
TPLP 24 (5): 973–1010, 2024. c© The Author(s), 2024. Published by Cambridge University

Press. This is an Open Access article, distributed under the terms of the Creative Commons

Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted

re-use, distribution and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068424000401 First published online 13 November 2024

973

Generating Global and Local Explanations for
Tree-Ensemble Learning Methods by Answer Set

Programming

AKIHIRO TAKEMURA
The Graduate University for Advanced Studies, SOKENDAI, Chiyoda-ku, Tokyo, Japan

National Institute of Informatics, Chiyoda-ku, Tokyo, Japan

(e-mail: atakemura@nii.ac.jp)

KATSUMI INOUE
National Institute of Informatics, Chiyoda-ku, Tokyo, Japan

The Graduate University for Advanced Studies, SOKENDAI, Chiyoda-ku, Tokyo, Japan

(e-mail: inoue@nii.ac.jp)

submitted 9 April 2022; revised 25 May 2024; accepted 23 September 2024

Abstract

We propose a method for generating rule sets as global and local explanations for tree-ensemble
learning methods using answer set programming (ASP). To this end, we adopt a decompositional
approach where the split structures of the base decision trees are exploited in the construction
of rules, which in turn are assessed using pattern mining methods encoded in ASP to extract
explanatory rules. For global explanations, candidate rules are chosen from the entire trained
tree-ensemble models, whereas for local explanations, candidate rules are selected by only con-
sidering rules that are relevant to the particular predicted instance. We show how user-defined
constraints and preferences can be represented declaratively in ASP to allow for transparent
and flexible rule set generation, and how rules can be used as explanations to help the user
better understand the models. Experimental evaluation with real-world datasets and popu-
lar tree-ensemble algorithms demonstrates that our approach is applicable to a wide range of
classification tasks.

KEYWORDS: answer set programming, machine learning, explainability, decision trees, rule
sets, pattern mining

1 Introduction

Interpretability in machine learning is the ability to explain or to present in under-

standable terms to a human (Doshi-Velez and Kim 2017; Miller 2019; Molnar 2020).

Interpretability is particularly important when, for example, the goal of the user is

to gain knowledge from some form of explanations about the data or process through

machine learning models, or when making high-stakes decisions based on the outputs

from the machine learning models where the user has to be able to trust the models.

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401
https://orcid.org/0000-0003-4130-8311
mailto:atakemura@nii.ac.jp
mailto:inoue@nii.ac.jp
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068424000401&domain=pdf
https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue974

Explainability is another term that is often used interchangeably with interpretability,

but some emphasize the ability to produce post hoc explanations for the black-box mod-

els (Rudin 2019). For convenience, we shall use the term explanation when referring to

post hoc explanations in this paper.

In this work,1 we address the problem of explaining trained tree-ensemble models by

extracting meaningful rules from them. This problem is of practical relevance in busi-

ness and scientific domains, where the understanding of the behavior of high-performing

machine learning models and extraction of knowledge in human-readable form can aid

users in the decision-making process. We use answer set programming (ASP) (Gelfond

and Lifschitz 1988; Lifschitz 2008) to generate rule sets from tree-ensembles. ASP is a

declarative programming paradigm for solving difficult search problems. An advantage of

using ASP is its expressiveness and extensibility, especially when representing constraints.

To our knowledge, ASP has never been used in the context of rule set generation from

tree-ensembles, although it has been used in pattern mining (Järvisalo 2011; Guyet et al .

2014; Gebser et al . 2016; Paramonov et al . 2019).

Generating explanations for machine learning models is a challenging task, since it is

often necessary to account for multiple competing objectives. For instance, if accuracy

is the most important metric, then it is in direct conflict with explainability because

accuracy favors specialization while explainability favors generalization. Any explanation

method should also strive to imitate the behavior of learned models as to minimize

misrepresentation of models, which in turn may result in misinterpretation by the user.

While there are many explanation methods available (some are covered in Section 6),

we propose to use ASP as a medium to represent the user requirements declaratively

and to quickly search feasible solutions for faster prototyping. By implementing a rule

selection method as a post-processing step to model training, we aim to offer an off-the-

shelf objective explanation tool which can be applied to existing processes with minimum

modification, as an alternative to subjective manual rule selection.

