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Calculation of wave propagation into land-fast ice
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ABSTRACT. We review the various numerical methods that have been developed for cal-
culating the reflection and transmission of ocean waves at a land-fast ice boundary, including
recent developments. While an integral form of the solution, found by the Wiener—Hopf tech-
nique, has been known for many years, direct numerical computation of this exact solution
has been thought to be prohibitively difficult. Instead, several numerical “matching” pro-
cedures have been developed, including some that are only approximate, along with asymp-
totic solutions based on the integral form. Recently it has been discovered that direct
calculation of the integral form is feasible, actually requiring less computation than the
matching methods. We outline the actual computations required and contrast each method,
and provide examples of computation from the integral form.

INTRODUCTION

Around the coast of Antarctica and along the coasts of Arctic
land masses, sea water freezes during the winter months into
a continuous, visually featureless, floating ice sheet known as
shore-fast ice. Ocean waves and swell that propagate towards
the edge of the fast ice are partially reflected by the presence
of the ice sheet. The transmitted energy causes bending
which can lead to break-up of the ice sheet. In winter months
the sheet may subsequently refreeze during calm periods,
while in spring the ice eventually breaks up completely with
currents carrying the ice floes away from the coast where
they melt, leaving the coast free for the cycle to begin again
the following winter.

Our focus here is on methods that have been used to calcu-
late the reflection and transmission of ocean waves obliquely
incident on the edge of fast ice. We make the usual assumption
that the ice edge is straight over a distance that is long com-
pared to the wavelength so that the approximation of an infi-
nite straight ice edge holds. A mathematical model for
treating the ice as a floating thin elastic plate is well known,
and several studies have used this model to find reflection and
transmission coefficients. Until recently, only approximate or
complex numerical methods for computing these values have
been available. We review those methods as well as detailing
methods of solution based on the Wiener—-Hopf method,
which, while following a complicated analysis, have recently
been found to lead to very simple methods for computation.

The earliest method including the elastic response of the
ice was given by Hendrikson and Webb (1963), and sub-
sequently Wadhams (1986) who corrected minor errors in the
earlier work. These authors used an incomplete set of modes
and hence gave approximate solutions. Their method was to
match travelling and damped travelling waves by satisfying
continuity and boundary conditions on the surface at the edge
of the ice cover. Subsequent comparison with exact solutions
(Fox and Squire, 1990) showed that these solutions correctly
predicted the general trend for complete reflection at very
short periods through to complete transmission at very long
periods. However, these solutions contain erroneous features
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in the region of partial reflection and also do not conserve
energy, the latter problem being extreme at short periods.

Fox and Squire (1990) computed the reflection and
transmission coefficients by solving the mathematical model
exactly. They used the complete set of modes to express solu-
tions with the coefficients found by matching through the
water column beneath the edge of the ice sheet. The matching
was performed numerically and led to a large system of equa-
tions that became unwieldy at short periods or large depths.
Later this solution was extended to obliquely incident waves
(Fox and Squire, 1994) using the same basic method.

More than 30 years ago, Evans and Davies (1968) for-
mally solved the mathematical model using the Wiener—
Hopf method. That method solves for the Fourier transform
of the solution in each half-plane, i.e. over the region of open
water and the ice-covered region. Until recently the solution
given by Evans and Davies was thought to be unsuited for
actual computation because the required inverse Fourier
transform was too difficult. Indeed Evans and Davies stated
this opinion in their report. That belief, coupled with the
deceptively complicated calculations in the Wiener—Hopf
analysis, caused this solution to be overlooked for many
years. Two routes for taking that analysis through to stable
computation have recently been found. In 1999 Balmforth
and Craster (1999) showed how the Wiener—Hopf analysis
for a range of ice-sheet models could be made more straight-
forward by a formal application of the method with inverse
transforms calculated by stable quadrature. We will outline
a second route developed by the present authors in which
the factorizations required in the Wiener—Hopf solution are
written explicitly in terms of the wavenumbers of modes,
and solutions are calculated as stable sums over these
modes. Our advance over Evans and Davies is largely
through a few modifications to the formulas and being able
to find the roots of the dispersion equations. Furthermore,
this method has a simple extension to the deep-water case
by using the asymptotic behaviour of the coefficients to eval-
uate the expansion over the evanescent modes via an inte-
gration over the imaginary axis. The final formula for the
solution consists of polynomials of the five roots of a fifth-
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Ing. 1. Schematic drawing of plane ocean wave obliquely inci-
dent on a sea-ice sheet of thickness, h. The coordinate system
used in the model is located on the edge of the ice sheet, and the
sea floor ison z = —H.

