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Left Invariant Einstein–Randers Metrics on
Compact Lie Groups

Hui Wang and Shaoqiang Deng

Abstract. In this paper we study left invariant Einstein–Randers metrics on compact Lie groups. First,

we give a method to construct left invariant non-Riemannian Einstein–Randers metrics on a compact

Lie group, using the Zermelo navigation data. Then we prove that this gives a complete classification of

left invariant Einstein–Randers metrics on compact simple Lie groups with the underlying Riemannian

metric naturally reductive. Further, we completely determine the identity component of the group of

isometries for this type of metrics on simple groups. Finally, we study some geometric properties of

such metrics. In particular, we give the formulae of geodesics and flag curvature of such metrics.

1 Introduction

The purpose of this paper is to study left invariant Einstein–Randers metrics on com-

pact Lie groups. Homogeneous Einstein Riemannian manifolds have been studied

extensively by many researchers, see [1] for an excellent exposition. However, only

very little work has been done on homogeneous Einstein–Finsler metrics. This is

mainly due to the fact that Einsetin–Finsler metrics are much more complicated than

Einstein Riemannian metrics. For example, up to now, we do not have any useful

existence (or non-existence) results on invariant Einstein–Finsler metrics on homo-

geneous manifolds. In comparison, Einstein–Randers metrics are relatively easier to

handle than general Einstein–Finsler metrics. In fact, we have a very convenient cri-

terion for a Randers metric to be an Einstein metric, see Lemma 1.1 and Proposition

1.2 below.

We first recall the definition of Einstein–Finsler metrics; for details we refer to

[13]. Let (M, F) be a connected Finsler space, x ∈ M, y ∈ Tx(M)\{0}. The Ricci

scalar Ric(x, y) is defined to be the sum of those n − 1 flag curvatures K(x, y, ev),

where {ev : 1 ≤ v ≤ n − 1} is any collection of n − 1 orthonormal transverse edges

perpendicular to the flagpole, i.e.,

Ric(x, y) :=

n−1∑

v=1

Rvv.

Its easily seen that this sum is independent of the choice of the specific n − 1 flags

with transverse edges orthogonal to y. Note that the Ricci scalar depends on both x
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and y. A Finsler manifold whose Ricci scalar depends only on x is called an Einstein–

Finsler manifold, i.e., Ric(x, y) = (n − 1)K(x) for some function K(x) on M. When

dim M ≥ 3 and the metric is of the Randers type on M (see [13]), the function K(x)

is necessarily a constant.

A Randers metric is built from a Riemannian metric and a 1-form: F = α + β,

where α is a Riemannian metric and β is a 1-form whose length with respect to α is

everywhere less than 1. There is another presentation of such metrics by the so-called

navigation data (see [3]):

(1.1) F(x, y) =

√
h(y,W )2 + λh(y, y)

λ
−

h(y,W )

λ
,

where h is a Riemannian metric, W is a vector field on M with h(W,W ) < 1 and

λ = 1 − h(W,W ). The pair (h,W ) is called the navigation data of the Randers

metric F. This version of Randers metric is convenient when handling Einstein–

Randers metrics and constant flag curvature metrics. In fact, we have the following

lemma (see [3, 13]).

Lemma 1.1 Suppose (M, F) is a Randers space with the navigation data (h,W ). Then

(M, F) is Einstein with Ricci scalar Ric(x) = (n − 1)K(x) if and only if there exists a

constant σ such that

• h is Einstein with Ricci scalar (n − 1)(K(x) + 1
16
σ2),

• W is an infinitesimal homothety of h, namely,

LW h = −σh.

Furthermore, F is Riemannian if and only if W = 0, and σ must be zero whenever h is

not flat.

