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1. Introduction. Let X be a compact metric space. By a
packing in X we mean a subset S £ X such that, for x,y € S with
x # y, the distance d(x,y) > 1. Since X is compact, any packing
of X is finite. In fact, the set of numbers

{card(S): S is a packing in X}

is bounded. The cardinality of the largest packing in X will be
called the packing number of X and will be denoted by p(X).

If A(X) and P(X) denote the area and perimeter, respectively, of
a compact convex subset X of the plane, then a special case of a
result conjectured by H. Zassenhaus [6] and proved by N. Oler [1]
is the following.

THEOREM (Oler).

2 1
(1) p(X) < T—EA(X) + EP(X) + 1.

Unfortunately, Oler's proof of his general theorem requires
30 pages of rather detailed arguments. It is our purpose in this note
to establish a theorem of this type for simplicial complexes in the
plane. This theorem will imply (1) and, moreover, the arguments
used are quite elementary.

2. Preliminaries. By a p-simplex in the plane we mean the
convex hull of p + 1 points in general position in the plane. Since
there can be at most 3 points in general position in the plane, we

must have p=0,1 or 2. If xo, e ,xp are in general position,

(xo, oo xp) will denote the p-simplex which is their convex hull.

The points xo, ...y%x will be called the vertices of (xo,
p -

If ¢ and ¢ are simplexes, we say that ¢ is a face of ¢ if the
vertices of ¢ are a subset of the vertices of .

vy X )
P
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By a simplicial complex in the plane, we mean a finite set K

of the simplexes in the plane with the following properties:

(2) if o € K then every face of o is in K;

(21) if ¢, Te€ K and ¢ 1 T is nonempty,
then o (1 T is a face of both o and 7.

Let K be a simplicial complex in the plane. We denote by
|K| the union of the simplexes in K. If r > 0 is an integer, we

r
denote by K the set of all p-simplexes in K with p < r. We
let a (K) denote the number of r-simplexes in K. The Euler

r

characteristic X (K) is defined by X(K) = aO(K) - 01(K) + aZ(K).

It is a theorem of combinatorial topology that X(K) depends only on

[K| (cf. [5]).

If ¢ is a 1-simplexin K we let &(0, K) be the number of
2-simplexes in K having o as a face. By (2'), e{oc, K) < 2.
If ¢ is a 1-simplex or a 2-simplex in the plane, we let m(o)
denote the length or the area, respectively, of ¢. We define A(K)

and P(K) by
A(K) = z m(o )
2 1
ceK - K
and
P(K) = % ) (2 - g(v,K))m(o)
ceK -K

The numbers A(K) and P(K) depend only on IK, since A(K) is
the area of IK' while P(K) is its perimeter (suitably defined).

3. The Main Result.

THEOREM. Let K be a simplical complex in the plane.

0
Suppose that for any x, y € K' with x # y we have d(x,y) > 1.
Then

2 1
(3) @ (K) < = A(K) + FP(K) + X(K).
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The proof of the theorem will be by induction using the
following two lemmas.

LEMMA 1. Let A be a triangle with area A and sides of

4
h ) d . f > > > - >
length s,, s, and s.. If s >s, >s >1 then =A+s >s5 +

Proof. We first note

+s_+ +s_ - -s_+ > > > -s ).
(s1 S, s3)(s1 S, s3)(s1 S, 53) > 81+52+S3— 353__ 3(sz+s3 51)

Using Hero's formula for the area of a triangle together with the

inequalities s1 < s2 + s3 and A > 0 we obtain

2 2 -
- . > - )
1:A > 3(s2 + S, Si) Hence 4A > 3 (s2 + Sy si) or
7-3—A + Sy > s, + s3 as required.

LEMMA 2. Let Q be a convex quadrilateral in the plane with
area A and perimeter P. Suppose that:

length of any diagonal of Q > length of any side of Q > 1.

4
h —=A-P+2 > 0.
Tenﬁ +2 >

g

Proof. The sum of the interior angles of Q is 2m so one
pair of diagonally opposite angles must have sum < w. We assume
that this is the pair labelled 8 and 6' in Fig. 1.

[*Ml

Figure 1

Now d > s,t so O isthe largest angle in the triangle with sides
labelled s, t and d. Therefore, 8 > w/3. Similarly 8'> w/ 3.
But 8+ 6' < m so w/3< e, 6! < 2w/3. It follows that
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3

% (st + s't').

1
A:z(st sin 8 + s't' sin 8') >

Hence,

4
ﬁA -P+2>st+s't! - (s+t+s'+t') +2 =(s-1)(t-1) + (s"-1)(t'-1)>0

since s,t,s',t' > 1.

Proof of Theorem. Suppose K contains only one simplex.
Then that simplex is a 0-simplex and A(K) =P(K) =0. The
inequality (3) reduces to aO(K) =1 = X(K).

Now suppose that K contains more than one simplex and that
the theorem holds for all complexes with fewer simplexes than K.
Let H be the class of all complexes L in the plane such that

0 0
’L] = |K| and L =K . Every member of M satisfies the
hypothesis of the theorem. Furthermore, since the numbers

0
occurring in (3) depend only on IKI and K, to establish (3) for
K it suffices to establish it for any member of ¥ . Henceforth we
shall assume that K is chosen from H so that

z m(0)
re K1-K0
is minimal.

Suppose K contains no 1-simplexes. Then K contains only
0-simplexes, A(K) = P(K) = 0, and (3) reduces to aO(K) = X(K).