order polynomial, with the calculation of reflection and
transmission being very simple.

The deep-water problem has also been studied by
Goldshtein and Marchenko (1989), also using a Wiener—
Hopf technique. They analyzed the asymptotic case when
the rigidity of the ice tends to zero, concluding that the reflec-
tion becomes zero in that limit. Extension of the same method
was used by Marchenko (1997) to solve for wave propagation
near a transition between different thicknesses of ice covers.
Again, no explicit formula for the solution was given.

MATHEMATICAL FORMULATION

The elastic response of sea ice is modeled by treating it as a
semi-infinite elastic thin plate. The effective rigidity of the ice
sheet, L, is related to local mechanical properties by
L = Eh?/12(1 — 1?), where E, h, and v are Young’s modulus,
thickness of ice sheet and Poisson ratio, respectively. Consider
an ocean wave of radian frequency @ arriving at angle 6 at the
edge of a semi-infinite ice sheet of thickness h floating on
water of depth H.This situation is depicted in Figure 1.

The physical system is then formulated as a system of
partial differential equations. We non-dimensionalize space
and time variables by scaling with respect to the character-
istic length [ and the characteristic time \/7 , respectively.
Hence we define non-dimensional variables (z,y,z) =
(Z,7,2)/l and t = ,/g/l, given the physical values indi-
cated by an overbar. Other quantities such as the velocity
potential @, vertical displacement of the ice sheet 7, force
acting on the ice p, radian frequency @, and mass of ice sheet
per unit area m(= p;h) are non-dimensionalized as follows:

l:V4L/pg, QS:QZ/(I\/E)v U:f?/l> (1)
p=p/(pgl), w=w\/l/g, m=m/(pl),

where p; and p are density of ice and water.

Since the incident wave has a single frequency, the time
dependence and = dependence of the system can be assumed
to be exp i(wt + kx). Hence, the velocity potential is expressed
as ¢(x,y, z,t) = ¢(y, 2) expi(wt + kz). For the wave periods
of interest, sea water can be taken to be incompressible, and
hence the velocity potential ¢(z,y, z,t) in the water satisfies
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Laplace’s equation. Equivalently, ¢(y, z) satisfies Helmholtz’s
equation

(V2. = #)oly.2) = 0. 2)

At the sea floor, the vertical component of velocity must be
zero, hence ¢, = 0 at z = —H. Using Bernoulli’s thin plate
theory (Shames and Dym, 1991), we find that the velocity
potential at the ice cover satisfies

2
[(88; — k2> —mw? +1

while the velocity potential on the free surface satisfies

¢. = WQ(b . (4)
The natural boundary conditions at the edge of the ice
sheet, corresponding to there being no constraints at the
edge of the ice, can be found by the variational form
(Shames and Dym, 1991) of Equation (3). The resulting two
boundary conditions are

0 9
(—‘2 — vk )QSZ =0
62
[8y2 -2 U>k2] P =0

From these equations, the algebraic dispersion equations

¢Z(m7 Y, O) = w2¢(:17, Y, 0) ) (3)

fory=0+,2=0. (5)

relating wavelength and frequency can be obtained. In the
case of the free surface we have

ytanhyH = . (6)

Equation (6) has two real roots, £A1, and an infinite number
of imaginary roots, {£i\,},~ ;. The dispersion equation for
the ice-covered region follows from the plate equation (3),
and is

(74 — mw? + 1)ytanhyH = W (7)

This dispersion equation for ice-coupled gravity waves has
two real roots, &=ji1, four complex roots, &pp, £y, and an
C e . . s

infinite number of imaginary roots, {£is, },- ;.