Based on this result, Deng and Hou obtained a characterization of homogeneous

Einstein–Randers metrics (see [6]):

Proposition 1.2 Let G be a connected Lie group and H be a closed subgroup of G such

that G/H is a reductive homogeneous space with a decomposition g = h ⊕ m, where

g = Lie G and h = Lie H. Suppose h is a G-invariant Riemannian metric on G/H and

let W be an invariant vector field on G/H generated by an H-invariant vector X in m.

Then the Randers metric F with navigation data (h,W ) is Einstein with Ricci constant

K if and only if h is Einstein with Ricci constant K and X satisfies

h([X,Z1]m,Z2) + h(Z1, [X,Z2]m) = 0 for all Z1,Z2 ∈ m.

In this case, W is necessarily a Killing vector field.

From the above results, it is easily seen that the Randers metric F described by

(1.1) on a Lie group G is a left invariant Einstein metric if and only if h is a left

invariant Einstein–Riemannian metric on M and W is a left invariant Killing vector

field. Left invariant Einstein Riemannian metrics on Lie groups have been studied
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extensively by D’Atri and Ziller in [7]. They showed that on any compact connected

simple Lie group G there exist two left invariant Einstein–Riemannian metrics, one of

them bi-invariant and the other not. Furthermore, both of the metrics are naturally

reductive. Much work also has been done on other types of Lie groups. For example,

it was shown that on a noncommutative nilpotent Lie group there are no left invariant

Einstein–Riemannian metrics [11], and on some solvable Lie groups there exist many

Einstein metrics, e.g., the Bergman metrics on bounded homogeneous domains, all

of them symmetric naturally reductive [8]. However, on noncompact semisimple

groups there are no known left invariant Einstein–Riemannian metrics.

Einstein–Finsler metrics are very important in Finsler geometry. On several oc-

casions, the late Professor S. S. Chern openly asked whether every smooth manifold

admits an Einstein–Finsler metric. However, little about this question is known so

far. Moreover, Einstein–Finsler manifolds have some remarkable properties, such as

the constancy of S-curvature (see [2]).

In this paper, we will explicitly describe left invariant Einstein–Randers metrics

on compact Lie groups. We first present a method to construct a special class of

left invariant Einstein–Randers metrics on a compact Lie group. In the case of com-

pact simple Lie groups, we show that these are all the left invariant Einstein–Randers

metrics with the navigation data (h,W ) such that h is naturally reductive. In this

case, we will also determine the identity component of the group of isometries of the

left invariant Einstein-Riemannian metrics and present an isometric classification of

such metrics. Finally, we obtain the formulae of geodesics and flag curvature of such

metrics.

The arrangement of this paper is as follows. In Section 2, we explicitly describe left

invariant Einstein–Randers metrics on a compact Lie group. In Section 3, we present

the classification of such metrics on simple compact Lie groups under isometries.

Finally, we study some properties about geodesics and curvature in Section 4.

2 Left Invariant Einstein–Randers Metrics

In this section we will give a description of a special class of left invariant Einstein–

Randers metrics on a compact connected Lie group. We first recall briefly some re-

sults about left invariant Einstein-Riemannian metrics on compact Lie groups (for

details the reader is referred to [7]). If G is abelian, then any left invariant met-

ric is Einstein and Ricci-flat. Therefore we assume that G is non-abelian. Suppose

g = Lie G, and K is a connected subgroup of G with k = Lie K. Then g and k are

compact Lie algebras. k splits into the direct sum of its center and simple ideals:

k = k0 ⊕ k1 ⊕ · · · ⊕ kr, where k0 = z(k) is the center of k. Suppose g is a bi-invariant

Riemannian metric on the compact Lie group G (such a metric does exist, see [11]),

and a = k⊥ with respect to g. Then the metric

h( · , · ) = αg|a + g(A · , · )|k0
+ α1g|k1

+ · · · + αrg|k

is a left invariant naturally reductive metric, where α, α1, . . . , αr ∈ R
+, αi 6= α,

and A is a symmetric endomorphism on k0 with respect to the metric g. Note that

h can be realized as an invariant Riemannian metric on G = G × K/H, where H =
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∆(K) = {(k, k) | k ∈ K}. Moreover, there is an Ad(G×K)-invariant symmetric non-

degenerate bilinear form Q on g ⊕ k whose restriction to p = h⊥ is the given metric

h via the isomorphism p ∼= To(G×K)/H = TeG = g, where h = Lie H = Lie∆(K).