Finally, suppose K contains a 1-simplex. Let o be a

1-simplex in K with m(c) as large as possible.

Case I. ¢(0,K) = 0. Then K- {0} isa complex. By the
inductive assumption,
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2 1
@)(K) = a(K - {7}) < —=A(K - {7})+ ZPK - {r})+ X(K-{s})
:P/—Z?-A(K) +%P(K) -m(o) + X(K)+ 1
2 1
< '7=—3—A(K)+§'P(K)+ X(K).

2

Case II. e (o,K) = 1. Let T be the 2-simplexin K having ©

as a face. Let o' and o" be the other one-dimensional faces of

T, where we can assume m(o') > m(o") without loss of generality.
By the hypothesis of the theorem and the choice of ¢, we have

(4) m(r) > m(e') > m(c") > 1.

By Lemma 1,

|*

m(t) + m(c) > m(c') + m(c").

~
w

Since T 1is the only 2-simplex having ¢ as a face, the
collection L =K - {¢,1} 1is a complex. By the inductive
assumption and (4) we have

2 1

5 AK) + 5 P(K) £ X(K)
__2_.AL iPL‘I‘ L+_§_ ( 1( a o! LAl
= A(L) + FP(L) 4 (L) + 5m() + 5 (m(e) - m(e ') = m(e")
> AL+ ZP(L) + X (1) 2 ag(L) = ag(K),

Case IIl. e (0,K) =2. Let ™ and 1, Dbe the 2-simplexes in K

2
with o as a face. We shall first show that Q = T1 U T, is a

convex quadrilateral satisfying the hypotheses of Lemma 2.
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Let X and Y be the vertices of ¢ and let X,Y,Z and
X,Y, W be the vertices of ’L’i and TZ respectively. The sides of

Q are the 1-simplexes (X, Z), (X, W), (Y, Z),(Y, W) which by the
hypothesis of the theorem and the choice of ¢ all have length > 1
and < m(0). Hence, Z and W must lie in the region R shown
in Fig. 2. R is bounded by two circular arcs of radius m(c) with
centers at X and Y, and R is bisectedby o. By (2'), Z and
W must lie on opposite sides of o ; hence, Q is convex.

Figure 2

In order to show the hypotheses of Lemma 2 are satisfied, it

remains to show that the diagonal of Q from Z to W is at least

as long as any side of Q. Suppose the contrary. Then

m(Z, W) < m(c). Let o' = (Z,W), T'1 =(X,Z,W) and '1:'2 =(Y,Z,W).

The collection

!}

- _ [
L=(K-{c,T ,TZ}) uAie Py T

1

is a complex in K. But

\

= m() = I m)-m@)imE)< D Om( )
Ne L -L Ae K -K e K -K
contradicting the choice of K from the class H . We now apply

Lemma 2 to obtain

(5)

j\/—.{}—(m("%) + m(TZ)) - (m(X,Z2) + m(X, W) + m(Y,Z) + m(¥Y W))+2 >0,
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Let M =K - {0, T1,T2} . Then M is a complex with fewer simplexes

than K. By the inductive assumption and (5) we have

2 1
_ﬁA(K) + —Z-P(K) + X (K)

2 1 2
= J_?A(M) + 72—P(M) + X (M) + —?(m("rl) + m(TZ))

il
- %(m(X, Z)+ m(X, W)+ m(Y,Z) + m(Y,W)) + 1

2 1
> TA(M) + EP(M) + X(M) > aO(M) = aO(K) .

This completes the proof of the theorem.

To show that (3) implies (1) we argue as follows. Let X be a
convex compact subset of the plane. Iet S be a packing of X with
card (S) = p(X). Let Y denote the convex hull of X so
A(Y) < A(X) and P(Y) < P(X). Let K be a complex with

0
K =S and 'K] =Y. (The existence of such a complex is easily

seen, for example, by induction on the number of points in S.)
Since S is a packing, K satisfies the hypotheses of the theorem.
Since ]K] =Y is convex, ¥(K) =1. By (3),

o (X)

card(S) = aO(K)

2 1
J—gA(K) + EP(K) + X(K)

IA

iA(X) + %P(X) +1

I3

IA

which is (1).
4. Concluding remarks. It was pointed out by Oler [2] that (1)

can be used to establish the following result suggested by P. Erdds:
If T denotes the regular 2-simplex of side n then
n

n+2
o(T ) =< ; )

The m-dimensional analogues (m > 3) of (3) have not yet been
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found. Indeed, if T (m) denotes the regular m-simplex of edge
n

. m m+tn
length n, it is not known that 0 (T (m) > = ( \
n ., m
REFERENCES
1. N. Oler, An inequality in the geometry of numbers. Acta

Mathematica 105 (1961) 19-48.

2. N. Oler, A finite packing problem. Canad. Math. Bull.
4 (1961) 153-155.

3. N. Oler, The slackness of finite packings in E Amer.

X
Math. Monthly 69 (1962) 511-514.

4. N. Oler, Packings with lacunae. Duke Math. Jour. 33
(1966) 141-144.

5. L.S. Pontryagin, Combinatorial topology. (Graylock, New
York, 1952)

6. H. Zassenhaus, Modern development in the geometry of
numbers. Bull. Amer. Math. Soc. 67 (1961) 427-439.

The Rand Corporation
Santa Monica, California

Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

752

https://doi.org/10.4153/CMB-1969-096-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-096-7