To demonstrate the adaptability of our approach, we present implementations for

both global and local explanations of learned tree-ensemble models using our method. In

general, global explanation refers to descriptions of how the overall system works (also

referred to as model explanation), and local explanation refers to specific descriptions

of why a certain decision was made (outcome explanation) (Guidotti et al . 2018). The

global explanations are more useful in situations where the explanations behind the

opaque model is needed, for example, when designing systems for faster detection of

certain events such as credit issues or illnesses. In contrast, the local explanations are

suitable, for example, when explaining the outcome of such systems to its users, since

they are more likely to be interested in particular decisions that led to the outcome.

We consider the two-step procedure for rule set generation from trained tree-ensemble

models (Figure 1): (1) extracting rules from tree-ensembles, and (2) computing sets of

rules according to selection criteria and preferences encoded declaratively in ASP. For

1 Some parts of this paper were presented as a Technical Communications paper (Takemura and Inoue
2021) at the 37th International Conference on Logic Programming (ICLP 2021). The present paper
newly describes a method to produce explanations for each predicted instance (local explanation), in
addition to the updated ASP encoding for the global explanation method. The experimental section
reports new evaluation results of the updated methods on various datasets, including several additional
datasets.

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 975

Fig 1. Overview of our framework.

the first step, we employ the efficiency and prediction capability of modern tree-ensemble

algorithms in finding useful feature partitions for prediction from data. For the second

step, we exploit the expressiveness of ASP in encoding constraints and preference to select

useful rules from tree-ensembles, and rule selection is automated through a declarative

encoding. In the end, we obtain the generated rule sets which serve as explanations for

the tree-ensemble models, providing insights into their behavior. These aim to mimic the

models’ behavior rather than offering exhaustive and formally correct explanations, thus

aligning with heuristic-based explanation methods in the sense of, for example, (Izza and

Marques-Silva 2021; Ignatiev et al . 2022; Audemard et al . 2022b).

We then evaluate our approach using public datasets. For evaluating global explana-

tions, we use the number and relevance of rules in the rule sets. The number of rules is

often associated with explainability, with many rules being less desirable. Performance

metrics such as classification accuracy, precision, and recall can be used as a measure of

relevance of the rules to the prediction task. For evaluating local explanations, we use

precision and coverage metrics to compare against existing systems.

This paper makes the following contributions:

• We present a novel application of ASP for explaining trained machine learning

models. We propose a method to generate explainable rule sets from tree-ensemble

models with ASP. More broadly, this work contributes to the growing body of

knowledge on integrating symbolic reasoning with machine learning.

• We present how the rule set generation problem can be reformulated as an optimiza-

tion problem, where we leverage existing knowledge on declarative pattern mining

with ASP.

• We show how both global and local explanations can be generated by our approach,

while comparative methods tend to focus on either one exclusively.

• To demonstrate the practical applicability of our approach, we provide both qualita-

tive and quantitative results from evaluations with public datasets, where machine

learning methods are used in a realistic setting.

The rest of this paper is organized as follows. In Section 2, we review tree-ensembles,

ASP, and pattern mining. Section 3 presents our method to generate rule sets from tree-

ensembles using pattern mining and optimization encoded in ASP. Section 4 describes

global and local explanations in the context of our approach. Section 5 presents exper-

imental results on public datasets. In Section 6, we review and discuss related works.

Finally, in Section 7 we present the conclusions.

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue976

2 Background

In the remainder of this paper, we shall use learning algorithms to refer to methods

used to train models, as in machine learning literature. We use models and explanations

to refer to machine learning models and post hoc explanations about the said models,

respectively.

2.1 Tree-ensemble learning algorithms

Tree-Ensemble (TE) learning algorithms are machine learning methods widely used in

practice, typically, when learning from tabular datasets. A trained TE model consists of

multiple base decision trees, each trained on an independent subset of the input data. For

example, Random Forests (Breiman 2001) and Gradient Boosted Decision Tree (GBDT)

(Friedman 2001) are tree-ensemble learning algorithms. Recent surge of efficient and

effective GBDT algorithms, for example, LightGBM (Ke et al . 2017), has led to wide

adoption of TE learning algorithms in practice. Although individual decision trees are

considered to be interpretable (Huysmans et al . 2011), ensembles of decision trees are

seen as less interpretable.

The purpose of using TE learning algorithms is to train models that predict the

unknown value of an attribute y in the dataset, referred to as labels , using the known

values of other attributes x= (x1, x2, . . . , xm), referred to as features. For brevity, we

restrict our discussion to classification problems. During the training or learning phase,

each input instance to the TE learning algorithm is a pair of features and labels, that is

(xi, yi), where i denotes the instance index, and during the prediction phase, each input

instance only includes features, (xi), and the model is tasked to produce predictions ŷi.