The endomorphism A in the above metric can be diagonalized: AZi = λiZi , λi >
0, i = 1, . . . , s. Define kr+i = span{Zi}, αr+i = λi . Then the metric above can be

written as

(2.1) h(·, ·) = αg|a + α1g|k1
+ · · · + αr+sg|kr+s

and z(k) = k0 = kr+1 ⊕ · · · ⊕ kr+s. Suppose also that none of the αr+1, . . . , αr+s is

equal to α. It is known that the metric (2.1) can be Einstein only if z(g) = 0 (see

[7]), where z(g) is the center of g. Without loss of generality, we can assume G is

semisimple, since g 6= z(g). For simplicity, we let g = −B, where B is the Killing

form of g. Define symmetric bilinear forms Ai on a as follows:

Ai(X,Y ) = Tra(πi ad X)(πi ad Y ),

where πi denotes the projections of g onto ki , i = 1, . . . , r. Let Bi denote the Killing

form of ki . Since ki , i = 1, . . . r, is simple, we have Bi = ciB for some ci > 0.

Lemma 2.1 ([7]) Let G be a compact semisimple non-abelian Lie group and let h

be a naturally reductive left invariant Riemannian metric defined as in (2.1). Then a

necessary condition for h to be Einstein with Einstein constant ρ is that h|k0
= −α0B|k0

for some α0 > 0. In addition, if the metric is normalized such that α = 1, then h is

Einstein if and only if h satisfies the following conditions:

α0 = αi = 4ρ, i = r + 1, . . . , r + s,

(1 − 4α2
i )ci + α2

i = 4ραi , i = 1, . . . , r,

r∑

i=0

(αi − 1)Ai |a =
1

2
(1 − 4ρ)B|a.

If h is an Einstein metric, then the Einstein constant ρ is greater than 0. Moreover, if G is

simple, then any left invariant naturally reductive Einstein metric is of the type described

above.

Remark 1 For almost all the compact Lie groups, the metric described above exists.

Indeed, on every compact simple Lie group except SO(3) or SU (2), there exists at

least one such metric that is not bi-invariant (see [7]).

In order to describe Einstein–Randers metrics on the Lie group G, we need to

study the Killing vector fields on it. Let V = {X ∈ a|[X, k] = 0}.

Lemma 2.2 Suppose G is a compact connected Lie group and h is a left invariant

Riemannian metric as above, g = Lie G. Then the space of left invariant Killing vector

fields on (G, h) is k ′ = V ⊕ k.
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Proof For g ∈ G, denote R(g) the right translation: x 7→ xg of G. Then R(G) is

a Lie group, whose Lie algebra is identified with the Lie algebra of all left invariant

vector fields on G. Thus W ∈ g is a Killing vector field if and only if R(exp(tW )) are

isometries of (G, h) for all t ∈ R. Or equivalently, ad W on g is skew symmetric with

respect to h, since h is left invariant.

Recall that h = Lie∆(K) is isomorphic to the Lie algebra k = Lie K via the map-

ping

ϕ : h −→ k,

(X,X) 7−→ X, X ∈ k,

and satisfies [V, ϕ(h)] = 0. Since the symmetric non-degenerate bilinear form Q

above on g ⊕ k is Ad(G × K)-invariant, the right translation by exp(tW )(W ∈ V ) on

G×K is an isometry with respect to Q. Since exp tW commutes with ∆(K), the above

right translation induces a map on G×K/∆(K) . But h = Q|p, thus the induced map

is an isometry on G×K/∆(K) with respect to h. By the isomorphism G×K/∆(K) ∼=
G, the induced map is carried into the right translation on G by exp(tW ), which

is also an isometry with respect to h. This implies that all the elements of V are

Killing vector fields with respect to h. Since the right translation by elements of K

are isometries, all the elements of k are left invariant Killing vector fields on (G, h).

