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In this paper, weak-turbulence theory is used to investigate the nonlinear evolution
of the parametric instability in three-dimensional low-β plasmas at wavelengths much
greater than the ion inertial length under the assumption that slow magnetosonic waves
are strongly damped. It is shown analytically that the parametric instability leads to an
inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic
equations are presented. The main results of the paper concern the parametric decay
of Alfvén waves that initially satisfy e+ � e−, where e+ and e− are the frequency
( f ) spectra of Alfvén waves propagating in opposite directions along the magnetic
field lines. If e+ initially has a peak frequency f0 (at which fe+ is maximized) and
an ‘infrared’ scaling f p at smaller f with −1< p< 1, then e+ acquires an f−1 scaling
throughout a range of frequencies that spreads out in both directions from f0. At
the same time, e− acquires an f−2 scaling within this same frequency range. If the
plasma parameters and infrared e+ spectrum are chosen to match conditions in the
fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the
nonlinear evolution of the parametric instability leads to an e+ spectrum that matches
fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed
f−1 scaling at f & 3× 10−4 Hz. The results of this paper suggest that the f−1 spectrum
seen by Helios in the fast solar wind at f & 3 × 10−4 Hz is produced in situ by
parametric decay and that the f−1 range of e+ extends over an increasingly narrow
range of frequencies as r decreases below 0.3 AU. This prediction will be tested by
measurements from the Parker Solar Probe.
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1. Introduction
The origin of the solar wind is a long-standing problem (Parker 1958) that continues

to receive considerable attention. A leading model for the origin of the fast solar wind
appeals to Alfvén waves (AWs) that are launched by photospheric motions. As these
AWs propagate away from the Sun, they undergo partial reflection due to the radial
variation of the Alfvén speed (Heinemann & Olbert 1980). Nonlinear interactions
between counter-propagating AWs then cause AW energy to cascade to small
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scales and dissipate, heating the plasma (Velli, Grappin & Mangeney 1989; Zhou &
Matthaeus 1989; Cranmer & van Ballegooijen 2005; Verdini et al. 2012; Perez &
Chandran 2013; van Ballegooijen & Asgari-Targhi 2017). This heating increases the
plasma pressure, which, in conjunction with the wave pressure, accelerates the plasma
to high speeds (Suzuki & Inutsuka 2005; Cranmer, van Ballegooijen & Edgar 2007;
Verdini et al. 2010; Chandran et al. 2011; van der Holst et al. 2014).

Although non-compressive AWs are the primary mechanism for energizing the solar
wind in this model, a number of considerations indicate that compressive fluctuations
have a significant impact on the dynamics of turbulence in the corona and solar
wind. Observations of the tail of Comet-Lovejoy reveal that the background plasma
density ρ0 at r= 1.2R� (where R� is the radius of the Sun) varies by a factor of ∼6
over distances of a few thousand km measured perpendicular to the background
magnetic field B0 (Raymond et al. 2014). These density variations (denoted δρ) lead
to phase mixing of AWs, which transports AW energy to smaller scales measured
perpendicular to B0 (Heyvaerts & Priest 1983). Farther from the Sun, where δρ/ρ0
is significantly smaller than |δB|/B0 (Tu & Marsch 1995; Hollweg, Cranmer &
Chandran 2010), AWs still couple to slow magnetosonic waves (‘slow waves’)
through the parametric instability, in which outward-propagating AWs decay into
outward-propagating slow waves and inward-propagating AWs1 (Galeev & Oraevskii
1963; Sagdeev & Galeev 1969; Goldstein 1978; Spangler 1986, 1989, 1990; Hollweg
1994; Dorfman & Carter 2016). This instability and its nonlinear evolution are the
focus of the present work.

A number of studies have investigated the parametric instability in the solar wind
within the framework of magnetohydrodynamics (MHD) (e.g. Malara, Primavera
& Veltri 2000; Del Zanna, Velli & Londrillo 2001; Shi et al. 2017), while others
have gone beyond MHD to account for temperature anisotropy (Tenerani, Velli &
Hellinger 2017) or kinetic effects such as the Landau damping of slow waves (e.g.
Inhester 1990; Vasquez 1995; Araneda, Marsch & Viñas 2008; Maneva, Viñas &
Ofman 2013). Cohen & Dewar (1974), for example, derived the growth rate of the
parametric instability in the presence of strong slow-wave damping and randomly
phased, parallel-propagating AWs. Terasawa et al. (1986) carried out one-dimensional
(1-D) hybrid simulations and found that Landau damping reduces the growth rate
of the parametric instability and that the parametric instability leads to an inverse
cascade of AWs to smaller frequencies.

In this paper, weak-turbulence theory is used to investigate the nonlinear evolution
of the parametric instability assuming a randomly phased collection of AWs at
wavelengths much greater than the proton inertial length di in a low-β plasma, where
β is the ratio of plasma pressure to magnetic pressure. The fluctuating fields are
taken to depend on all three spatial coordinates, but the wave kinetic equations are
integrated over the perpendicular (to B0) wave-vector components, yielding equations
for the 1-D power spectra that depend only on the parallel wavenumber and time.
The starting point of the analysis is the theory of weak compressible MHD turbulence.
Collisionless damping of slow waves is incorporated in a very approximate manner
analogous to the approach of Cohen & Dewar (1974), by dropping terms containing
the slow-wave energy density in the wave kinetic equations that describe the evolution
of the AW power spectra.

The remainder of the paper is organized as follows. Section 2 reviews results from
the theory of weak compressible MHD turbulence, and § 3 uses the weak-turbulence

1The terms outward-propagating and inward-propagating refer to the propagation direction in the plasma
rest frame. Beyond the Alfvén critical point, all AWs propagate outward in the rest frame of the Sun.
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wave kinetic equations to recover the results of Cohen & Dewar (1974) in the
linear regime. Section 4 shows how the wave kinetic equations imply that AW
quanta undergo an inverse cascade towards smaller parallel wavenumbers, and § 5
presents several exact solutions to the wave kinetic equations. The main results of
the paper appear in § 6, which uses a numerical solution and an approximate analytic
solution to the wave kinetic equations to investigate the parametric decay of an initial
population of randomly phased AWs propagating in the same direction with negligible
initial power in counter-propagating AWs. The numerical results are compared with
observations from the Helios spacecraft at a heliocentric distance of 0.3 astronomical
units (AU). Section 7 critically revisits the main assumptions of the analysis and the
relevance of the analysis to the solar wind. Section 8 summarizes the key findings of
the paper, including predictions that will be tested by NASA’s Parker Solar Probe.

2. The wave kinetic equations for Alfvén waves undergoing parametric decay
In weak-turbulence theory, the quantity ωnl/ωlinear is treated as a small parameter,

where ωnl is the inverse of the time scale on which nonlinear interactions modify the
fluctuations, and ωlinear is the linear wave frequency. Because

ωnl�ωlinear, (2.1)

the fluctuations can be viewed as waves to a good approximation. The governing
equations lead to a hierarchy of equations for the moments of various fluctuating
quantities, in which the time derivatives of the second moments (or second-order
correlation functions) depend upon the third moments, and the time derivatives
of the third moments depend upon the fourth moments, and so on. This system of
equations is closed via the random-phase approximation, which allows the fourth-order
correlation functions to be expressed as products of second-order correlation functions
(see, e.g. Galtier et al. 2000).

