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Successive Minima and Radii

Dedicated to Ted Bisztriczky, on his sixtieth birthday.

Martin Henk and Marı́a A. Hernández Cifre

Abstract. In this note we present inequalities relating the successive minima of an o-symmetric convex

body and the successive inner and outer radii of the body. These inequalities join known inequalities

involving only either the successive minima or the successive radii.

1 Introduction

Let K
n be the set of all convex bodies, i.e., compact convex sets with non-empty

interior, in the n-dimensional Euclidean space R
n, and let K

n
0 be the family of all

o-symmetric convex bodies, i.e., K ∈ K
n with K = −K . Let 〈 · , · 〉 and | · | be

the standard inner product and Euclidean norm in R
n, respectively. We denote the

n-dimensional unit ball by Bn. The volume of a set M ⊂ R
n, i.e., its n-dimensional

Lebesgue measure, is denoted by V(M) and we set κn = V(Bn). If K ⊂ R
n is an

i-dimensional convex body, i.e., its affine hull is an i-dimensional plane, we write
Vi(K) to denote its i-dimensional volume.

The set of all i-dimensional linear subspaces of R
n is denoted by L

n
i . For L ∈ L

n
i ,

L⊥ denotes its orthogonal complement and for K ∈ K
n and L ∈ L

n
i the orthogonal

projection of K onto L is denoted by K|L. For M ⊂ R
n, lin M and conv M denote

respectively the linear and the convex hulls of M.

The diameter, the minimal width, the circumradius, and the inradius of a convex

body K are denoted by D(K), ω(K), R(K), and r(K), respectively. For more infor-
mation on these functionals and their properties we refer to [3, pp. 56–59]. If f is a

functional on K
n depending on the dimension of the space in which a convex body

K is embedded, and if K is contained in an affine space A, then we write f (K ; A) to
denote that f has to be evaluated with respect to the space A. With this notation we

define the successive outer and inner radii.

Definition 1.1 For K ∈ K
n and i = 1, . . . , n let

Ri(K) = min
L∈Ln

i

R(K|L) and ri(K) = max
L∈Ln

i

max
x∈L⊥

r(K ∩ (x + L); x + L).
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So Ri(K) is the smallest radius of a solid cylinder which has an i-dimensional
spherical cross section and contains K , and ri (K) is the radius of the greatest i-dimen-

sional ball contained in K . We obviously have

Rn(K) = R(K), R1(K) =
ω(K)

2
, rn(K) = r(K), and r1(K) =

D(K)

2
.

Notice that the outer radii are increasing in i, whereas the inner radii are decreasing
in i. We also have for i ∈ {1, . . . , n} and any convex body K ,

(1.1) 1 ≤
Ri(K)

rn−i+1(K)
< i + 1.

For the lower bound, which is best possible, we refer to [2, Lemma 2.1]. Determining

the optimal upper bound is still an open problem, even in the o-symmetric case.

The bound presented above is given in [15] (see also [14]). The following relation
between the in- and outer radii and the volume of an arbitrary convex body K ∈ K

n

can be found in [2, Corollary 2.1]:

(1.2)
2n

n!
r1(K) · · · rn(K) ≤ V(K) ≤ 2nR1(K) · · ·Rn(K).

In the case when K is o-symmetric, we also have

(1.3)
2n

n!
R1(K) · · ·Rn(K) ≤ V(K) ≤ 2nr1(K) · · · rn(K),

(see [2, Theorem 2.1])

For more information on successive radii, their size for special bodies as well as
computational aspects of these radii, we refer the reader to [1, 2, 4–7, 12].

Here we are mainly interested in the relations of these radii to the successive min-

ima of an o-symmetric convex body with respect to the integer lattice, which we
introduce next.

We denote by Z
n the integer lattice, i.e., the lattice of all points with integral coor-

dinates in R
n. Then any lattice Λ of R

n can be obtained as Λ = BZ
n with B ∈ GLn(R),

and the determinant of the lattice is defined as det Λ = | det B|. As a general reference

for lattices we refer to [9].
For K ∈ K

n
0 and a lattice Λ, the i-th successive minimum λi(K, Λ) of K with

respect to Λ, i = 1, . . . , n, is defined as

λi (K, Λ) = min{λ ∈ R : λ > 0, dim(λK ∩ Λ) ≥ i}.

Clearly λ1(K, Λ) ≤ · · · ≤ λn(K, Λ). The second fundamental theorem of Minkowski

(see [9, §9.1, 9.4], [11,13]) relates the successive minima with the volume of a convex
body K ∈ K

n
0 :

(1.4)
2n

n!
det Λ ≤ λ1(K, Λ) · · ·λn(K, Λ)V(K) ≤ 2n det Λ.