Therefore, V ⊕ k ⊆ k ′.

On the other hand, let W be a Killing vector field. Then ad W is skew symmetric

with respect to h. Now, W can be written as W = Wa + Wk, (Wa ∈ a,Wk ∈ k). Since

each element of k is a Killing vector filed, we can assume W = Wa ∈ a. Since W is a

left invariant Killing vector field, the right translation by R(exp(tW )) on (G, h) is an

isometry. Thus ad W is skew symmetric on g with respect to h. Now we show that

W ∈ V , or equivalently, [W, k] = 0. Suppose [W, ki] 6= 0 for some i. Then there

exists a W ′ ∈ a, such that h([W, ki],W
′) 6= 0. But ad W is skew symmetric, hence

h([W, ki],W
′) = −h([W,W ′], ki). Then by (2.1),

αg([W, ki],W
′) = −αg([W,W ′], ki),

since ad(g) is skew symmetric with respect to the bi-invariant metric g (see [11]).

But the summands a, k0, k1, . . . , kr are mutually orthogonal with respect to the bi-

invariant metric g; again by (2.1) we have

αg([W, ki],W
′) = −αig([W,W ′], ki),

or equivalently,

αg([W,W ′], ki) = αig([W,W ′], ki).

This implies α = αi . But this contradicts the assumption that h is a metric with

α 6= αi . Therefore, [W, ki] = 0 for all i. Since k = k0 ⊕ k1 ⊕ · · · ⊕ kr, [W, k] = 0, we

have W ∈ V . This implies that k ′ ⊆ V ⊕ k. Therefore, we have k ′ = V ⊕ k.

Now we consider left invariant Einstein–Randers metrics on the compact Lie

group G.
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Theorem 2.3 Let G be a compact semisimple Lie group. If there exists a left invariant

Einstein-Riemanian metric h given by (2.1) satisfying the conditions in Lemma 2.1,

W ∈ k ′, h(W,W ) < 1, then

(2.2) F(x, y) =

√
h(y,W )2 + λh(y, y)

λ
−

h(y,W )

λ
,

where λ = 1 − h(W,W ) > 0 is a left invariant Einstein–Randers metric on G. Fur-

thermore, all the left invariant Einstein–Randers metrics on the Lie group G with the

underlying Riemannian-Einstein metric h in the navigation data can be obtained in this

way.

Proof By Proposition 1.2(see also the remarks thereafter) and Lemma 1.1, the met-

rics given by (2.2) are all Einstein–Randers metrics, with the constant σ = 0. Now

suppose (2.2) is an Einstein–Randers metric on G, with navigation data (h,W ). Since

(G, h) can be viewed as a homogeneous Riemannian manifold G = G × K/∆K,

where K is a connected subgroup of G as above, by Proposition 1.2, the left invariant

vector field W must be a Killing field with respect to h. Or equivalently, W ∈ k ′ by

Lemma 2.2. Therefore, all the left invariant Einstein–Randers metrics F(x, y) with

the underlying Riemannian-Einstein metric h are given by (2.2).

Proposition 2.4 The metrics described in Theorem 2.3 are not Berwald unless W = 0.

Proof Recall that if the non-Riemannian Einstein–Randers metric on a compact

manifold without boundary is Berwald, then Ric = 0 (see [2]). By Lemma 1.1, the

metric h must be Ricci-flat. But the Einstein metric h has Einstein constant ρ > 0 by

Lemma 2.1. The contradiction implies that (G, F) cannot be a Berwald manifold if

W 6= 0.