The strongest nonlinear interactions in weak MHD turbulence are resonant three-
wave interactions. These interactions occur when the frequency and wavenumber of
the beat wave produced by two waves is identical to the frequency and wavenumber
of some third wave, which enables the beat wave to drive the third wave coherently
in time. If the three waves have wavenumbers p, q, and k and frequencies ωp, ωq,
and ωk, respectively, then a three-wave resonance requires that

k= p+ q, (2.2)

and
ωk =ωp +ωq. (2.3)

An alternative interpretation of (2.2) and (2.3) arises from viewing the wave fields
as a collection of wave quanta at different wavenumbers and frequencies, restricting
the frequencies to positive values, and assigning a wave quantum at wavenumber k
and frequency ωk the momentum h̄k and energy h̄ωk. Equations (2.2) and (2.3) then
correspond to the momentum-conservation and energy-conservation relations that arise
when either one wave quantum decays into two new wave quanta or two wave quanta
merge to produce a new wave quantum.

In the parametric instability in a low-β plasma, a parent AW (or AW quantum)
at wavenumber k decays into a slow wave at wavenumber p propagating in the
same direction and an AW at wavenumber q propagating in the opposite direction.
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Regardless of the direction of the wave vector, the group velocity of an AW is either
parallel or anti-parallel to the background magnetic field

B0 = B0 ẑ, (2.4)

and the same is true for slow waves when

β� 1, (2.5)

which is henceforth assumed. At low β slow waves travel along field lines at the
sound speed cs, which is approximately β1/2 times the Alfvén speed vA. Thus,
regardless of the perpendicular components of k, p, and q, the frequency-matching
condition (2.3) for the parametric instability is

kzvA = pzcs − qzvA. (2.6)

Combining the z component of (2.2) with (2.6) and taking cs� vA yields

pz ' 2kz, (2.7)

and

qz '−kz

(
1− 2cs

vA

)
. (2.8)

Equation (2.8) implies that the frequency |qzvA| of the daughter AW is slightly smaller
than the frequency |kzvA| of the parent AW (Sagdeev & Galeev 1969). Thus, the
energy of the daughter AW is slightly smaller than the energy of the parent AW. This
reduction in AW energy is offset by an increase in slow-wave energy.

Chandran (2008) derived the wave kinetic equations for weakly turbulent AWs,
slow waves, and fast magnetosonic waves (‘fast waves’) in the low-β limit. The
resulting equations were expanded in powers of β, and only the first two orders in
the expansion (proportional to β−1 and β0, respectively) were retained. Slow waves
are strongly damped in collisionless low-β plasmas (Barnes 1966). Chandran (2008)
neglected collisionless damping during the derivation of the wave kinetic equations,
but incorporated it afterward in an ad hoc manner by assuming that the slow-wave
power spectrum S±k was small and discarding terms ∝ S±k unless they were also
proportional to β−1.2 (The ± sign in S±k indicates slow waves propagating parallel
(+) or anti-parallel (−) to B0.)

In the present paper, the wave kinetic equations derived by Chandran (2008)
are used to investigate the nonlinear evolution of the parametric instability. It is
assumed that slow-wave damping is sufficiently strong that all terms ∝ S±k , even
those ∝ β−1, can be safely discarded. All other types of nonlinear interactions are
neglected, including resonant interactions between three AWs, phase mixing and
resonant interactions involving fast waves. Given these approximations, equation (8)
of Chandran (2008) becomes

∂A±k
∂t
= π

vA

∫
d3p d3q δ(k− p− q)δ(qz + kz)k2

z A±k
∂

∂qz
(qzA∓q ), (2.9)

2The one exception to this rule was that Chandran (2008) retained the term representing turbulent mixing
of slow waves by AWs, since this term can dominate the evolution of slow waves at small kz (Lithwick &
Goldreich 2001; Schekochihin et al. 2016).
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FIGURE 1. Physical interpretation of the wave kinetic equation for parametric decay
when slow waves are strongly damped (2.11). The mathematical expressions next to the
arrows represent the contributions to ∂E+(kz2)/∂t from the parametric decay of AWs at kz3,
which acts to increase E+(kz2), and the parametric decay of AWs at kz2, which acts to
decrease E+(kz2). In these expressions, E+2 = E+(kz2), E−1 = E−(kz1), and E−3 = E−(kz3).

where A+k (A−k ) is the 3-D wavenumber spectrum of AWs propagating parallel (anti-
parallel) to B0, δ(x) is the Dirac delta function, and the integral over each Cartesian
component of p and q extends from −∞ to +∞. The 3-D AW power spectra depend
upon all three wave-vector components and time. The δ(k− p− q) term enforces the
wavenumber-resonance condition (2.2), and the δ(qz+ kz) term enforces the frequency-
resonance condition (2.8) to leading order in β. The integral over the components of p
in (2.9) can be carried out immediately, thereby annihilating the first delta function.
Equation (2.9) can be further simplified by introducing the 1-D wavenumber spectra

E±(kz, t)=
∫ ∞
−∞

dkx

∫ ∞
−∞

dkyA±k , (2.10)

and integrating (2.9) over kx and ky, which yields

∂E±

∂t
= π

vA
k2

z E±
∂

∂kz
(kzE∓). (2.11)

Equation (2.11) describes how the 1-D (parallel) power spectra E± evolve and forms
the basis for much of the discussion to follow. Given the aforementioned assumptions,
the evolution of the 1-D power spectra E± is not influenced by the way that A±
depends on kx and ky. For future reference, the normalization of the power spectra
is such that ∫ ∞

−∞
dkzE± = 1

2

〈∣∣∣∣δvAW ∓ δBAW√
4πρ

∣∣∣∣2
〉
, (2.12)

where δvAW and δBAW are the velocity and magnetic-field fluctuations associated with
AWs, and 〈· · ·〉 indicates an average over space and time (Chandran 2008).

2.1. Physical interpretation of the wave kinetic equation
Figure 1 offers a way of understanding (2.11). The horizontal colour bars in this
figure represent the spectra of outward-propagating and inward-propagating AWs, with
red representing longer-wavelength waves and violet representing shorter-wavelength
waves. AWs propagating in the −B0 direction at |kz| = kz3 decay into slow waves
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propagating anti-parallel to B0 at |kz| ' 2kz3 and AWs propagating parallel to B0
at |kz| = kz2. AWs propagating parallel to B0 at |kz| = kz2 decay into slow waves
propagating parallel to B0 at |kz| ' 2kz2 and AWs propagating anti-parallel to B0 at
|kz| = kz1. Equation (2.11) is approximately equivalent to the statement that the rate at
which E+2 = E+(kz2) increases via the decay of AWs at |kz| = kz3 is

R3→2 ∼ kz2E+2 kz3E−3
β1/2vA

, (2.13)

where E−3 = E−(kz3), while the rate at which E+2 decreases via the decay of AWs at
|kz| = kz2 is

R2→1 ∼ kz2E+2 kz1E−1
β1/2vA

, (2.14)

where E−1 = E−(kz1). The time derivative of E+2 is R3→2 − R2→1, or

∂E+2
∂t
∼ kz2E+2 (kz3E−3 − kz1E−1 )

β1/2vA
. (2.15)

Equation (2.8) implies that kz3− kz1∼ kz2cs/vA∼ β1/2kz2. A Taylor expansion of kz3E−3
and kz1E−1 about kz2 in (2.15) thus allows this equation to be rewritten as

∂E+2
∂t
∼ k2

z2E+2
vA

∂

∂kz
(kzE−)