A collection of input instances, complete with features and labels, is referred to as a

dataset . Given a dataset D= {(xi, yi)} with n∈N examples and m∈N features, a deci-

sion tree classifier t will predict the class label ŷi based on the feature vector xi of the i-th

sample: ŷi = t(xi). A tree-ensemble T uses K ∈N trees and additionally an aggregation

function f over the K trees which combines the output from the trees: ŷi = f(tk∈K(xi)).

As for Random Forest, for example, f is a majority voting scheme (i.e., argmax of sum),

and in GBDT f may be a summation followed by softmax to obtain ŷi in terms of

probabilities.

In this paper, a decision tree is assumed to be a binary tree where the internal nodes

hold split conditions (e.g., x1 ≤ 0.5) and leaf nodes hold information related to class labels,

such as the number of supporting data points per class label that have been assigned to

the leaf nodes. Richer collections of decision trees provide higher performance and less

uncertainty in prediction compared to a single decision tree. Typically, each TE model

has specific algorithms for learning base decision trees, adding more trees and combining

outputs from the base trees to produce the final prediction. In GBDT, the base trees

are trained sequentially by fitting the residual errors from the previous step. Interested

readers are referred to Friedman (2001), and its more recent implementations, LightGBM

(Ke et al . 2017) and XGBoost (Chen and Guestrin 2016).

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 977

2.2 Answer set programming

Answer Set Programming (Lifschitz 2008) has its roots in logic programming and non-

monotonic reasoning. A normal logic program is a set of rules of the form

a1 :- a2, . . . , am, not am+1, . . . , not an.

where each ai is a first-order atom with 1≤ i≤ n and not is default negation. If only a1
is included (n = 1), the above rule is called a fact , whereas if a1 is omitted, it represents

an integrity constraint . A normal logic program induces a collection of intended inter-

pretations, which are called answer sets , defined by the stable model semantics (Gelfond

and Lifschitz 1988). Additionally, in modern ASP systems, constructs such as condi-

tional literals and cardinality constraints are supported. The former in clingo (Gebser

et al . 2014) is written in the form {a(X) : b(X)}2 and expanded into the conjunction of

all instances of a(X) where corresponding b(X) holds. The latter are written in the form

s1 {a(X) : b(X)} s2, which is interpreted as s1 ≤ #count{a(X) : b(X)} ≤ s2 where s1 and

s2 are treated as lower and upper bounds, respectively; thus the statement holds when

the count of instances a(X) where b(X) holds, is between s1 and s2. The minimization (or

maximization) of an objective function can be expressed with #minimize (or #maximize).

Similarly to the #count aggregate, the #sum aggregate sums the first element (weight)

of the terms, while also following the set property. clingo supports multiple optimiza-

tion statements in a single program, and one can implement multi-objective optimization

with priorities by defining two or more optimization statements. For more details on the

language of clingo, we refer the reader to the clingo manual.3

2.3 Pattern mining

In a general setting, the goal of pattern mining is to find interesting patterns from data,

where patterns can be, for example, itemsets, sequences, and graphs. For example, in

frequent itemset mining (Agrawal and Srikant 1994), the task is to find all subsets of

items that occur together more than the threshold count in databases. In this work, a

pattern is a set of predictive rules. A predictive rule has the form c⇐ s1 ∧ s2∧, . . . , sn,
where c is a class label, and {si} (1≤ i≤ n) represents conditions.

For pattern mining with constraints, the notion of dominance is important, which

intuitively reflects the pairwise preference relation (<∗) between patterns (Negrevergne

et al . 2013). Let C be a constraint function that maps a pattern to {�,⊥}, and let p be

a pattern, then the pattern p is valid iff C(p) =�, otherwise it is invalid . An example of

C is a function which checks that the support of a pattern is above the threshold. The

pattern p is said to be dominated iff there exists a pattern q such that p <∗ q and q is

valid under C. Dominance relations have been used in ASP encoding for pattern mining

(Paramonov et al . 2019).

2 Unless otherwise noted, we follow the Prolog-style notation in logic programs where strings beginning
with a capital letter are variables, and others are predicate symbols or constants.

3 https://github.com/potassco/guide/releases/

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue978

Fig 2. A simple decision tree-ensemble consisting of two decision trees. The rule associated
with each node is given by the conjunction of all conditions associated with nodes on the paths

from the root node to that node.