METHODS OF SOLUTION

Any physical wave field, and in particular the solution we seek,
can be expressed as a sum over the natural modes, or eigen-
functions, of the system. Since the eigenfunctions of Laplace’s
equation with the boundary conditions given here have the
form exp(iay) coshy(z + H), where 72 — a® — k* = 0, any
bounded solution of the boundary value problem can be
expressed as (Fox and Squire, 1990)

b1y, 2) = ([eM'T?/ + Re—u&u) cosh Ar(z+ H)

+ Z ane™¥ cos N, (z + H) (8)

n=1
fory < 0, and
2y, 2) = Te¥ cosh pr (2 + H)
+b, €Y cosh pp (z +H)+ b_e Y cosh pi (z + H)

o0
3 b cos (= -+ H) )
n=1
for y > 0. Here T, I, R, a,, by, by and b_ denote complex
coeflicients of various modes. Note that wavenumbers along
the y axis are denoted by Ny, X, /', pipy and ).
Simply put, solutions of the mathematical model are
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found by finding the coefficients in Equations (8) and (9), 1,

R, a,, T, by and b,,. The different methods of solution corres-
pond to different strategies for finding these coefficients.

Mode matching by Fox and Squire

Fox and Squire (1990) obtained the coefficients for normally
incident waves by minimizing the error function,

0 0 2
EZQ[H|¢1 —¢2|2dz+5[H 00 _ 00

o192 g,
_%5{328¢22 aga¢22}’

oy Oy
o2 02| o oz

where a, 3 and ¢ are the positive Lagrange multipliers.
Notice that on the righthand side of the equation the first
and second terms enforce the continuity of the solution while
the third term penalizes misfit in the natural boundary con-
ditions. The minimum of the error function (which is zero)
occurs for coefficients which give the solution, for any choice
of the Lagrange multipliers. Fox and Squire performed the
minimization by numerically solving the normal equations
written in terms of the unknown coefficients. They often
required many hundreds of modes to achieve the minimum
with a reasonable precision. Fox and Squire (1994) later
extended this procedure to treat obliquely incident waves by
treating the boundary conditions as “hard” constraints so the
error function represented the misfit in continuity only. While
this simplified the numerical procedure, it remains too
unwieldy for general use.

Approximation by Wadhams

The method presented by Wadhams effectively assumed that
the coefficients ay,, by and by, in the expansions (8) and (9),
were zero, thereby omitting the evanescent modes in both
water and ice sheet. As mentioned above, this method gives
reflection and transmission coefficients that are correct in
the simple regimes of extreme period and wavelength, but
are in error for periods of geophysical significance (Fox and
Squire, 1990). In particular, this approximation does not pre-
dict characteristic features of the strain response near the
edge of shore-fast sea ice. An example is the feature observed
by Squire and others (1994) during field measurements made
in McMurdo Sound, Antarctica, which show that the sur-
face strain of the ice is not a simple exponentially decaying
function of distance from the edge of the ice sheet.
Unfortunately this solution continues to be referred to
without recognition of its inaccuracies (Wadhams and
others, 1999), perhaps because of its mathematical simplicity.

Wiener—Hopf technique by Evans and Davies

The Wiener—Hopf technique (Noble, 1958) 1s applicable to a
problem with a straight line boundary between semi-infinite
domains. The method gives an algebraic expression for the
Fourier transform of the solution in each half-plane, obtain-
ing the transform function through splitting of an algebraic
Wiener—Hopf-type equation of a complex variable.