∣∣∣∣
kz=kz2

, (2.16)

which is the same as (2.11) to within a factor of order unity.
To be clear, no independent derivation is being presented for (2.13) and (2.14). The

foregoing discussion merely points out that (2.13) and (2.14) are equivalent (up to
a factor of order unity) to (2.11), which is derived on the basis of weak-turbulence
theory. It is worth pointing out, however, that several features of (2.13) and (2.14)
make sense on a qualitative level. If either E+ = 0 or E− = 0, then R3→2 = R2→1 = 0,
because the parametric instability is a stimulated decay, which ceases if initially all
the AWs travel in the same direction. For fixed E+ and E−, R3→2 and R2→1 vanish
as vA →∞, since the fractional nonlinearities vanish in this limit. Also, R3→2 and
R2→1 are proportional to β−1/2 (when S±k is negligibly small, as assumed) because the
parametric-decay contribution to ∂A±k /∂t is an integral (over p and q) of third-order
correlation functions such as 〈δvk · δBqδnp〉, where δvk and δBq are the velocity and
magnetic-field fluctuations associated with AWs at wave vectors k and q, and δnp is
the density fluctuation associated with the slow waves at wave vector p that are driven
by the beating of the AWs at wave vectors k and q. For fixed AW amplitudes and
fixed B0 and vA, this driven density fluctuation is proportional to β−1/2, because as β
decreases the thermal pressure is less able to resist the compression along B0 resulting
from the Lorentz force that arises from the beating of the AWs.

3. Linear growth of the parametric instability
In the linear regime of the parametric instability, the spectrum of AWs propagating

in one direction, say E+, is taken to be fixed, and E− � E+. Equation (2.11) then
implies that E− increases exponentially in time with growth rate

γ − = πk2
z

vA

∂

∂kz
(kzE+). (3.1)
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Equation (3.1) is equivalent to equation (18) of Cohen & Dewar (1974) given the
different normalizations of the AW power spectra in the two equations. For example,
equation (2.12) implies that

∫∞
0 E+ dkz = (1/2)

∫∞
−∞ E+ dkz = 〈|δB|2〉/4πρ when

E− � E+, which can be compared with the un-numbered but displayed equation
under equation (9) of Cohen & Dewar (1974). As in the present paper, Cohen &
Dewar (1974) assumed that slow waves are strongly damped and that the AWs satisfy
the random-phase approximation. The present paper builds upon the results of Cohen
& Dewar (1974) by investigating the coupled nonlinear evolution of E+ and E−. Also,
whereas Cohen & Dewar (1974) took the wave vectors to be parallel or anti-parallel
to B0, the derivation of (2.11) in the present paper allows for obliquely propagating
waves.

4. Conservation of wave quanta and inverse cascade
To simplify the presentation, it is assumed that

kz > 0. (4.1)

No generality is lost, because E± is an even function of kz, and thus it is sufficient
to solve for the spectra at positive kz values. Equation (2.11) can be rewritten as the
two equations

∂N
∂t
+ ∂Γ
∂kz
= 0 (4.2)

and
∂Γ

∂t
=πh̄k2

zΓ
∂

∂kz
(k2

z N), (4.3)

where

N = E+ + E−

h̄kzvA
(4.4)

is the number of wave quanta per unit kz per unit mass and

Γ =−πk2
z E+E−

h̄v2
A

(4.5)

is the flux of wave quanta in kz-space. Equation (4.2) implies that the number of wave
quanta per unit mass,

Ntot =
∫ ∞
−∞

N dkz, (4.6)

is conserved. The fact that Γ is negative indicates that there is an inverse cascade of
wave quanta from large kz to small kz (cf. Terasawa et al. 1986). The wavenumber
drift velocity of the wave quanta,〈

dkz

dt

〉
≡ Γ

N
=−πk3

z

vA

(
1

E+
+ 1

E−

)−1

, (4.7)

is determined primarily by the smaller of E+ and E−.

5. Exact solutions to the wave kinetic equations
In this section, several exact solutions to (2.11) are presented under the assumption

that kz > 0. The spectra at negative kz follow from the relation E±(−kz, t)= E±(kz, t).
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5.1. Decaying, balanced turbulence
One family of exact solutions to (2.11) follows from setting

E±(kz, t)= f±(kz, t)H(kz − b(t)) (5.1)

in (2.11), where

H(x)=
{

0 if x< 0,
1 if x > 0,

(5.2)

is the Heaviside function. When (5.1) is substituted into (2.11), each side of (2.11)
becomes the sum of terms proportional to δ(kz − b) and terms that contain no delta
function. By separately equating the two groups of terms, one can show that (5.1) is
a solution to (2.11) if

∂

∂t
f±(kz, t)= π

vA
k2

z f±(kz, t)
∂

∂kz
[kzf∓(kz, t)], (5.3)

and
1
b3

db
dt
=−πf+(b, t)

2vA
=−πf−(b, t)

2vA
. (5.4)

Equation (5.4) makes use of the relation [H(x)]2=H(x) and its derivative, 2H(x)δ(x)=
δ(x). In appendix A it is shown that (5.4) can be recovered by adding a small
amount of nonlinear diffusion to (2.11) and replacing the discontinuous jump in
the spectrum at kz = b(t) with a boundary layer. Equation (5.4) implies that, for
solutions of the form given in (5.1), the mean-square amplitudes of forward- and
backward-propagating AWs must be equal just above the break wavenumber b. An
exact solution to (5.3) and (5.4) corresponding to decaying turbulence is

f+(kz, t)= f−(kz, t)= a(t)
k2

z

, (5.5)

a(t)= a0

(
1+ πa0t

vA

)−1

, (5.6)

and

b(t)= b0

(
1+ πa0t

vA

)−1/2

, (5.7)

where a0 and b0 are the values of a and b at t= 0.
This solution can be further truncated at large kz by setting

E+(kz, t)= E−(kz, t)= a(t)H(kz − b(t))H(q(t)− kz)

k2
z

(5.8)

with

q(t)= q0

(
1+ πa0t

vA

)−1/2

, (5.9)

where q0 is the value of q at t = 0, which is taken to exceed b0. Equations (5.5)
through (5.9) can be recovered numerically by solving (2.11) for freely decaying
AWs. Whether the spectra satisfy (5.1) and (5.5) through (5.7) or, alternatively,
equations (5.6) through (5.9), the number of wave quanta Ntot defined in (4.6) is
finite and independent of time.
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5.2. Forced, balanced turbulence
An exact solution to (5.3) and (5.4) corresponding to forced turbulence is

f+(kz, t)= f−(kz, t)= c
kz
, (5.10)

and

b(t)=
(

πct
2vA
+ 1

b0

)−1

, (5.11)

where c is a constant and b0 is the value of b at t= 0. In this solution, the number of
wave quanta Ntot is not constant, because there is a non-zero influx of wave quanta
from infinity. A version of this solution can be realized in a numerical solution
of (2.11) by holding E± fixed at some wavenumber kf, which mimics the effects of
energy input from external forcing. In this case, the numerical solution at kz < kf is
described by (5.1), (5.10) and (5.11), with b(t) < kf.

The solution in (5.10) and (5.11) can be truncated at large kz in a manner analogous
to (5.8), but with q= [(πct/2vA)+ (1/q0)]−1, where q0 is the value of q at t= 0. In
this solution, Ntot is independent of time. Numerical solutions of (2.11) show, however,
that this solution is unstable. If the spectra initially satisfy E±= (c/kz)H(kz− b)H(q−
kz), then they evolve towards the solution described by (5.5) through (5.9).

5.3. Exact solutions extending over all kz

In addition to the truncated solutions described in §§ 5.1 and 5.2, equation (2.11)
possesses several exact solutions that extend over all kz. These solutions are
unphysical, because they correspond to infinite AW energy and neglect dissipation
(which becomes important at sufficiently large kz) and finite system size (which
becomes important at sufficiently small kz). However, they illustrate several features
of the nonlinear evolution of the parametric instability, which are summarized at the
end of this section.

