficult to predict. Our analysis uses the automatic amortisation

approach developed by Hofmann and Jost, which was previously restricted to eager

evaluation. In this thesis, we extend this work to a lazy setting by capturing the

costs of unevaluated expressions in type annotations and by amortising the payment

of these costs using a notion of lazy potential. We present our analysis as a proof

system for predicting (at compile-time) total heap allocations of a minimal functional

language (including higher-order functions and recursive data types) and define a

formal cost model based on Launchbury?s natural semantics for lazy evaluation. We

prove the soundness of our analysis with respect to the cost model. Our approach

is illustrated by type derivations of a number of representative and non-trivial

examples that have been analysed using a prototype implementation of our analysis.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


516 G. Hutton

Lightweight verification of functional programs

NICHOLAS SMALLBONE

Chalmers University of Technology, Sweden

Date: May 2013; Advisor: Koen Claessen
URL: http://tinyurl.com/owne3uk

We have built several tools to help with testing and verifying functional pro-

grams. All three tools are based on QuickCheck properties. Our goal is to allow

programmers to do more with QuickCheck properties than just test them.

The first tool is QuickSpec, which finds equational specifications, and can be

used to help with writing a specification or for program understanding. On top

of QuickSpec, we have built HipSpec, which proves properties about Haskell

programs, and uses QuickSpec to find the necessary lemmas. We also describe

PULSE and eqc par statem, which together can be used to find race conditions in

Erlang programs.

We believe that testable properties are a good basis for reasoning and verification,

and that they give many of the benefits of formal verification without the cost

of proof. The chief reason is that they are formal specifications for which the

programmer can always get a counterexample when they are false. Furthermore,

using testable properties allows us to write better tools. None of our tools would be

possible if our properties were not testable.

We also present work on encoding types in first-order logic, an essential component

when using first-order provers to reason about programs. Our encodings are simple

but extremely efficient, as evidenced by benchmarks. We develop the theory behind

sound type encodings, and have written tools that implement our ideas.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 517

Reliable massively parallel symbolic computing:
Fault tolerance for a distributed Haskell

ROBERT STEWART

Heriot-Watt University, UK

Date: November 2013; Advisor: Phil Trinder and Patrick Maier
URL: http://tinyurl.com/kq6hbw2

As the number of cores in manycore systems grows exponentially, the number of

failures is also predicted to grow exponentially. Hence massively parallel computa-

tions must be able to tolerate faults. Moreover new approaches to language design

and system architecture are needed to address the resilience of massively parallel

heterogeneous architectures.

Symbolic computation has underpinned key advances in Mathematics and Com-

puter Science, for example in number theory, cryptography, and coding theory.

Computer algebra software systems facilitate symbolic mathematics. Developing

these at scale has its own distinctive set of challenges, as symbolic algorithms

tend to employ complex irregular data and control structures. SymGridParII is a

middleware for parallel symbolic computing on massively parallel High Performance

Computing platforms. A key element of SymGridParII is a domain specific language

(DSL) called Haskell Distributed Parallel Haskell (HdpH). It is explicitly designed

for scalable distributed-memory parallelism, and employs work stealing to load

balance dynamically generated irregular task sizes.

To investigate providing scalable fault tolerant symbolic computation we design,

implement and evaluate a reliable version of HdpH, HdpH-RS. Its reliable scheduler

detects and handles faults, using task replication as a key recovery strategy. The

scheduler supports load balancing with a fault tolerant work stealing protocol. The

reliable scheduler is invoked with two fault tolerance primitives for implicit and

explicit work placement, and 10 fault tolerant parallel skeletons that encapsulate

common parallel programming patterns. The user is oblivious to many failures, they

are instead handled by the scheduler.

An operational semantics describes small-step reductions on states. A simple

abstract machine for scheduling transitions and task evaluation is presented. It

defines the semantics of supervised futures, and the transition rules for recovering

tasks in the presence of failure. The transition rules are demonstrated with a fault-

free execution, and three executions that recover from faults.

The fault tolerant work stealing has been abstracted in to a Promela model. The

SPIN model checker is used to exhaustively search the intersection of states in this

automaton to validate a key resiliency property of the protocol. It asserts that an

initially empty supervised future on the supervisor node will eventually be full in

the presence of all possible combinations of failures.

The performance of HdpH-RS is measured using five benchmarks. Supervised

scheduling achieves a speedup of 757 with explicit task placement and 340 with

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


518 G. Hutton

lazy work stealing when executing Summatory Liouville up to 1400 cores of a HPC

architecture. Moreover, supervision overheads are consistently low scaling up to

1400 cores. Low recovery overheads are observed in the presence of frequent failure

when lazy on-demand work stealing is used. A Chaos Monkey mechanism has been

developed for stress testing resiliency with random failure combinations. All unit

tests pass in the presence of random failure, terminating with the expected results.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 519

Practical programming with substructural types

JESSE A. TOV

Northeastern University, USA

Date: February 2012; Advisor: Riccardo Pucella
URL: http://iris.lib.neu.edu/comp sci diss/35/

Substructural logics remove from classical logic rules for reordering, duplication,

or dropping of assumptions. Because propositions in such a logic may no longer be

freely copied or ignored, this suggests understanding propositions in substructural

logics as representing resources rather than truth. For the programming language

designer, substructural logics thus provide a framework for considering type systems

that can track the changing states of logical and physical resources.