The Wiener—Hopf solution given by Evans and Davies
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used the property that solutions, ¢(y, z), of Equations (8)
and (9) behave like

o(1) as

Teir¥ cosh pr(z+ H) 4+ O(e™) as

Yy— —00,
Yy — 00.

By subtracting the transmitted wave we define the function
¥(y, 2) by
w(y7 Z) = d)(yv Z) - Tei,uiry cosh :U’T(Z + H) .

Hence 9(y,z) has the property that t¥(y,z) = O(1) as
y — —ooand is O(e’ky) as y — o0. It follows that the Fourier
transform of ¢(y, z) with respect to y,

W@@aﬁmeW@,

converges and is a regular function in the strip D =
{—k <Ima < 0}. Hence, 9(y, z) can be obtained by the
inverse transform

1 1T+00 )
by, 2) /” U(a, e ™dy  (10)

27 Jir oo

forany 7, —k < 7 < 0 (cf. Noble, 1958, ch. 2). It is convenient
to actually solve for the corresponding vertical velocity 1,
and note that the same argument can be used to give an ex-
pression for ..

The Fourier transform of Equations (2-4) gives an alge-
braic equation relating the transforms of 1., ¥, (a, 0) and
U’ (e, 0), in the respective half-planes,

V' (o, 2) = /0 V.(y, 2)e’ ™ dy,
0 '
Y.(y, z)e" Y dy.

—00

U (a,2) =

For any o € D, the relation is

fila) [(74 — me)\I/;(a, 0) — C(a)]
= —fo(a) [(74 — mwz)\PL(a,O) + C(a)],

where f1, fo and C are analytic and non-zero in D.

The solution is called a “Wiener—Hopf technique” because
at some stage a function K («) is given that is regular and non-
zero in the strip D of the complex o plane, and this function is
decomposed into the form K(a) = K, («)/K_(a), where
each of K; and K_ is regular and non-zero in D,=
{—k <Ima}, D_= {Ima < 0}, respectively. In this problem
the ratio of the functions fi and fy in Equation (11) is decom-
posed into two functions K and K_ writing f1/fo = K4 /K_.
Then, by simple algebraic manipulation, Equation (11) can be
written as

K. [(v* = mw?)¥, —C]+ D

=-K_[(v'=muw*)¥_ +C]+D. 12)

The lefthand side of Equation (12) is made regular in D,
and the righthand side of the equation is made regularin D_,
by adding an appropriate function D to both sides. Since both
sides are equal and regular in D, the Liouville’s theorem
guarantees (Noble, 1958) that both sides of Equation (12)
equal a polynomial J(«), which in this case can be shown to
be of first degree. Then solving Equation (12) gives ¥/, in
terms of the polynomial J,

1 1 1
— | ——|(J(a) = D).
v — muw? <K+ K_>( (a) )
Hence the inverse transform of ¥’ gives the solution in
terms of the two unknown constants defining J. The desired

U (,0) =
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Fig. 2. Three-dimensional plot of reflection coefficient as a
Junction of incident angle and radian frequency of the incom-
ing wave. The ice sheet is floating on water depth of non-
dimensional depth 2 ( deep ).

solution ¢ can be calculated for arguments y > 0 by using
the integral contour closed in the lower half a-plane and
for y < 0 by using the contour taken in the upper half-plane.
Note that ¢ and ¢, are continuous at y = 0 by construction.

The constants defining J(o) are computed by requiring
that the solution for y > 0 satisfies the boundary conditions
(Equation (5)) aty = 0. Since there are two conditions to be
satisfied for this problem, this is consistent with the function
J having two unknown constants, that is, J is polynomial of
degree one.