The simplest solution to (2.11) spanning all kz is

E±(kz, t)= c±

kz
, (5.12)

where c± is a constant. It follows from (4.5) that (5.12) corresponds to a constant flux
of AW quanta to smaller kz. In contrast to the truncated E± ∝ k−1

z forced-turbulence
solution in § 5.2, E+ and E− need not be equal in (5.12).

A second, non-truncated, exact solution to (2.11) is given by

E±(kz, t)= a±(t)
k2

z

, (5.13)

and

a±(t)= a±0 (a
±
0 − a∓0 )

a±0 − a∓0 e−π(a±0 −a∓0 )t/vA
, (5.14)

where a+0 and a−0 are the initial values of a+ and a−. In this solution,

a+(t)− a−(t)= a+0 − a−0 . (5.15)
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If a+0 > a−0 , then E− decays faster than E+, and, after a long time has passed, E−
decays to zero while a+ decays to the value a+0 − a−0 . Conversely, if a−0 > a+0 , then E+
decays faster than E−, and the turbulence decays to a state in which E+ = 0. In the
limit that a+0 → a−0 ,

a±(t)→ a0

(
1+ πa0t

vA

)−1

, (5.16)

where a0 = a+0 = a−0 . Equations (5.13) and (5.16) are a non-truncated version of the
decaying-turbulence solution presented in § 5.1.

Equations (5.12) and (5.13) can be combined into a more general class of solution,

E±(kz, t)= a±(t)
(

1
k2

z

+ d±

kz

)
, (5.17)

where d+ and d− are constants and a±(t) is given by (5.14). Another type of solution
combining k−1

z and k−2
z scalings is

E+(kz, t)= c0e−πc2t/vA

kz
, (5.18)

E−(kz, t)= c1

kz
+ c2

k2
z

, (5.19)

where c0, c1, and c2 are constants.
The exact solutions presented in this section illustrate three properties of the

nonlinear evolution of the parametric instability at low β when slow waves are
strongly damped. First, when E± ∝ k−1

z , ∂E∓/∂t vanishes. Second, if E± ∝ k−2
z , then

(∂/∂t) ln E∓ is negative and independent of kz, and E∓(kz, t) can be written as
the product of a function of kz and a (decreasing) function of time. (More general
principles describing the evolution of E± are summarized in figure 3 and (6.11).)
Third, the parametric instability does not necessarily saturate with E+ = E−. For
example, in (5.13) and (5.14), when a+0 6= a−0 , the AWs decay to a maximally aligned
state reminiscent of the final state of decaying cross-helical incompressible MHD
turbulence (Dobrowolny, Mangeney & Veltri 1980).

6. Nonlinear evolution of the parametric instability when most of the AWS
initially propagate in the same direction
This section describes a numerical solution to (2.11) in which, initially,

E+� E−. (6.1)

As in § 5, kz is taken to be positive, and the spectra at negative kz can be inferred
from the fact that E±(−kz)=E±(kz). The spectra are advanced forward in time using a
second-order Runge–Kutta algorithm on a logarithmic wavenumber grid consisting of
2000 grid points. To prevent the growth of numerical instabilities, a nonlinear diffusion
term

D± = νE∓k2
z
∂2

∂k2
z

E± (6.2)

is added to the right-hand side of (2.11), where ν is a constant. The value of ν is
chosen as small as possible subject to the constraint that the diffusion term suppress
instabilities at the grid scale.
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To represent the solution in a way that can be readily compared with spacecraft
measurements of solar-wind turbulence, the wavenumber spectra are converted into
frequency spectra,

e±( f , t)= 2πE±(kz, t)
U

, (6.3)

where U is the solar-wind velocity, and

f = kzU
2π

(6.4)

is the frequency in the spacecraft frame that, according to Taylor’s (1938) hypothesis,
corresponds to wavenumber kz when the background magnetic field is aligned with
the nearly radial solar-wind velocity. The Alfvén speed is taken to be the approximate
average of the observed values of vA in three fast-solar-wind streams at r = 0.3 AU
(see table 1 of Marsch et al. (1982) and table 1a of Marsch & Tu (1990)),

vA = 150 km s−1. (6.5)

In order to compare directly with figure 2–2(c) of Tu & Marsch (1995), the solar-wind
velocity is taken to be

U = 733 km s−1. (6.6)

The power spectra are initialized to the values

e+( f , t= 0)= σ
+( f /f0)

−0.5

1+ ( f /f0)1.5
, (6.7)

and
e−( f , t= 0)= σ−, (6.8)

where σ+, σ− and f0 are constants. The values of f0 and the corresponding
wavenumber kz0 are chosen so that

f0 = kz0U
2π
= 10−2 Hz, (6.9)

consistent with the arguments of van Ballegooijen & Asgari-Targhi (2016) about
the dominant frequency of AW launching by the Sun. The minimum and maximum
wavenumbers of the numerical domain are chosen so that kz max = 103kz0 = 107kz min.
The motivation for the scaling e+( f , t = 0) ∝ f−0.5 at small f is the similar scaling
observed by Tu & Marsch (1995) in the aforementioned fast-solar-wind stream
at 10−5 Hz < f < 10−4 Hz. The numerical results shown below suggest that the
parametric instability has little effect on e+ at these frequencies at r = 0.3 AU. The
observed f−0.5 scaling in this frequency range is thus presumably inherited directly
from the spectrum of AWs launched by the Sun. Like the scaling e+ ∝ f−0.5, the
value of σ+ is chosen to match the observed spectrum of outward-propagating AWs
at 0.3 AU at small f . The reason for the f−2 scaling in e+ at large f is that a
(parallel) k−2

z spectrum is observed in the solar wind (Horbury, Forman & Oughton
2008; Podesta 2009; Forman, Wicks & Horbury 2011) and predicted by the theory
of critically balanced MHD turbulence (see, e.g. Goldreich & Sridhar 1995; Mallet,
Schekochihin & Chandran 2015). The value of σ− is set equal to a minuscule value
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(a) (b)

(c) (d)

FIGURE 2. Solid lines show the AW power spectra in a numerical solution of (2.11)
with plasma parameters and turbulence parameters chosen to model conditions in the fast
solar wind at a heliocentric distance of 0.3 AU. The wavenumber spectra E±(kz) appearing
in (2.11) have been converted, using (6.3) and (6.4), into the frequency spectra e±( f ). The
dotted lines in the upper left corners of each plot show the evolutionary tracks of the
values of e+ and e− at the low-frequency end of the frequency range in which e+ ∝ f−1

in the approximate analytic solution to (2.11) presented in appendix B.

(10−12σ+), so that the only source of dynamically important, inward-propagating AWs
is the parametric decay of outward-propagating AWs.

Figure 2 summarizes the results of the calculation. Between t = 0 and t = 4 h, e+
changes little while e− grows rapidly between roughly 2 and 5 mHz, where the growth
rate γ − given in (3.1) peaks. Between t= 4 and t= 8 h, e+ develops a broad ∼ 1/f
scaling between f = 3× 10−4 and f = 3× 10−2 Hz, which shuts off the growth of e−
at these frequencies. At the same time, e− acquires an ∼ f−2 scaling over much of
this same frequency range. Between t = 8 and t = 16 h, the low-frequency limit of
the 1/f range of e+ decreases to ∼ 10−4 Hz, and the high-frequency limit of the 1/f
range of e+ increases to ∼ 0.1 Hz.