3 Rule set generation

3.1 Problem statement

The rule set generation problem is represented as a tuple P = {R,M, C, O}, where R

is the set of all rules extracted from the tree-ensemble, M is the set of meta-data and

properties associated with each rule in R, C is the set of user-defined constraints including

preferences, and O is the set of optimization objectives. The goal is to generate a set of

rules from R by selection under constraints C and optimization objectives O, where

constraints and optimization may refer to the meta-data M . In the following sections, we

describe how we construct each R, M , C, and O, and finally, how we solve this problem

with ASP.

3.2 Rule extraction from decision trees

This subsection describes how R, the set of all rules, is constructed. The first two steps

in “tree-ensemble processing” in Figure 1 are also described in this subsection. Recall

that a tree-ensemble T is a collection of K decision trees, and we refer to individual

trees tk with subscript k. An example of a decision tree-ensemble is shown in Figure 2.

A decision tree tk has Ntk nodes and Ltk leaves. Each node represents a split condition,

and there are Ltk paths from the root node to the leaves. For simplicity, we assume only

features that have orderable values (continuous features) are present in the dataset in

the examples below.4 The tree on the left in Figure 2 has four internal nodes including

the root node with condition [x1 ≤ 0.2] and five leaf nodes; therefore, there are five paths

from the root note to the leaf nodes 1 to 5.

4 Real datasets may have unorderable categorical values. For example, in the census dataset, occupation
(Sales, etc.) and education (Bachelors, etc.) are categorical features. Support for categorical feature
split is implementation-dependent, however in general one can replace the continuous split with a
subset selection, for example, xc ∈ {xc1, xc2, . . .}.

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 979

Algorithm 1 Construct candidate rule set R

Require: Tree-ensemble of K trees, D dataset
Ensure: R candidate rule set
1: function DecomposeTreeEnsemble(tree-ensemble)
2: R ← ∅

3: for tree in tree-ensemble do
4: R ← R ∪ ExtractRulesFromTree(tree, D)
5: return R
Require: k-th tree in the tree-ensemble, D dataset
Ensure: Rk candidate rule set from the k-th tree
6: function ExtractRulesFromTree(tree)
7: Rk ← ∅

8: paths ← Enumerate all paths to the leaf nodes
9: for path in paths do
10: Bk ← ∅ � Body of the rule, which is a set of split conditions
11: class ← null
12: for node in path do
13: if node is left child then
14: Bk ← Bk ∪ (feature ≤ threshold)
15: else
16: Bk ← Bk ∪ (feature > threshold)
17: class ← Apply Bk to D, and choose the class with the largest instance count
18: rule ← class ⇐Bk � Construct a rule, as in Section 3.2
19: Rk ← Rk ∪ rule � Add to the set for k-th tree
20: return Rk

From the left-most path of the decision tree on the left in Figure 2, the following

prediction rule is created. We assume that node 1 predicts class label 1 in this instance.5

class(1)⇐ (x1 ≤ 0.2)∧ (x2 ≤ 4.5)∧ (x4 ≤ 2) (1)

Assuming that node 2 predicts class label 0, we also construct the following rule (note

the reversal of the condition on x4):

class(0)⇐ (x1 ≤ 0.2)∧ (x2 ≤ 4.5)∧ (x4 > 2) (2)

To obtain the candidate rule set, we essentially decompose a tree-ensemble into a rule

set. The steps are outlined in Algorithm 1. By constructing the candidate rule set R in

this way, the bodies (antecedents) of rules included in rule sets are guaranteed to exist

in at least one of the trees in the tree-ensemble. Rule sets generated in this manner are

therefore faithful to the representation of the original model in this sense. If we were

to construct rules from the unique set of split conditions, the resulting rule may have

combinations of conditions that do not exist in any of the trees.

We now analyze the computational complexities associated with constructing the set

of all rules R. Let us assume that (1) all K trees in the ensemble are perfect binary

5 Label= 1 and 0 refer to the attributes in the dataset and have different meaning depending on the
dataset. For example, in the census dataset, label= 1 and 0 mean that the personal income is more
than $50,000 and that it is no more than $50,000, respectively. In a binary classification setting, the
task would be to predict whether the personal income is greater than $50,000 (>$50,000).

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue980

decision trees and have the same height h, (2) there are n examples and m features in

the dataset, and (3) there are no duplicate rules and conditions across trees.