Remark 2 If the compact group G is simple, then all naturally reductive metrics

are of the form (2.1) (see [7]). Up to now, all the known left invariant Einstein-

Riemannian metrics on compact Lie groups are naturally reductive.

Remark 3 If the connected group G is abelian, then every left invariant Finsler

metric on G is also bi-invariant. Now suppose h is a left invariant Riemannian metric

on G, then h is Einstein with Ric = 0. Since g is abelian, all the left invariant vector

fields are Killing fields. Then by Lemma 1.1,

F(x, y) =

√
h(y,W )2 + λh(y, y)

λ
−

h(y,W )

λ

is also a left invariant Einstein–Randers metric on G with h(W,W ) < 1. In this case,

the metric must be bi-invariant.
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3 The Isometries

In Section 2, we described some left invariant Einstein–Randers metrics on the com-

pact Lie group G. Two Finsler spaces (M1, F1) and (M2, F2) are said to be isometric

if there exists a diffeomorphism ϕ : M1 → M2 such that ϕ∗F2 = F1. There is a

characterization of isometry between Randers spaces (see [3]).

Lemma 3.1 Suppose (M1, F1) and (M2, F2) are two Randers spaces with navigation

datas (h1,W1) and (h2,W2), respectively. Let ϕ be a diffeomorphism from M1 onto M2.

Then ϕ is an isometry if and only if ϕ satisfies ϕ∗h2 = h1 and ϕ∗W1 = W2.

Now we consider two metrics F1(x, y) and F2(x, y) described in Theorem 2.3 with

the same underlying Einstein-Riemannian metric h on a connected compact simple

Lie group G. Suppose the navigation data of Fi(x, y) is (h,Wi)(i = 1, 2), respectively.

It is known that if the group G is simple, then the identity component of the group

of isometries of h, I0(G, h), is contained in L(G)R(G), where L(G) and R(G) are the

groups of left translations and right translations, respectively (see [12]). Moreover,

I0(G, h) is of the form G×K ′, where K ′ is the connected group generated by exp(k ′).

Here G acts on G by left translations and K ′ acts on G by right translations (see [7]).

By Lemma 3.1, F1(x, y) and F2(x, y) are isometric if and only if there is a ϕ ∈
G × K ′ such that ϕ∗W1 = W2. If ϕ ∈ G, then ϕ∗W1 = W2 if and only if W1 = W2.

Thus we can suppose ϕ ∈ K ′, or equivalently, ϕ = R(g−1)(g ∈ K ′). Then R(g−1)

is an isometry if and only if R(g−1)∗W1 = W2. Since R(g−1)∗ commutes with L(g)∗,

R(g−1)∗W1 is also a left invariant vector field. This implies that R(g−1) is an isometry

if and only if L(g)∗R(g−1)∗W1 = W2, since L(g)∗W1 = W1. In other words, R(g−1)

is an isometry if and only if Ad(g)W1 = W2. Therefore, we have proved the following

theorem.

Theorem 3.2 Suppose G is a compact simple Lie group and h is a left invariant

Einstein-Riemannian metric on G as in Lemma 2.1. Let F1(x, y) and F2(x, y) be two

left invariant Einstein–Randers metrics on G described as in Theorem 2.3 with the nav-

igation data (h,W1) and (h,W2), respectively. Then F1(x, y) and F2(x, y) are isometric

if and only if W1 and W2 lie in the same orbit of Ad(K ′).