The dotted lines in the upper left corner of each panel in figure 2 show the tracks
followed by the values of e+ and e− at the low-frequency end of the frequency range
in which e+ ∝ f−1 in the approximate analytic solution to (2.11) that is described
in appendix B. In this solution, E+ and E− are expanded in negative powers of kz
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FIGURE 3. In this figure, it is assumed that the frequency spectra are initially power
laws of the form e± ∝ f α

± , and that α+ and α− are both negative. According to (6.11),
parametric decay alters both the amplitude and slope of e± in the manner shown. For
example, if e−∝ f−1.5, then E+∝ k−1.5

z , and (6.11) implies that E+ decreases at a rate that
increases with kz. This in turn implies that e+ decreases at a rate that increases with f ,
so that e+ steepens.

(a) (b) (c)

FIGURE 4. (a,b) Reproductions of the t= 4 and t= 8 h panels of figure 2 but with the
axis ranges used in figure 2–2(c) of Tu & Marsch (1995). (c) From a later time (t= 32 h)
in the same numerical solution.

at wavenumbers exceeding a time-dependent break wavenumber b(t). Below this
wavenumber, E−= 0 and E+= ηkp

z , where η and p are constants, and −1< p< 1. At
kz > b, the dominant term in the expansion of E+ (E−) scales like k−1

z (k−2
z ), and the

ratios of E+(b+) to ηbp
+ and E+(b+) to E−(b+) are fixed functions of p, where b+

is a wavenumber infinitesimally larger than b. For p=−0.5, E+(b+)/ηbp
+ = 5/3 and

E+(b+)/E−(b+)= 10, in approximate agreement with the numerical results (see also
figure 4c).

6.1. Heuristic explanation of the e+ ∝ f−1 and e− ∝ f−2 scalings
In order to understand the time evolution illustrated in figure 2, it is instructive to first
consider the case in which

E± = c±kα
±

z (6.10)

within some interval (kz1, kz2), where c± and α± are constants. Equation (2.11) implies
that, within this interval,

∂

∂t
ln E± = πc∓

vA
(1+ α∓)kα∓+2

z . (6.11)
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If α∓>−1, then ln E± grows at a rate that increases with kz, causing E± to increase
and ‘harden’, in the sense that the best-fit value of α± within the interval (kz1, kz2)

increases. If α∓ = −1, then E± does not change. If −2 < α∓ < −1, then ln E±

decreases at a rate that increases with kz, which causes the best-fit value of α±
within the interval (kz1, kz2) to decrease. If α∓=−2, then ln E± decreases at the same
rate at all kz, and α± remains unchanged. Finally, if α∓ < 2, then E± decreases at
a rate that decreases with kz, which causes the best-fit value of α± in the interval
(kz1, kz2) to increase. These rules are summarized in figure 3 and apply to e± ∝ f α

±

as well as E± ∝ kα
±

z .
Returning to figure 2, in the early stages of the numerical calculation, e− grows

most rapidly at those frequencies at which γ − in (3.1) is largest – namely, the high-
f end of the f−0.5 range of e+. By the time e− reaches a sufficient amplitude that
e+ and e− evolve on the same time scale, e− develops a peaked frequency profile
extending from some frequency f = flow to some larger frequency f = fhigh, as illustrated
in figure 2(b). Near flow, de−/df > 0 (i.e. α−> 0), which causes e+ to grow.3 Near fhigh,
α−<−1, which causes e+ to decrease. Thus, e+ steepens across the interval ( flow, fhigh)

until it attains a 1/f scaling, at which point e− stops growing between flow and fhigh.
However, at frequencies just below flow, e+ and e− both continue to grow, causing flow

to decrease. At the same time, e+ continues to decrease at larger f where α− <−1.
Together, the growth of e+ just below flow and the damping of e+ at larger f cause
the f−1 range of e+ to broaden in both directions, i.e. towards both smaller and larger
frequencies.

The unique scaling of e− consistent with an e+ spectrum ∝ f−1 that is a decreasing
function of time is e− ∝ f−2. Moreover, the scalings e+ ∼ f−1 and e− ∼ f−2 are, in a
sense, stable, as can be inferred from figure 3. For example, if α− increases from −2
to a slightly larger value, then e+ decreases at a rate that increases with f , causing
α+ to decrease to a value slightly below −1. This causes e− to decrease at a rate that
increases with f , thereby causing α− to decrease back towards −2. A similar ‘spectral
restoring force’ arises for any other small perturbation to the values α+ = −1 and
α− =−2.

It is worth emphasizing, in this context, that the analytic solution presented in
appendix B is approximate rather than exact. As the spectral break frequency
decreases past some fixed frequency f3, the values of e+ and e− at f3 suddenly
jump, but they do not jump to the precise values needed to extend the e+ ∼ f−1 and
e− ∼ f−2 scalings to smaller f . Instead, the spectra need further ‘correcting’ after
the break frequency has swept past in order to maintain the scalings e+ ∼ f−1 and
e− ∼ f−2 in an approximate way. Also, the decrease in e− that occurs after t = 4 h
is a consequence of the sub-dominant f−2 component of e+. This component of e+

becomes increasingly prominent near the break frequency as time progresses, leading
to the pronounced curvature in the plot of e+ near f = 10−4 Hz in figure 4(c).

6.2. Comparison with Helios measurements
In the (average) plasma rest frame, the equations of incompressible MHD can be
written in the form

∂ z±

∂t
+ (z∓ ± vA) · ∇z± =−∇Π, (6.12)

3Although the caption of figure 3 excludes positive α∓ to allow use of the words ‘flattens’ and ‘steepens’
in the figure, equation (6.11) applies for positive α∓.
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where z± = δv ∓ δB/
√

4πρ are the Elsasser variables, δv and δB are the velocity
and magnetic-field fluctuations, ρ is the mass density, vA = B0/

√
4πρ is the Alfvén

velocity and Π is the total pressure divided by ρ (Elsasser 1950). Although the solar
wind is compressible, equation (6.12) provides a reasonable approximation for the
non-compressive, AW-like component of solar-wind turbulence. As (6.12) shows, the
advection velocity of a z± fluctuation is z∓± vA. This implies, as shown by Maron &
Goldreich (2001), that z± fluctuations propagate along magnetic field lines perturbed
by z∓. As a consequence, in the solar wind, when the root-mean-square (rms)
magnetic-field fluctuation δBin associated with inward-propagating AWs (z−) is much
smaller than the background magnetic field B0, the outward-propagating AWs (z+)
propagate to a good approximation along the direction of B0. This is true even if the
rms magnetic-field fluctuation δBout associated with z+ is comparable to B0. In the
fast solar wind at r < 0.3 AU, the (fractional) cross-helicity is high (i.e. E+ � E−),
and δBin is indeed small compared to B0 (Bavassano, Pietropaolo & Bruno 2000;
Cranmer & van Ballegooijen 2005). Moreover, the background magnetic field at
r = 0.3 AU is nearly in the radial direction, because the Parker-spiral magnetic
field begins to deviate appreciably from the radial direction only at larger r in the
fast wind (Verscharen et al. 2015). Hence, in high-cross-helicity fast-wind streams
at r = 0.3 AU, the function e+ defined by (6.3) and (6.4) corresponds to a good
approximation to the frequency spectrum of outward-propagating AWs observed by a
spacecraft in the solar wind. It is not clear, however, how well e− corresponds to the
observed spectrum of inward-propagating AWs, because the inward-propagating AWs
follow field lines perturbed by the outward-propagating AWs, which can be inclined
relative to the radial direction by a substantial angle.