Proposition 1.

The maximum size of R, constructed by only considering the rules at the leaf nodes, is

K × 2h.

This follows immediately from the number of leaf nodes in a perfect binary decision tree

with height h, that is 2h. In practice, there are duplicate split conditions across trees in

a tree-ensemble, so the unique count of rules is often smaller than the maximum value.

Proposition 2.

The time complexity of the proposed method to construct R is O(K × (2h × n× h)).

Proof

For each rule in O(2h) rules, all conditions in the rule need to be applied to the data.

Since there are at most h conditions in a rule, and there are n examples, it takes O(n× h)

time to apply all conditions in a rule.

3.3 Computing metrics and meta-data for selection

After the candidate rule set R is constructed, we gather information about the perfor-

mance and properties of each rule and collect them into a set M . This is the last step in

the tree-ensemble processing process depicted in Figure 1 (“Assign Metrics”). The meta-

data, or properties, of a rule are information such as the size of the rule, as defined by the

number of conditions in the rule, and the ratio of instances which are covered by the rule.

Computing classification metrics, for example, accuracy and precision, requires access to

a subset of the dataset with ground truth labels, which could be either a training or a

validation set. On the other hand, when access to the labeled subset is not available at

runtime, these metrics and their corresponding predicates cannot be used in the ASP

encoding. In our experiments, we used the training sets to compute these classification

metrics during rule set generation, and later used the validation sets to evaluate their

performance.

Performance metrics measure how well a rule can predict class labels. Here we calculate

the following performance metrics: accuracy, precision, recall, and F1-score, as shown

below.

accuracy=
TP + TN

TP + TN + FP + FN
precision=

TP

TP + FP

recall=
TP

TP + FN
F1-score= 2× precision× recall

precision+ recall
(3)

For classification tasks, a true positive (TP) and a true negative (TN) refer to a correctly

predicted positive class and negative class, respectively, with respect to the labels in the

dataset. Conversely, a false positive (FP) and a false negative (FN) refer to an incorrectly

predicted positive class and negative class, respectively. These metrics are not specific to

the rules and can be computed for trained tree-ensemble models, as well as explanations

of trained machine learning models, as we shall show later in Section 5.2.4. We compute

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 981

Table 1. List of predicates representing a rule in ASP

Predicate Meaninga

rule(X) X holds the rule index.
condition(X,I) Rule X has condition I.
size(X,L) Number of conditions in rule X (length, L).
predict class(X,C) Predicted class label C of rule X.
support(X,S) Support S of rule X, the ratio of instances that are covered by

rule X.∗

error rate(X,E) Error rate (1− accuracy), E, of the rule X evaluated in the
training data.∗

accuracy(X,A) Accuracy score A of rule X.∗

precision(X,P) Precision score P of rule X.∗

recall(X,R) Recall score R of rule X.∗

f1 score(X,F) F1-score F of rule X.∗

aProperties and metrics marked with asterisks(∗) are multiplied by 100 and rounded to the
nearest integer.

multiple metrics for a single rule, to meet a range of user requirements for explanation.

One user may only be interested in simply the most accurate rules (maximize accuracy),

whereas another user could be interested in more precise rules (maximize precision), or

rules with more balanced performance (maximize F1-score).

The candidate rule set R and meta-data set M are represented as facts in ASP, as

shown in Table 1. For example, Rule 1 (the first rule in Section 3.2) may be represented

as follows:6

% rule 1

rule(1). condition(1,1). condition(1,2). condition(1,3). support(1,10).

size(1,3). accuracy(1,50). error_rate(1,50). precision(1,30).

recall(1,40). f1_score(1,34). predict_class(1,1).

Unique conditions are indexed and denoted by the condition predicate. For instance,

in the example above (representing Rule 1), “condition(1,1)” represents (x1 ≤ 0.2),

“condition(1,2)” corresponds to (x2 ≤ 4.5), and so forth.

3.4 Encoding inclusion criteria and constraints

As with previous works in pattern mining in ASP, we follow the “generate-and-test”

approach, where a set of potential solutions are generated by a choice rule and subse-

quently constraints are used to filter out unacceptable candidates. In the context of rule

set generation, we use a choice rule to generate candidate rule sets that may constitute

a solution (“Generate Candidate Rule Sets” in Figure 1). In this section, we introduce

the following selection criteria and constraints: (1) individual rule selection criteria that

6 The performance metrics are for illustration purposes only and are chosen arbitrarily.

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue982

are applied on a per-rule basis, (2) pairwise constraints that are applied to pairs of rules,

and (3) collective constraints that are applied to a set of rules.