Next we study the group of isometries of a left invariant Einstein–Randers met-

ric on a simple Lie group. Recall that the group of isometries I(M, F) of a Finsler

space (M, F) is a Lie group (see [5]). By Lemma 3.1 it is obvious that I(M, F) is a

closed subgroup of I(M, h), where F is a Randers metric whose navigation data is

(h,W ). Suppose G is a compact simple Lie group and h is a left invariant Einstein-

Riemannian metric as in Lemma 2.1. Let F(x, y) be a left invariant Einstein–Randers

metric with navigation data (h,W ), where W ∈ k ′ is a left invariant vector field

and k ′ = V ⊕ k as Lemma 2.2. Then I(G, F) is a closed subgroup of I(G, h). This

implies that I0(G, F) is a closed subgroup of I0(G, h). Since I0(G, h) is of the form

G × K ′, where K ′ is the connected group generated by exp(k ′), and G acts on G

by left translation, K ′ acts on G by right translation, we can identify I0(G, F) with a

closed subgroup of G × K ′.
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Corollary 3.3 Suppose G is a connected compact simple Lie group. Let F(x, y) be

a left invariant Einstein–Randers metric on G with the navigation data (h,W ) as in

Theorem 2.3. Then I0(G, F) is of the form G × Z0(exp W ), where Z0(exp W ) is the

identity component of the centralizer of exp W in K ′, G acts on G by left translation and

Z0(exp W ) by right translation.

Proof By Lemma 3.1 and the facts that left translations by elements of G are isome-

tries and that W is a left invariant vector field, namely L(g)∗W = W , we deduce that

G is contained in I0(G, F). Now suppose ϕ ∈ K ′ is an isometry of (G, F) by right

translation. Let ϕ = R(g−1)(g ∈ K ′). Then by Theorem 3.2, Ad(g)W = W . This

implies that g exp W g−1
= exp W . Therefore, g ∈ Z(exp W ). Thus I0(G, F) is of the

form G × Z0(exp W ), where G acts on G by left translation and Z0(exp W ) by right

translation (see [7]).

4 Some Geometric Properties

We will now study some geometric properties of the metrics in Theorem 2.3. For

the Einstein–Riemannian metric described in Lemma 2.1, the geodesic through the

identity e with initial vector X ∈ g is just a little different from the one parameter

group exp(tX). More precisely, the geodesic γ(t) through e is given by

γ(t) = exp t
(

Xa +

r+s∑

i=1

αiXi

)
exp t

(∑
i = 1r+s(1 − αi)Xi

)
,

where X = Xa +
∑r+s

i=1 Xi , Xa ∈ a,Xi ∈ ki and the constant αi is as in Lemma 2.1

(see [7]). Now we suppose F(x, y) is a Randers metric with the navigation data (h,W )

on the compact Lie group G. In [14], C. Robles found the relationship between the

geodesics of F(x, y) and the geodesics of h. She proved that any geodesic of F must

be of the form γ ′(t) = ϕt (γ(t)), where γ(t) is a geodesic of h and ϕt is the flow

generated by W . But the flow generated by the left-invariant vector field W is just the

right translation R(exp tW ). Hence we have the following proposition.

Proposition 4.1 Suppose F(x, y) is an Einstein–Randers metric with navigation data

(h,W ) on a compact Lie group G as in Theorem 2.3, Denote e the identity of the group

G. Then the geodesics through e are given by

γ(t) = exp t
(

Xa +

r+s∑

i=1

αiXi

)
exp t

( r+s∑

i=1

(1 − αi)Xi

)
exp tW,

where X = Xa +
∑r+s

i=1 Xi , Xa ∈ a,Xi ∈ ki .

Corollary 4.2 Suppose F(x, y) is an Einstein–Randers metric with navigation data

(h,W ) on a compact Lie group G as in Theorem 2.3, X = Xa +
∑r+s

i=1 Xi ∈ g. If

[Xa,
∑r+s

i=1(1−αi)Xi] = 0 and [X,W ] = 0, then the one parameter group exp t(X+W )

is a geodesic of (G, F).
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Proof Since [Xa,
∑r+s

i=1 Xi] = 0, we have

[
Xa +

r+s∑
i=1

αiXi ,
r+s∑
i=1

(1 − αi)Xi

]
=

[
Xa,

r+s∑
i=1

(1 − αi)Xi

]
+
[ r+s∑

i=1

αiXi ,
r+s∑
i=1

(1 − αi)Xi

]

=

[
Xa,

r+s∑
i=1

(1 − αi)Xi

]
+
[ r∑

i=1

αiXi ,
r∑

i=1

(1 − αi)Xi

]

=

[
Xa,

r+s∑
i=1

(1 − αi)Xi

]

= 0.