Figure 4 reproduces the t= 4 h and t= 8 h panels of figure 2, but with the same
axis ranges as those in figure 2–2(c) of Tu & Marsch (1995) to facilitate comparison.
Figure 4 also includes a third panel that shows the spectra at t = 32 h. The e+
spectrum in the t= 8 h panel of figure 2 shares a number of properties with the e+
spectrum in figure 2–2(c) of Tu & Marsch (1995), in addition to the f−0.5 scaling
at small f that was built in to the numerical calculation as an initial condition. In
particular, e+ � e− at all frequencies, e+ ∼ f−1 at f & 3 × 10−4 Hz, and there is a
bump in the e+ spectrum at the transition between the f−0.5 and f−1 scaling ranges
of e+.

Although this comparison is suggestive, it is not entirely clear how to map time
in the numerical calculation to heliocentric distance in the solar wind, because the
plasma parameters in the numerical calculation are independent of position and
time, whereas they depend strongly upon heliocentric distance in the solar wind.
For example, the turbulence is weaker (in the sense of smaller δv0/vA) the closer
one gets to the Sun. (See also the discussion following (7.10).) Also, the choice of
initial conditions in the numerical calculation artificially prolongs the linear stage
of evolution, since in the solar wind there are sources of inward-propagating waves
other than parametric instability, such as non-WKB reflection (Heinemann & Olbert
1980; Velli 1993). Nevertheless, as a baseline for comparison, the travel time of
an outward-propagating AW from the photosphere to 0.3 AU in the fast-solar-wind
model developed by Chandran & Hollweg (2009) is approximately 12 h.

7. Discussion of approximations and relevance to the solar wind
This section critically assesses the assumptions underlying the results in §§ 2

through 6 and the degree to which these assumptions apply to the fast solar wind
between r = 10R� (the approximate perihelion of the Parker Solar Probe) and
r= 0.3 AU.
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7.1. The weak-turbulence approximation
A central assumption of the analysis is the weak-turbulence criterion in (2.1). Since
E+ and E− differ in the solar wind, equation (2.1) is really two conditions,

ω±nl� |kz|vA, (7.1)

where ω+nl (ω−nl) is the inverse of the time scale on which nonlinear interactions
modify outward-propagating (inward-propagating) AWs. The contribution to ω±nl from
the parametric instability is

ω±nl,PI ∼
1

E±

∣∣∣∣∂E±

∂t

∣∣∣∣∼ k2
z E∓

vA
. (7.2)

The contribution to ω±nl from one other type of nonlinear interaction is estimated in
§ 7.3. The estimate of ∂E±/∂t in (7.2) follows from (2.11) and setting E∓∼|kz|α∓ with
α∓ not very close to −1. An approximate upper limit on ω±nl,PI results from replacing
kzE∓ in (7.2) with (δv∓)2, where (δv+)2 is the mean-square velocity fluctuation
associated with outward-propagating AWs, and (δv−)2 is the mean-square velocity
fluctuation associated with inward-propagating AWs. This leads to an approximate
upper limit on ω±nl,PI because (δv±)2 includes contributions from all wavenumbers and
is much larger than the value of kzE± at some kz. Equation (7.1), with ωnl∼ωnl,PI, is
thus satisfied provided

(δv∓)2� v2
A. (7.3)

Bavassano et al. (2000) analysed Helios measurements of fluctuations in the fast
solar wind at r = 0.4 AU and found that (δv−)2 � (δv+)2 ' (60 km s−1)2. As
mentioned above, the typical value of vA in the fast solar wind at r = 0.3 AU is
∼ 150 km s−1 (Marsch et al. 1982; Marsch & Tu 1990). Near r= 0.3 AU, B0∼ 1/r2,
ρ ∼ 1/r2 and vA ∼ 1/r, and so the typical value of vA in fast-solar-wind streams at
r= 0.4 AU is ∼ 112.5 km s−1. These measurements indicate that

(δv−)2� (δv+)2 ' 0.28v2
A (7.4)

in the fast solar wind at r = 0.4 AU. Since δv±/vA decreases as r decreases below
0.4 AU (Cranmer & van Ballegooijen 2005; Chandran & Hollweg 2009), the condition
ω+nl,PI� |kz|vA is well satisfied at r < 0.4 AU, and the condition ω−nl,PI� |kz|vA is at
least marginally satisfied at r< 0.4 AU.

It is worth noting that weak-turbulence theory fails when applied to resonant
interactions between three AWs, because such interactions occur only when one of
the AWs has zero frequency, violating the weak-turbulence ordering (Schekochihin,
Nazarenko & Yousef 2012; Meyrand, Kiyani & Galtier 2015). In contrast, the
AW/slow-wave interactions in parametric decay do not involve a zero-frequency mode.
Weak-turbulence theory is thus in principle a better approximation for the nonlinear
evolution of the parametric instability than for incompressible MHD turbulence.

7.2. The low-β assumption
The assumption that β� 1 is not satisfied at r & 0.3 AU' 65R�, where β is typically
∼ 1, but is reasonable at r. 20R� (Chandran et al. 2011). It is possible that the β� 1
theory presented here applies at least at a qualitative level provided β is simply . 1,
and indeed this possibility motivates the comparison of the present model with Helios
observations. However, further work is needed to investigate how the results of this
paper are modified as β increases to values ∼ 1.
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7.3. Neglect of other types of nonlinear interactions
Another approximation in §§ 2 through 6 is the neglect of all nonlinear interactions
besides parametric decay. One of the neglected interactions is the shearing of inward-
propagating AWs by outward-propagating AWs, which makes a contribution to ω−nl
that depends on the perpendicular length scale of the AWs. At the perpendicular outer
scale L⊥ (the overall correlation length of the AWs measured perpendicular to B0), the
contribution to ω−nl from shearing is approximately

ω−nl,⊥ ∼
χδv+

L⊥
, (7.5)

where

χ = δv+

kzL⊥vA
(7.6)

is the critical-balance parameter (Goldreich & Sridhar 1995; Ng & Bhattacharjee 1996;
Lithwick, Goldreich & Sridhar 2007). Equation (7.5) does not apply when χ is much
larger than 1, but direct numerical simulations suggest that χ . 1 at r & 10R� for the
bulk of the AW energy (J. Perez, private communication). Thus, at r & 10R�,

ω−nl,PI

ω−nl,⊥
' (kzL⊥)2. (7.7)

As AWs propagate away from the Sun, they follow magnetic field lines, which leads
to the approximate scaling L⊥ ∝ B−1/2

0 . In the WKB limit, the AW frequency in the
Sun’s frame kz(U+ vA) is independent of r. The scaling kz∼1/(U+ vA) thus serves as
a rough approximation for outward-propagating AWs in the turbulent solar wind. At
the coronal base (just above the transition region), where kz and L⊥ have the values kzb
and L⊥b, the value of kzbL⊥b for the energetically dominant AWs launched by the Sun
can be estimated (in essence from the critical-balance condition) as δv+b /vAb, where
δv+b and vAb are the values of δv+ and vA at the coronal base (Goldreich & Sridhar
1995; van Ballegooijen & Asgari-Targhi 2016). Together, these scalings lead to the
estimate

kzL⊥ '
√

B0b

B0

(
Ub + vAb

U + vA

)
δv+b
vAb

, (7.8)

where B0b and Ub are the values of the background magnetic field and solar-wind
outflow velocity at the coronal base. Between r = 10R� and r = 60R�, B0b/B0 '
fmax(r/R�)2, where fmax is the super-radial expansion factor (Kopp & Holzer 1976).
In the fast solar wind within this range of radii, U + vA ' 700–800 km s−1, which
is comparable to Ub + vAb ' vAb ' 103 km s−1. Equation (7.8) is thus approximately
equivalent to

kzL⊥ '
√

fmax

(
r

R�

)(
δv+b
vAb

)
(7.9)

for the energetically dominant fluctuations launched by the Sun. If we set fmax = 9,
δvb = 30 km s−1, and vAb = 900 km s−1, then (7.9) becomes

kzL⊥ ∼ r
10R�

(7.10)
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for the energetically dominant AWs launched by the Sun. Equations (7.7) and (7.10)
suggest that it is reasonable to neglect the shearing of inward-propagating AWs by
outward-propagating AWs at r & 10R�. On the other hand, at smaller radii, shearing
could suppress the growth of inward-propagating AWs that would otherwise result
from the parametric instability. Also, the requirement that kzL⊥> 1 in order for ω−nl,PI

to exceed ω−nl,⊥ could prevent the f−1 range from spreading to frequencies below some
minimum (r-dependent) value.