In summary, the Wiener—Hopf technique for calculating
the wave—ice interaction problem involves computation of
the inverse of a 2 X 2 matrix, which has coeflicients given
by infinite summations of polynomials of the roots of the dis-
persion equations. We can easily incorporate more physical
conditions of an ice sheet such as damping, thickness and
compressive force as in Balmforth and Craster (1999), aslong
as the ice-sheet equation remains a linear equation of ¢. Add-
itional terms slightly change the dispersion equations, and
thus the positions of the roots, but have little effect on the
basic structure of the solutions.

The deep-water case may be easily solved by noticing that
the coeflicients a,, and b,, in Equations (8) and (9) are smooth
functions of the wavenumbers A, and p,, giving evanescent
modes, which become equally spaced as the water depth H
tends to infinity. Therefore, the summations in Equations (8)
and (9) become integrals of smooth functions over the
imaginary axis. Furthermore, the integrands are simply com-
binations of the dispersion equations for the deep-water
problem. Hence, they can be expressed by the residues and
the poles of the integrands by the usual contour integration
in the complex plane.

Summary

Note that the basic purpose of the two methods, the mode
matching and the Wiener—Hopf technique, introduced in this
section are the same in that they find the solution by enforcing
continuity of the solution at the transition. The mode-match-
ing method by Fox and Squire (1990) uses direct numerical
computation to obtain coefficients that give a continuous
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Fig. 3. Equivalent curves to Figure 2 for non-dimensional
water depth 0.21 ( shallow ).

solution, while the Wiener—Hopf technique by Evans and
Davies implements the same requirement by finding a Fourier
transform function that is analytic at the transition in the com-
plex domain, D, by solving the Wiener—Hopf Equation (11).

COMPUTATIONAL RESULTS

This section shows the results of computation of the reflec-
tion coefficient, R = |R|/|I|, and the transmission coeffi-
cient, 7= |T|/|I|, using the modal expansion in Evans and
Davies (1968). The following results are given in non-dimen-
sional form (or equivalently for ice with unit characteristic
length) and for normalized water depths, 0.27 and 2.
These depths correspond to shallow water and deep water,
respectively. The results may be scaled for any ice thickness
using the transformations in Equations (1).

Figures 2 and 3 show the reflection coefficient for various
incident angles and frequencies in the cases of deep water
(H = 27) and shallow water (H = 0.27), respectively. Note
that for each incident-wave frequency, a critical angle exists,
above which total reflection occurs. The reflection and trans-
mission coefficients are computed using the formulas given in
Fox and Squire (1990). We found the formulas in Evans and
Davies (1968) were not suitable for numerical computation
of the amplitude coefficients R, T and I, because the expo-
nential functions caused numerical overflow. The dispersion
equations (6) and (7) replace the exponential with the poly-
nomials of the roots of the dispersion equations. Hence, all
coefficients of the solution are a smooth function of the roots,
particularly the summation over the evanescent modes,
which enables us to compute the reflection coefficient and
produce Figures 2 and 3 using the same formulas for any
water depth.

CONCLUSIONS

Completion of the Wiener—Hopf technique developed by
Evans and Davies (1968) gives analytic expressions for the
reflection and transmission of obliquely incident ocean waves.
These expressions can be calculated simply and efficiently to
give exact solutions. Although the mathematical procedure
behind the Wiener—Hopf calculation is not as straightfor-
ward as it is for existing numerical methods, the fundamental
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philosophy of the technique is the same. The mode-matching
method by Fox and Squire (1990, 1994) uses the fact that the
velocity potential and its first derivatives are continuous; on
the other hand, the Wiener—Hopf technique by Evans and
Davies (1968) uses the continuity of the solution in the Fourier
space of complex variables. That both mode matching and
the Wiener—Hopf technique express the solution by a sum
over all natural modes with unknown coefficients has led to
recent realization that the solutions given by Evans and
Davies (1968) can be numerically computed. The main
advance is that we now know how to easily find the roots of
the dispersion equations. We conclude that the computations
actually required following the Wiener—Hopf analysis pro-
vide the simplest exact solution to the problem of ocean waves
impinging on the edge of shore-fast sea ice.
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