Then the geodesic in Proposition 4.1 is given by

γ(t) = exp t
(

Xa +
r+s∑
i=1

αiXi

)
exp t

( r+s∑
i=1

(1 − αi)Xi

)
exp tW

= exp t
(

Xa +
r+s∑
i=1

αiXi +
r+s∑
i=1

(1 − αi)Xi

)
exp tW

= exp tX exp tW

= exp t(X + W ).

This implies that the one parameter group exp t(X + W ) is a geodesic.

We recall that a homogeneous Finsler manifold (G/H, F) is called naturally re-

ductive if there exists an Ad(H)-invariant decomposition g = h + m such that

gy([x, u]m, v) + gy(u, [x, v]m) + 2C y([x, y]m, u, v) = 0,

where y 6= 0, x, u, v ∈ m, and gy is a bilinear symmetric form

gy : TpM × TpM −→ R (p ∈ M, y ∈ TpM);

gy(u, v) =
1

2

∂2

∂s∂t
[F2(p, y + su + tv)] |s=t=0 (u, v ∈ TpM);

and C y is the Cartan tensor

C y(u, v,w) =
1

4

∂3

∂r∂s∂t
[F2(y + ru + sv + tw)] |r=s=t=0 .

Just as in the Riemannian case, D. Latifi found in [10] that if (G/H, F) is naturally

reductive, then (G/H, F) is a g.o. manifold. Using the definition of naturally reduc-

tive manifold, we find that the Einstein–Randers manifold (G, F) in Theorem 2.1 is

not naturally reductive.

Proposition 4.3 The Einstein–Randers manifolds (G, F) in Theorem 2.1 are not nat-

urally reductive, unless W = 0.
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Proof Suppose (G, F) is naturally reductive and W 6= 0. Then

gY ([X,U ]p,V ) + gY (U , [X,V ]p) + 2CY ([X,Y ]p,U ,V ) = 0,

where Y 6= 0,X,U ,V ∈ p. The above equality yields gX([X,U ]p,X) = 0 when

X = Y = V ∈ p, for all U ∈ p. Thus every X ∈ p is a geodesic vector of (G, F).

This implies that every geodesic of (G, F) through e is of the form Exp tX. But ev-

ery geodesic of (G, h) through e is of the form Exp tX too, since (G, h) is naturally

reductive, where Exp denotes the exponential map of G × K. Therefore, (G, F) is

affinely equivalent to (G, h). In this case, (G, F) must be Berwald manifold, which is

a contradiction to Proposition 2.4. Thus, (G, F) can not be naturally reductive when

W 6= 0.

Next, we consider the curvature of the above Einstein–Randers metrics. Since the

navigation data of F(x, y) is (h,W ), we can expect that the curvature of F(x, y) has

some relation to the curvature of the Riemannian metric h. In [9], by studying the

navigation problem on a Finsler manifold with respect to homothetic vector fields,

L. Huang and X. Mo showed the following lemma; for details we refer to [9].

Lemma 4.4 Let (M, F) be a Finsler manifold and let V be a homothetic vector field

with dilation σ, and F(x,V ) < 1. Let F̃ be the Finsler metric produced by navigation

problem. Then the flag curvature of F̃ (resp. F), denoted by K̃(y, u) (resp. K(y, u)),

satisfies

(4.1) K̃(y, u) = K( ỹ, u) − σ2,

where ỹ = y − F(x, y)V .

By this Lemma, we can obtain some properties of the curvature K̃ of (G, F).