The other nonlinearities in the weak-turbulence wave kinetic equations that are
neglected in this paper include interactions involving fast magnetosonic waves, the
turbulent mixing of slow waves by AWs, phase mixing of AWs by slow waves and
the shearing of outward-propagating AWs by inward-propagating AWs (Chandran
2008). In situ measurements indicate that fast waves account for only a small fraction
of the energy in compressive fluctuations at 1 AU (Yao et al. 2011; Howes et al.
2012; Klein et al. 2012). Also, fast waves propagating away from the Sun undergo
almost complete reflection before they can escape into the corona (Hollweg 1978).
These findings suggest that nonlinear interactions involving fast waves have little
effect upon the conclusions of this paper. The turbulent mixing of slow waves by
AWs acts as an additional slow-wave damping mechanism and is thus unlikely
to change the conclusions of this paper, which already assume strong slow-wave
damping. Phase mixing of AWs by slow waves transports AW energy to larger k⊥
at a rate that increases with |kz| (Chandran 2008). Although the fractional density
fluctuations between r = 10R� and r = 0.3 AU are fairly small (see, e.g. Tu &
Marsch 1995; Hollweg et al. 2010), phase mixing could affect the parallel AW power
spectra, and further work is needed to investigate this possibility. The shearing of
outward-propagating AWs by inward-propagating AWs is enhanced by non-WKB
reflection, which makes this shearing more coherent in time (Velli et al. 1989).
The resulting nonlinear time scale for outward-propagating AWs is approximately
r/(U + vA) (Chandran & Hollweg 2009), where U is the solar-wind outflow
velocity. This time scale is comparable to the AW propagation time from the Sun to
heliocentric distance r, and hence to the parametric-decay time scale at the small-f end
of the 1/f range of e+. How this shearing modifies E+(kz), however, is not clear. For
example, shearing by inward-propagating AWs may transport outward-propagating-AW
energy to larger k⊥ =

√
k2

x + k2
y at a rate that is independent of |kz|, in which case

this shearing would reduce E+(kz) by approximately the same factor at all kz, leaving
the functional form of E+(kz) unchanged.

7.4. Neglect of spatial inhomogeneity
In this paper, it is assumed that the background plasma is uniform and stationary.
In the solar wind, however, as an AW propagates from the low corona to 0.3 AU,
the properties of the ambient plasma seen by the AW change dramatically, with β
increasing from ∼10−2 to ∼1 and δvrms/vA increasing from ∼0.02 to ∼0.5 (Bavassano
et al. 2000; Cranmer & van Ballegooijen 2005; Chandran et al. 2011). Further work
is needed to determine how this spatial inhomogeneity affects the nonlinear evolution
of the parametric instability.

7.5. Approximate treatment of slow-wave damping
A key assumption in §§ 2 through 6 is that slow waves are strongly damped, and this
damping is implemented by neglecting terms in the wave kinetic equations that are
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proportional to the slow-wave power spectrum S±k . There are two sources of error in
this approach. First, damping could modify the polarization properties of slow waves,
thereby altering the wave kinetic equations. Second, even if S±k is much smaller than
the AW power spectrum A±k , the neglected parametric-decay terms in the wave kinetic
equations for AWs that are proportional to S±k could still be important, because they
contain a factor of β−1, which is absent in the terms that are retained. This factor
arises from the fact that the fractional density fluctuation of a slow wave is ∼ β−1/2

times larger than the fractional magnetic-field fluctuation of an AW with equal energy.
These neglected terms act to equalize the 3-D AW power spectra A+ and A−, and
hence to equalize E+ and E−. If these neglected terms were in fact important, they
could invalidate the solutions presented in § 6, in which E+� E−. However, in situ
observations indicate that E+�E− in the fast solar wind at r= 0.3 AU (Marsch & Tu
1990; Tu & Marsch 1995), which suggests that the neglect of these terms is reasonable.
Further work is needed to investigate these issues more carefully.

8. Conclusion
In this paper, weak-turbulence theory is used to investigate the nonlinear evolution

of the parametric instability in low-β plasmas. The analysis starts from the wave
kinetic equations describing the interactions between AWs and slow waves in weak
compressible MHD turbulence. To account for the strong damping of slow waves in
collisionless plasmas, terms containing the slow-wave energy density are dropped. The
equations allow for all wave-vector directions, but are integrated over the wave-vector
components perpendicular to the background magnetic field B0 (kx and ky), which
leads to equations for the 1-D power spectra E+ and E− that depend only on the
parallel wavenumber kz and time. During parametric decay in a low-β plasma, an AW
decays into a slow-wave propagating in the same direction and a counter-propagating
AW with a frequency slightly smaller than the frequency of the initial AW. The total
number of AW quanta is conserved, and the reduction in AW frequencies leads to
an inverse cascade of AW quanta towards smaller ω and kz. The energy of each AW
quantum is h̄ω, and the decrease in ω during each decay corresponds to a decrease in
the AW energy, which is compensated for by an increase in the slow-wave energy. The
subsequent damping and dissipation of slow-wave energy results in plasma heating.

The main results of this paper concern the parametric decay of a population of AWs
propagating in one direction, say parallel to B0, when the counter-propagating AWs
start out with much smaller amplitudes. If the initial frequency spectrum e+ of the
parallel-propagating AWs has a peak frequency f0 (at which fe+ is maximized) and
an ‘infrared’ scaling f p at smaller f with −1< p< 1, then e+ acquires a 1/f scaling
throughout a range of frequencies that spreads out in both directions from f0. At the
same time, the anti-parallel-propagating AWs acquire a 1/f 2 spectrum within this same
frequency range. If the plasma parameters and infrared e+ spectrum are chosen to
match conditions in the fast solar wind at a heliocentric distance of 0.3 AU, and the
AWs are allowed to evolve for a period of time that is approximately two thirds of
the AW travel time from the Sun to 0.3 AU, the resulting form of e+ is similar to
the form observed by the Helios spacecraft in the fast solar wind at 0.3 AU. Because
the background plasma parameters are time independent in the analysis of this paper
but time dependent in the plasma rest frame in the solar wind, it is not clear how to
map the time variable in the present analysis to heliocentric distance. Nevertheless, the
similarity between the spectra found in this paper and the spectra observed by Helios
suggests that parametric decay plays an important role in shaping the AW spectra
observed in the fast solar wind at 0.3 AU, at least for wave periods . 1 h.
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The frequency f ∗ that dominates the AW energy is the maximum of ( fe+ + fe−).
At the beginning of the numerical calculation presented in § 6, f ∗ is approximately
f0 = 0.01 Hz. At t = 8 h in this numerical calculation, f ∗ is the smallest frequency
at which e+ ∼ f−1 and e− ∼ f−2, which is ∼3 × 10−4 Hz. This decrease in f ∗ is
a consequence of the aforementioned inverse cascade, which transports AW quanta
from the initial peak frequency to smaller frequencies. Inverse cascade offers a way
to reconcile the observed dominance of AWs at hour-long time scales at 0.3 AU with
arguments that the Sun launches most of its AW power at significantly shorter wave
periods (Cranmer & van Ballegooijen 2005; van Ballegooijen & Asgari-Targhi 2016).