In the case of the integer lattice Z
n we will just write λi (K) instead of λi (K, Z

n). In this
paper we relate the successive minima with the inner and outer radii. A quite obvious

attempt to do that would be via relations of the type λi (K)r j(K) or λi(K)R j(K). The

next proposition shows, however, that in general we cannot bound these products.
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Proposition 1.2 Let K ∈ K
n
0 . Then

1

R(K)
≤ λi(K) ≤

1

r(K)
, 1 ≤ i ≤ n.

In all other cases, the products λi(K)r j(K) and λi(K)R j(K) cannot be bounded, either

from above or from below, by a constant depending only on the dimension.

Therefore we consider products of several radii and successive minima.

Theorem 1.3 Let K ∈ K
n
0 . For i = 1, . . . , n − 1 we have

λi+1(K) · · ·λn(K)V(K) ≤ 2nr1(K) · · · ri (K),(1.5)

λ1(K) · · ·λi(K)V(K) ≥
2n

n!
R1(K) · · ·Rn−i(K).(1.6)

None of these inequalities can be improved in the sense that 2n or 2n/n! cannot be re-

placed, respectively, by 2n − ε or 2n/n! + ε for any ε > 0.

By (1.1) we have rn− j+1(K) ≤ R j(K), and so we get the following corollary.

Corollary 1.4 Let K ∈ K
n
0 . For i = 1, . . . , n − 1 we have

λi+1(K) · · ·λn(K)V(K) ≤ 2nRn−i+1(K) · · ·Rn(K),(1.7)

λ1(K) · · ·λi(K)V(K) ≥
2n

n!
ri+1(K) · · · rn(K).(1.8)

None of these inequalities can be improved in the sense of Theorem 1.3.

For inequality (1.5) and inequality (1.7) (inequality (1.6) and inequality (1.8)),
the “limit” case i = 0 (i = n) (i.e., when no radii appear in the inequalities) is

Minkowski’s inequality (1.4). The “limit” case i = n (i = 0), i.e., when no successive
minima appear in the formulae, gives the upper (lower) bounds for the volume in

(1.2) and (1.3). Thus, these inequalities build a bridge between Minkowski’s inequal-

ity and the known inequalities involving inner and outer radii.

In the next section we present the proofs of the main results, as well as some con-

sequences for general (not necessarily o-symmetric) convex bodies.

2 Proofs of the Main Results

For a convex body K ∈ K
n containing the origin in its interior, the polar body of

K is the convex body K∗
=

{

y ∈ R
n : 〈x, y〉 ≤ 1, for all x ∈ K

}

(see [17, §1.6]).

The inner and outer radii of an o-symmetric convex body K ∈ K
n
0 and its polar are

related by the following identity, for which we refer to [6, (1.2)]:

(2.1) Ri(K∗) ri(K) = 1 for i = 1, . . . , n.
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Proof of Proposition 1.2 Since r(K)Bn ⊆ K , we obviously have

λi(K) ≤ λi

(

r(K)Bn

)

=
1

r(K)
λi(Bn) =

1

r(K)

for 1 ≤ i ≤ n. Analogously, from K ⊆ R(K)Bn we find λi(K) ≥ 1/R(K) and so we
trivially get the inequalities in the proposition.

Next we show that the inequalities above are the only possible upper and lower

bounds for the products λi(K)r j(K) and λi(K)R j(K). In order to see that there is no
upper bound on λi(K)r j(K), j = 1, . . . , n − 1, we consider the j-dimensional unit

ball B j embedded in a j-dimensional irrational plane L ∈ L
n
j , i.e., L ∩ Z

n
= {0}.

Taking the convex hull of B j and suitable points with irrational coordinates, close

enough to L, we can find an n-dimensional convex body K0 with r j(K0) = 1 but

arbitrarily large λi(K0).
The non-existence of lower bounds on λi(K)r j(K), j = 2, . . . , n, is shown by the

following cross-polytope Pn(m). For m ∈ N and i = 1, . . . , n, let

vi := (mi−1, . . . , m, 1, 0, . . . , 0)⊺ ∈ R
n,

and Pn(m) := conv{±vi : i = 1, . . . , n}. Thus Pn(m) is an o-symmetric lattice

cross-polytope containing the origin as the only interior lattice point. Hence

λi(Pn(m)) = 1

for all i = 1, . . . , n and next we show the inner radii r j (Pn(m)), j = 2, . . . , n, can

be arbitrarily small. Since r j are decreasing in j, it suffices to verify this fact for r2.