The “generator” choice rule has the following form:

% pick at least 1 rule and at maximum B rules for each class K.

1 { selected(X) : predict_class(X, K), valid(X) } B :- class(K).

Example 1.

% pick at least 1 rule and at maximum 5 rules for each class K.

1 { selected(X) : predict_class(X, K), valid(X) } 5 :- class(K).

The choice rule above generates candidate subsets of size between 1 and 5 from R, where

we use the selected/1 predicate to indicate that a rule (rule(X)) is included in the

subset.

Individual rule selection criteria are integrated into the generator choice rule by the

valid/1 predicate, where a rule rule(X) is valid whenever invalid(X) cannot be

inferred.

valid(X) :- rule(X), not invalid(X).

Example 2.

The following criterion excludes rules with low support from the candidate set:

% this will exclude rules that apply to less than 5% of instances

invalid(X) :- rule(X), support(X,S), S < 5.

Pairwise constraints can be used to encode dominance relations between rules. For a

rule X to be dominated by Y, Y must be strictly better in one criterion than X and at least

as good as X or better in other criteria. In the following case, we encode the dominance

relation between rules using the accuracy metric and support, where we prefer rules that

are accurate and cover more data.

% cannot be dominated

:- dominated.

% X is dominated by Y

gt_acc_geq_cov(Y) :- selected(X), valid(Y),

accuracy(X,Ax), accuracy(Y,Ay), support(X,Spx), support(Y,Spy),

Ax < Ay, Spx <= Spy.

geq_acc_gt_cov(Y) :- selected(X), valid(Y),

accuracy(X,Ax), accuracy(Y,Ay), support(X,Spx), support(Y,Spy),

Ax <= Ay, Spx < Spy.

dominated :- valid(Y), gt_acc_geq_cov(Y).

dominated :- valid(Y), geq_acc_gt_cov(Y).

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 983

Table 2. List of minimum and maximum values for the bounds used in defining invalid/1

Metric Predicate Relation Condition Intention

size(X,L) L > B B≥min{L1, . . . , L|R|} Invalid if the rule is too long
support(X,S) S < B B≤max{S1, . . . , S|R|} Invalid if the rule has low support
error rate(X,E) E > B B≥min{E1, . . . , E|R|} Invalid if the rule has high error rate
accuracy(X,A) A < B B≤max{A1, . . . , A|R|} Invalid if the rule has low accuracy
precision(X,P) P < B B≤max{P1, . . . , P|R|} Invalid if the rule has low precision
recall(X,R) R < B B≤max{R1, . . . , R|R|} Invalid if the rule has low recall
f1 score(X,F) F < B B≤max{F1, . . . , F|R|} Invalid if the rule has low F1-score

Collective constraints are applied to collections of rules, as opposed to individual or

pairs of rules. The following restricts the maximum number of conditions in rule sets,

using the #sum aggregate:7

% total number of conditions should not exceed 30

:- #sum { S,X : size(X,S), selected(X) } > 30.

We envision two main use cases for the criteria and constraints introduced in this

section: (1) to generate rule sets with certain properties, and (2) to reduce the compu-

tation time. For (1), the user can use the individual selection criteria to ensure that the

rules included into the candidate rule sets have certain properties, or the collective con-

straints to put restrictions on the aggregate properties of the rule sets. The latter use-case

has more practical relevance because in our case, as in pattern mining, the complexity

of a naive “generate-and-test” approach is exponential with respect to the number of

candidates.

To reduce the search space, one can place an upper bound on the size of generated can-

didate sets and use the invalid/1 predicate to prevent unacceptable rules being included

into the candidates, as shown above. Because setting unreasonable conditions leads to

zero rule sets generated, care should be taken when using the selection criteria and con-

straints for this purpose. In particular, if any of the metric predicates listed in Table 1

are used in defining invalid/1, for example, invalid(X) :- rule(X), metric(X, N),

N< B., to avoid all rule(X) being invalid(X), one should respect the conditions listed

in Table 2. In the following example, we will show how the invalid/1 predicate can be

used to reduce the search space.

Example 3.

Let the logic program be:

1 { selected(X) : predict_class(X, K), valid(X) } 1 :- class(K).

valid(X) :- rule(X), not invalid(X).

invalid(X) :- rule(X), metric(X, N), N < B.