While several substructural type systems have been proposed and implemented,

many of these have targeted substructural types at a particular purpose, rather than

offering them as a general facility. The more general substructural type systems

have been theoretical in nature and too unwieldy for practical use. This dissertation

presents the design of a general purpose language with substructural types, and

discusses several language design problems that had to be solved in order to make

substructural types useful in practice.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


520 G. Hutton

First class syntax, semantics, and their composition

MARCOS VIERA

Utrecht University, The Netherlands

PEDECIBA-Universidad de la República, Uruguay

Date: March 2013; Advisor: Doaitse Swierstra and Alberto Pardo
URL: http://dspace.library.uu.nl/handle/1874/269786

Ideally complexity is managed by composing a system out of quite a few, more

or less independent, and much smaller descriptions of various aspects of the overall

artifact. When describing (extensible) programming languages, attribute grammars

have turned out to be an excellent tool for modular definition and integration of

their different aspects.

In this thesis we show how to construct a programming language implementation

by composing a collection of attribute grammar fragments describing separate

aspects of the language. More specifically we describe a coherent set of libraries

and tools which together make this possible in Haskell, where the correctness of the

composition is enforced through the Haskell type system ’s ability to represent attribute

grammars as plain Haskell values and their interfaces as Haskell types.

Semantic objects thus constructed can be combined with parsers which are

constructed on the fly out of parser fragments and are also represented as typed

Haskell values. Again the type checker prevents insane compositions.

As a small case study of the techniques proposed in this thesis, we implemented a

compiler for the (Pascal-like) imperative language Oberon0. Through an incremental

design, we show the modularity capacities of our techniques.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


PhD Abstracts 521

Functional query languages with categorical types

RYAN WISNESKY

Harvard University, USA

Date: November 2013; Advisor: Greg Morrisett
URL: http://wisnesky.net/dissertation.pdf

We study three category-theoretic types in the context of functional query

languages (typed lambda-calculi extended with additional operations for bulk data

processing). The types we study are:

• The dependent identity type. By adding identity types to the simply-typed

lambda-calculus we obtain a language where embedded dependencies are

first-class objects that can be manipulated by the programmer and used for

optimization. We prove that the chase re-writing procedure is sound for this

language.

• The type of propositions. By adding propositions to the simply-typed lambda-

calculus, we obtain higher-order logic. We prove that every hereditarily

domain-independent higher-order logic program can be translated into the

nested relational algebra, thereby allowing higher-order logic to be used as a

query language and giving a higher-order generalization of Codd’s theorem.

• The type of finitely presented categories. By adding types for finitely presented

categories to the simply-typed lambda-calculus we obtain a schema mapping

language for the functorial data model. We define FQL, the first query language

for this data model, investigate its metatheory, and build a SQL compiler for

FQL.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215


522 G. Hutton

Theory and implementation of coercive subtyping

TAO XUE

Royal Holloway, University of London, UK

Date: February 2013; Advisor: Zhaohui Luo
URL: http://tinyurl.com/nrxgc3y

Coercive subtyping is a useful and powerful framework of subtyping for type

theories. The thesis is based on Luos study of coercive subtyping and consists of the

following parts.

We point out the problem in the old formulation of coercive subtyping introduced

by Luo. Luos previous work was based on a notion of basic subtyping rules which

turns out to be unnecessarily general. It may lead the type system with coercive

subtyping inconsistent. We give a new and adequate formulation T [C], the system

that extends a type theory T with coercive subtyping based on a set C of basic

subtyping judgements. Our new formulation fix the problem of previous study.

We study the relation between a type system and its coercive subtyping extension.

We naturally think the extension with coercive subtyping should be a conservative

extension, since we consider coercion as an abbreviation mechanism which should

not increase the power of the system. But we find that the traditional notion of

conservative extension is not enough to describe the relation. We employ the idea

of definitional extension from mathematical logic and formulate it in type theory.

Some intermediate systems are introduced to help our study: the star-calculus

T [C]∗, in which the positions that require coercion insertions are marked; system

T [C]0K which does not contain the coercion application rules. We show that T [C]

is equivalent to T [C]∗, T [C]∗ is a definitional extension of T [C]0K , and T [C]0K is a

conservative extension of T . This makes clear what we mean by coercive subtyping

being a conservative extension and amends a technical problem that has led to a

gap in the earlier conservativity proof.

Another part of the work in this thesis concerns the implementation of coercive

subtyping in the proof assistant Plastic. Coercive subtyping was implemented in

Plastic by Paul Callaghan. We have done some improvement based on that work,

fixed some problems of Plastic, and implemented a new kind of data type called dot-

types, which are special data types useful in formal semantics to describe interesting

linguistic phenomena such as copredication, in Plastic.

https://doi.org/10.1017/S0956796814000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000215