Moreover, from r2(Pn(m)) ≤ Rn−1(Pn(m)) (cf. (1.1)) we just have to check that
for a suitable projection π the lengths of the projected vertices π(vi) can be made

arbitrarily small. Let π be the orthogonal projection onto the hyperplane orthogonal

to vn. The k-th coordinate of the projection π(vi) = vi −〈vi, vn〉 /|vn|
2vn of vi is given

by

(π(vi))k =















mi−k 1 + m2 + · · · + m2(n−i−1)

1 + m2 + · · · + m2(n−1)
for k = 1, . . . , i,

−m2n−i−k 1 + m2 + · · · + m2(i−1)

1 + m2 + · · · + m2(n−1)
for k = i + 1, . . . , n.

Hence,

π(vi) = vi −
〈vi , vn〉

|vn|2
vn → (0, . . . , 0)⊺ when m → ∞,

and so Rn−1(Pn(m)) tends to zero as m approaches infinity.

In order to deal with the outer radii we use polarity. By (2.1) we may write

λi(K)R j(K) =
λi(K)λn−i+1(K∗)

λn−i+1(K∗)r j(K∗)
.

By classical results in the geometry of numbers, we know that the numerator is

bounded from above and below (cf. [8, Theorem 23.2]). Hence, by taking K as the
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polar body of Pn(m) and the foregoing discussion on the inner radii, we see that
λi(K)R j(K) is not bounded from above for j ≥ 2; by taking K = K∗

0 , we get that

λi(K)R j(K) is not bounded from below for j ≤ n − 1.

Next we come to the proof of Theorem 1.3, providing upper and lower bounds for
products of successive minima in terms of the inner and outer radii.

Proof of Theorem 1.3 We start with inequality (1.5). Let z1, . . . , zi ∈ K be i lin-

early independent points with λ j(K)z j ∈ λ j(K)K ∩ Z
n. We consider a suitable

(n − i)-dimensional coordinate plane

Ln−i = {x ∈ R
n : x j1

= · · · = x ji
= 0, jk ∈ {1, . . . , n}}

such that

(2.2) lin{z1, . . . , zi} ∩ Ln−i = {0}.

Denoting by Λn−i = Z
n ∩ Ln−i the sublattice of all points in Ln−i with integer coor-

dinates, Minkowski’s second fundamental theorem assures that

λ1(K ∩ Ln−i , Λn−i) · · ·λn−i (K ∩ Ln−i , Λn−i)Vn−i(K ∩ Ln−i) ≤ 2n−i.

From (2.2) we know that λ j(K ∩ Ln−i , Λn−i)K contains i + j linearly independent

points of Z
n, for j = 1, . . . , n − i. Therefore,

λi+ j(K) ≤ λ j(K ∩ Ln−i , Λn−i), j = 1, . . . , n − i,

and hence

(2.3) λi+1(K) · · ·λn(K)Vn−i(K ∩ Ln−i) ≤ 2n−i .

With Li = L⊥
n−i we get by the o-symmetry of K (see [10])

Vn−i(K ∩ Ln−i) ≥
V(K)

Vi(K|Li)
.

Since K|Li is an i-dimensional o-symmetric convex body, we have that (see [2, The-

orem 2.1]) Vi(K|Li) ≤ 2ir1(K|Li) · · · ri(K|Li). Together with r j(K|Li) ≤ r j (K) (see
[2, Lemma 2.1]), we get Vi(K|Li) ≤ 2ir1(K) · · · ri(K). Therefore

Vn−i (K ∩ Ln−i) ≥
V(K)

2ir1(K) · · · ri (K)
,

and using (2.3) we obtain

λi+1(K) · · ·λn(K)V(K) ≤ 2nr1(K) · · · ri(K).
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In order to show that inequality (1.5) cannot be improved, it suffices to consider
the tightness of inequality (1.7) in Corollary 1.4. Let Qn(µ) be the orthogonal par-

allelepiped with edge-lengths µ, µ2, . . . , µn, for µ ≥ 1. The successive minima of
such a box are λ j(Qn(µ)) = 2/µn− j+1, j = 1, . . . , n, the outer radii R j are given

by R j(Qn(µ)) = (1/2)
(
∑ j

k=1 µ2k
) 1/2

(see [5, Theorem 4.4]) and for the volume we

find V
(

Qn(µ)
)

= µ · · ·µn. Thus

∏n
j=i+1 λ j(Qn(µ))

∏n
j=n−i+1 R j(Qn(µ))

V(Qn(µ)) = 2i 2n−iµn−i+1 · · ·µn

∏n
j=n−i+1

(
∑ j

k=1 µ2k
) 1/2

,

which tends to 2n as µ approaches infinity.

Now we prove inequality (1.6). Again let z1, . . . , zi ∈ K be i linearly independent

points with λ j (K)z j ∈ λ j(K)K ∩ Z
n. We denote by u j := λ j(K)z j, and we consider

the i-dimensional sublattice Λi of Z
n determined by {u1, . . . , ui}. Clearly, det Λi ≥ 1.