7 Since the #sum aggregate sums the first element of the terms (S in this case) while also following the
set property, adding X to the term tuple is needed to allow the same weight S to be added more than
once.

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue984

Then, there is at least one valid rule if B≤max(N1, . . . , N|R|). Let B= 1+

max(N1, . . . , N|R|), then by line 3 (N< B), all rules will be invalid, and valid(X)

cannot be inferred. Then, the choice rule (line 1) is not satisfied. Alternatively, let

B=max(N1, . . . , N|R|), then there is at least one rule such that N= B. Since invalid(X)

cannot be inferred for such a rule, it is valid and the choice rule is satisfied.

The upper bound parameter (5 in Example 1 and 1 in Example 3) controls the poten-

tial maximum number of rules that can be included in a rule set. The actual number of

rules that emerge in the final rule sets is highly dependent on the selection criteria, user

preferences, and the characteristics of the tree-ensemble model. Practically, we recom-

mend initially setting this parameter to a lower value (e.g., 3) while focusing on refining

other aspects of the encoding, since this allows for a more manageable starting point.

Given the “generate-and-test” approach, high values may lead to excessively slow run

time. If it becomes evident that a larger rule set could be beneficial, the parameter can

be incrementally increased. This ensures more efficient use of computational resources

while also catering to the evolving needs of the encoding process.

3.5 Optimizing rule sets

Finally, we pose the rule set generation problem as a multi-objective optimization prob-

lem, given the aforementioned facts and constraints encoded in ASP. The desiderata for

generated rule sets may contain multiple competing objectives. For instance, we con-

sider a case where the user wishes to collect accurate rules that cover many instances,

while minimizing the number of conditions in the set. This is encoded as a group of

optimization statements:

% maximize accuracy and support, minimize the number of conditions

#maximize { A,X : selected(X), accuracy(X,A)}.

#maximize { S,X : selected(X), support(X,S)}.

#minimize { L,X : selected(X), size(X,L)}.

Instead of maximizing/minimizing the sums of metrics, we may wish to optimize more

nuanced metrics, such as average accuracy and coverage of selected rules:

% maximize average accuracy and coverage

selected_rules(SR) :- SR = #count { I : selected(I) }, SR != 0.

#maximize { Ai/(S*SR)@3,I : selected(I), size(I,S),

accuracy(I,Ai), selected_rules(SR) }.

#maximize { Sp/S@2,I : selected(I), size(I,S), support(I,Sp) }.

This metric can be maximized by selecting the smallest number of short and accurate

rules. Similar metrics can be defined for precision-coverage,

% maximize average precision and coverage

#maximize { Pi/(S*SR)@3,I : selected(I), size(I,S),

precision(I,Pi), selected_rules(SR) }.

#maximize { Sp/S@2,I : selected(I), size(I,S), support(I,Sp) }.

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 985

and for precision-recall.

% maximize average precision and recall

#maximize { Pi/(S*SR)@3,I : selected(I), size(I,S),

precision(I,Pi), selected_rules(SR) }.

#maximize { R/S@2,I : selected(I), size(I,S), recall(I,R) }.

For optimization, we introduce a measure of overlap between the rules to be minimized.

Intuitively, minimizing this objective should result in rule sets where rules share only a

few conditions, which should further improve the explainability of the resulting rule sets.

Specifically, we introduce a predicate rule overlap(X,Y,Cn) to measure the degree of

overlap between rules X and Y.

% number of shared conditions between rules

rule_overlap(X,Y,Cn) :- selected(X), selected(Y), X!=Y,

Cn = #count { Cx : Cx=Cy, condition(X,Cx), condition(Y,Cy) }.

#minimize { Cn,X : selected(X), selected(Y), rule_overlap(X,Y,Cn) }.

4 Rule set generation for global and local explanations

In this section, we will describe how to generate global and local explanations with

the rule set generation method. Guidotti et al . (2018) defined global explanation as

descriptions of how the overall system works, and local explanation as specific descriptions

of why a certain decision was made. We shall now adopt these definitions to our rule set

generation task from tree-ensemble models.

Definition 1.

A global explanation is a set of rules derived from the tree-ensemble model, that

approximates the overall predictive behavior of the base tree-ensemble model.

Examples of measures of approximation for global explanations are: accuracy, precision,

recall, F1-score, fidelity and coverage.

Example 4.