Theorem 4.5 Suppose F(x, y) is an Einstein–Randers metric with navigation data

(h,W ) on a compact Lie group G as in Theorem 2.3. If u and ỹ = y − F(x, y)W are

orthonormal vectors with respect to the metric h, then

(4.2) K̃(y, u) =
1

4
‖[ ỹ, uk]‖

2
h +

1

4

r+s∑

i=1

α2
i ‖[ ỹi , ua]‖2

h.

If ỹ =
∑

ỹi ∈ k with ỹi ∈ ki and u = ua + uk ∈ g, where ‖ · ‖h denotes the norm of the

metric h, then

K̃(y, u) =
1

4

r+s∑

i=1

α2
i ‖[ui , ỹ]‖2

h

for ỹ ∈ a, u =
∑r+s

i=1 ui ∈ k, and

(4.3) K̃(y, u) =
1

4
‖[ ỹ, u]a‖

2
h −

r+s∑

i=1

( 3

4
−

1

αi

)
‖[ ỹ, u]ki

‖2
h

for ỹ, u ∈ a. Thus , if ỹ ∈ k, then K̃(y, u) ≥ 0 for any u ∈ g, with the equality holding

if and only if [ ỹ, u] = 0. If αi ≤ 1, then the flag curvature is everywhere non-negative.
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Proof Since W is a Killing vector field, the constant σ in Lemma 1.1 must be zero.

By (4.1), we have K̃(y, u) = K( ỹ, u). But the sectional curvature K is (see [7])

(4.4) K(X,Y ) =
1

4
‖[X,Yk]‖

2
h +

1

4

r+s∑

i=1

α2
i ‖[Xi ,Ya]‖2

h

for X =
∑

Xi ∈ k with Xi ∈ ki and Y = Ya + Yk ∈ g, and

(4.5) K(X,Y ) =
1

4
‖[X,Y ]a‖

2
h −

r+s∑

i=1

( 3

4
−

1

αi

)
‖[X,Y ]ki

‖2
h

for X,Y ∈ a. Then (4.2) and (4.3) immediately follows from (4.4) and (4.5), respec-

tively. For ỹ ∈ a, u =
∑r+s

i=1 ui ∈ k, we have K̃(y, u) = K( ỹ, u) = K(u, ỹ). Hence 4.5

follows immediately from (4.4).

By (4.2), if ỹ ∈ k, then K̃( ỹ, u) ≥ 0 for any u ∈ g. Moreover, K̃(y, u) = 0 if and

only if [ ỹ, uk] = 0 and [ ỹi , ua] = 0, or equivalently, [ ỹ, u] = 0 since ỹ =
∑

ỹi ∈ k.

When αi ≤ 1, the metric h is normal homogeneous (see [7]), thus the sectional

curvature of (G, h) is nonnegative. Therefore, by (4.1), K̃ ≥ 0.

It was proved by Robles that if a Randers space (M, F) is Einstein and dim M ≥ 3,

then (M, F) has constant Ricci curvature (see [13]). But we do not know whether the

metrics in Theorem 2.3 have constant flag curvature. In fact, by a theorem of D. Bao

and C. Robles (see [2]), the Einstein–Randers manifold (M, F) with navigation data

(h,W ) has constant curvature if and only if (M, h) has constant curvature, (see [4]

for some examples of Randers metrics of this type on the Lie group S3). Recall that if

the rotation of the transverse edge V about the flag y leaves the flag curvature K(y,V )

unchanged, then we say that our Finsler manifold has scalar curvature.

Proposition 4.6 Let (G, F) be a Einstein–Randers manifold with navigation data

(h,W ), where G is a compact Lie group with dim G ≥ 3. Then (G, F) has constant

flag curvature if and only if (G, F) is of scalar curvature.

Proof Obviously, we only have to prove the “if” part. Suppose (G, F) is of scalar

curvature. Then by (4.1), (G, h) is of scalar curvature. Since h is Riemannian, and

dim G ≥ 3, the Schur’s lemma implies that h has constant sectional curvature. There-

fore, (G, F) has constant flag curvature.
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