Minkowski’s lower bound in (1.4) gives

2i

i!
≤

2i

i!
det Λi ≤ λ1(K ∩ lin Λi , Λi) · · ·λi(K ∩ lin Λi, Λi)Vi(K ∩ lin Λi).

Since λ j(K ∩ lin Λi, Λi) = λ j(K), 1 ≤ j ≤ i, we can write

(2.4)
2i

i!
≤ λ1(K) · · ·λi (K)Vi(K ∩ lin Λi).

With Ln−i = (lin Λi)
⊥ we know that

Vi (K ∩ lin Λi)Vn−i(K|Ln−i) ≤

(

n

i

)

V(K),

(see [16]). Since K|Ln−i is an (n− i)-dimensional o-symmetric convex body, we have

(see [2, Theorem 2.1])

Vn−i (K|Ln−i) ≥
2n−i

(n − i)!
R1(K|Ln−i) · · ·Rn−i(K|Ln−i),

and since R j(K|Ln−i) ≥ R j(K) (see [2, Lemma 2.1]), we arrive at

Vn−i (K|Ln−i) ≥
2n−i

(n − i)!
R1(K) · · ·Rn−i(K).

Therefore,

Vi(K ∩ lin Λi) ≤

(

n

i

)

V(K)

Vn−i (K|Ln−i)
≤

n!

i!2n−i

V(K)

R1(K) · · ·Rn−i(K)
,

and with (2.4) we get

2n

n!
R1(K) · · ·Rn−i(K) ≤ λ1(K) · · ·λi (K)V(K).
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To show that inequality (1.6) cannot be improved, it suffices to consider the tight-
ness of inequality (1.8) in Corollary 1.4. We consider for µ > 1 the orthogonal cross-

polytope C∗
n (µ) := conv{±µiei : i = 1, . . . , n}, where ei denotes the i-th canonical

unit vector. The successive minima of such a cross-polytope are

λ j

(

C∗
n (µ)

)

= 1/µn− j+1, j = 1, . . . , n,

the inner radii r j are given by r j(C
∗
n (µ)) = (

∑n
k=n− j+1 µ−2k)−1/2 (see [5, Theo-

rem 4.4]) and for its volume we find V(C∗
n (µ)) = (2n/n!)µ · · ·µn. Thus

∏i
j=1 λ j

(

C∗
n (µ)

)

∏n
j=i+1 r j

(

C∗
n (µ)

) V
(

C∗
n (µ)

)

=
2n

n!

µ · · ·µn−i

∏n
j=i+1

(
∑n

k=n− j+1 µ−2k
)−1/2

,

which tends to 2n/n! when µ → ∞.

Next we want to present some inequalities as in Theorem 1.3 for arbitrary convex
bodies. To this end we consider the difference body DK = K + (−K) of a convex

body K ∈ K
n, which is certainly o-symmetric, and for further properties we refer for

instance to [8, §9.5]. It is also well known that V(DK) ≥ 2nV(K) and moreover, for
the outer radii R j and the inner radii r j it has been proved that R j(DK) ≤ 2R j(K)

(see [12, Lemma 2.1]) and r j (DK) ≥ 2r j(K) (see [12, Remark 2.1]), j = 1, . . . , n.

These properties together with Corollary 1.4 imply the following result for general
convex bodies.

Corollary 2.1 Let K ∈ K
n. For i = 1, . . . , n − 1 we have

λi+1(DK) · · ·λn(DK)V(K) ≤ 2iRn−i+1(K) · · ·Rn(K).(2.5)

λ1(DK) · · ·λi(DK)V(DK) ≥
22n−i

n!
ri+1(K) · · · rn(K).(2.6)

None of these inequalities can be improved, in the sense of Theorem 1.3.

Remark 1. In order to express inequality (2.6) in terms of the volume of K , the well-

known Rogers–Shephard inequality V(DK) ≤
(

2n
n

)

V(K) (see [17, §7.3]) can be ap-

plied. The resulting bound, however, is not best possible.

Finally, we remark that identity (2.1) allows us to express the inequalities in The-

orem 1.3 in terms of the inner and outer radii of the polar body.

Remark 2. Let K ∈ K
n
0 . For i = 1, . . . , n − 1 we have

λi+1(K) · · ·λn(K) R1(K∗) · · ·Ri(K∗)V(K) ≤ 2n,

λ1(K) · · ·λi(K) r1(K∗) · · · rn−i (K∗)V(K) ≥
2n

n!
.

None of these inequalities can be improved, in the sense of Theorem 1.3.

In the same way we can rewrite Corollary 1.4 and Corollary 2.1 in terms of the

radii of the polar body.
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