Further work is needed to relax some of the simplifying assumptions in this
paper, including the low-β approximation, the assumption of spatial homogeneity, the
simplistic treatment of slow-wave damping, and the neglect of nonlinear interactions
other than parametric decay. Further work is also needed to evaluate the relative
contributions of parametric decay and other mechanisms to the generation of 1/f
spectra in the solar wind. For example, Matthaeus & Goldstein (1986) argued that
the f−1 spectrum seen at r = 1 AU at 3× 10−6 < f < 8× 10−5 Hz is a consequence
of forcing at the solar surface, and Velli et al. (1989) argued that the shearing of
outward-propagating AWs by the inward-propagating AWs produced by non-WKB
reflection causes the outward-propagating AWs to acquire an f−1 spectrum.

NASA’s Parker Solar Probe (PSP) has a planned launch date in the summer of
2018 and will reach heliocentric distances less than 10R�. The FIELDS (Bale et al.
2016) and SWEAP (Kasper et al. 2015) instrument suites on PSP will provide the
first ever in situ measurements of the magnetic-field, electric-field, velocity and density
fluctuations in the solar wind at r < 0.29 AU. Although the issues mentioned in the
preceding paragraph are sources of uncertainty, the results of this paper lead to the
following predictions that will be tested by PSP. First, the 1/f range of e+ in fast-solar-
wind streams at r < 0.3 AU and f & 3 × 10−4 Hz is produced in situ by parametric
decay. As a consequence, the 1/f range of e+ in fast-solar-wind streams will be much
more narrow at small r than at r=0.3 AU. As AWs propagate away from the Sun, the
frequency range ( fmin, fmax) in which e+∼ 1/f spreads out in both directions from the
near-Sun peak frequency (the maximum of fe+). Thus, fmin will be larger closer to the
Sun, and fmax will be smaller. Finally, during epochs in which the local magnetic field
is aligned with the relative velocity between the plasma and the spacecraft (see the
discussion in § 6.2), the spectrum of e− will scale like 1/f 2 in the frequency interval
( fmin, fmax).
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Appendix A. Boundary layers in the Alfvén-wave power spectra
In this appendix, a small nonlinear diffusion term is added to the wave kinetic

equation, so that (2.11) becomes

∂E±

∂t
= π

vA
k2

z E±
∂

∂kz
(kzE∓)+ νE∓

∂2

∂k2
z

E±, (A 1)
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where ν is a constant that is taken to be very small,

E∓(kz, t)= 1
2∆

∫ kz+∆

kz−∆
E∓ dkz, (A 2)

and ∆ is a wavenumber increment that is � |kz| but which remains finite as ν→ 0.
A solution to (A 1) is sought in which E± has a boundary layer at some wavenumber
kz= b(t). For simplicity, the analysis is restricted to kz > 0. The spectra at negative kz

values then follow from the fact that E+ and E− are even functions of kz.
It is useful to work with the dimensionless variables defined through the equations

kz = skz0, t= τ
[

vA

πkz0(δv0)2

]
, E± = Ẽ±(δv0)

2

kz0
, E± = Ẽ±(δv0)

2

kz0
, (A 3a−d)

where kz0 is some characteristic wavenumber and (δv0)
2 is the characteristic mean-

square AW velocity fluctuation. The analysis is restricted to the case in which

H ≡ Ẽ+ = Ẽ−. (A 4)

Equation (A 1) then takes the form

∂H
∂τ
= s2H

∂

∂s
(sH)+ εH

∂2H
∂s2

, (A 5)

where H = Ẽ+ and

ε = νvA

πk4
z0
� 1. (A 6)

Upon setting H =H(x, τ ) in (A 5), where

εx= s− b̃, b̃= b
kz0
, (A 7a,b)

and discarding terms � ε−1, one obtains

0=
(

db̃
dτ
+ b̃3H

)
∂H
∂x
+H

∂2H
∂x2

, (A 8)

where H is independent of x.
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As in (5.1) and (5.8), it is assumed that H= 0 on the small-kz side of the boundary
layer at s= b̃. The value of H at dimensionless wavenumbers slightly larger than b̃ is
denoted H>. The solution to (A 8) must thus satisfy the boundary conditions

H→
{

0 as x→−∞,
H> as x→∞, (A 9)

with H =H>/2. Upon substituting

H = H>

2

(
1+ tanh

x
a

)
(A 10)

into (A 8), one finds that

0=
(

db̃
dτ

)
H>

2a
sech2

( x
a

)
+ H2

>b̃3

4a

(
1+ tanh

x
a

)
sech2

( x
a

)
− H2

>

2a2
sech2

( x
a

)
tanh

x
a
.

(A 11)

By separately equating the sech2(x/a) terms and the tanh(x/a) sech2(x/a) terms, one
obtains

db̃
dτ
=−H>b̃3

2
(A 12)

and
a= 2

b̃3
. (A 13)

Thus, the desired solution to (A 8) is (A 10) with a and b̃ given by (A 12) and (A 13).
Equation (A 12) can be rewritten in terms of the original variables as

db
dt
=−πb3E>

2vA
, (A 14)

where E> =H>(δv0)
2/kz0, which is equivalent to (5.4).

Appendix B. Approximate analytic solution for decaying, cross-helical Alfvén
waves in the nonlinear regime

In this appendix, a solution to (2.11) is sought in which

E+ =H(kz − b)
∞∑

n=1

cn

(
kz

b

)−n

+H(b− kz)ηkp
z , (B 1)

E− =H(kz − b)
∞∑

n=2

an

(
kz

b

)−n

, (B 2)

and
cn+1� cn an+1� an a2� c1, (B 3)

where H(x) is the Heaviside function, an, b and cn are functions of time, and η and
p are constants, with

− 1< p< 1. (B 4)

https://doi.org/10.1017/S0022377818000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000016


Parametric instability and inverse cascade 23

Substituting (B 1) and (B 2) into (2.11) and making use of (B 3) leads to the following
approximate solutions for b, c1 and a2:

b=
[
(p+ 2)(p+ 1)πηt

(1− p)vA
+Λ

]−1/(p+2)

, (B 5)

where Λ is a constant of integration,

c1 = (p+ 3)ηbp

1− p
, (B 6)

and

a2 = (p+ 1)2ηbp

1− p
. (B 7)

Equations (B 5) through (B 7) imply that the break wavenumber b(t) decreases in time,
and that the ratios E+(b+)/ηbp

+ and E+(b+)/E−(b+) remain constant, where b+ is a
wavenumber infinitesimally larger than b. For example, if the infrared spectral index p
is −1/2, then

E+(b+)
E−(b+)

= p+ 3
(p+ 1)2

→ 10, (B 8)

and
E+(b+)
ηbp
+
= p+ 3

1− p
→ 5

3
. (B 9)

Equations (B 8) and (B 9) are shown as dotted lines in figures 2 and 4.
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