Given a tree-ensemble as in Figure 2, a global explanation can be constructed from a

candidate rule set that includes all possible paths to the leaf nodes (1, 2, . . ., 10 in

Figure 2), then selecting rules based on user-defined criteria.

Definition 2.

An instance to be explained is called a prediction instance. A local explanation is a set of

rules derived from the tree-ensemble model, that approximates the predictive behavior

of the base tree-ensemble model when applied to a specific prediction instance.

Example 5.

Given a tree-ensemble as in Figure 2, and a prediction instance, a local explanation

can be constructed by only considering rules that were active during the prediction,

then selecting rules based on user-defined criteria. For example, if leaf nodes 2 and 6

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue986

Table 3. Examples of global and local explanations from the adult dataset (LightGBM +
ASP)

Type Class Explanation

Global Income > 50k hours-per-week ≤ 89.5 AND age > 27.5 AND age ≤ 60.5
AND captal-gain > 7055.5

Local Income > 50k hours-per-week > 30.5 AND relationship in {Husband,
Wife} AND education in {Assoc-acdm, Assoc-voc,
Bachelors, Doctorate, Masters, Prof-school, Some-college}
AND occupation in {Exec-managerial, Prof-specialty,
Protective-serv, Sales, Tech-support}

were active, then R only includes rules constructed from the paths leading to nodes 2

and 6. Here, a leaf node is considered active during prediction if the decision path for

the prediction instance leads to it, meaning the conditions leading up to that node are

satisfied by the instance’s features.

The predictive behavior in this context refers to the method by which the model makes

the prediction (aggregating decision tree outputs) and the outcomes of the prediction. The

differences between the global and local explanations have implications on the encoding

we use for rule set generation. Note that these two types of explanations serve distinct

purposes. The global explanation seeks to explain the model’s overall behavior, while the

local explanation focuses on the reasoning behind a specific prediction instance. There is

no inherent expectation for a global explanation to align with or fully encompass a local

explanation. In particular, when a local explanation is applicable to multiple instances

due to these instances having similar feature values, for instance, this local explanation

might not be able to accurately predict for these instances. This is measured by a precision

metric and evaluated further in Section 5.3

In Table 3 we show examples of global and local explanations on the same dataset

(adult). For this dataset, the task is to predict whether an individual earns more or less

than $50,000 annually. The global and local explanations consist of four conditions and

share an attribute (hours-per-week) with different threshold values. While these two rules

have the same outcome, the attributes in the bodies are different: in this instance, the

global explanation focuses more on the numerical attributes, while the local explanation

contains categorical attributes.

Recall that we start with the candidate rule set, R, which is created by processing the

tree-ensemble model. The rules in R are different between global and local explanations,

even when the underlying tree-ensemble model is the same. For global explanations, we

can enumerate all rules including internal nodes (Section 3.2) regardless of the outcomes

of the rules because we are more interested in obtaining a simpler classifier with the

help of constraints (Section 3.4) and optimization criteria (Section 3.5). On the other

hand, for local explanations, it is necessary to consider the match between the rules’

prediction and the actual outcome of the tree-ensemble model as to keep the precision

of explanations high.

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 987

By definition, a local explanation should describe the behavior of the model on a

single prediction instance. Thus, we shall make the following modifications to R when

generating rule sets for local explanations. We start from the candidate rule set R as in

Algorithm 1 (Section 3.2), then, for each predicted instance:

1. Identify the leaf nodes that were active during the prediction.

2. Exclude rules that did not participate in the prediction.

3. Replace the outcome of the rule with the predicted label.

After the modification as outlined above, the maximum size of the starting rule set

will be the number of trees in a tree-ensemble. Let K be the number of decision trees

in a tree-ensemble model, then, since there is exactly one leaf node per tree responsi-

ble for the prediction, there will be K rules. Compared to the global explanation case

(Proposition 1), the size of the candidate rule set is exponentially smaller for the local

explanation. This reduction is enabled by analyzing the behavior of the decision trees

during prediction, and it is one of the benefits of using an explanation method which can

take advantage of the structure of the model under study.

5 Experiments

In this section, we present a comprehensive evaluation of our rule set generation frame-

work, focusing on both global and local explanations. We evaluate the explanations on

public datasets using various metrics, and we also compare the performance to existing

methods, including rule-based classifiers. We used several metrics to assess the quality

of the generated explanations. These metrics are designed to evaluate different aspects

of the explanations, including their comprehensibility, fidelity, and usability. Below, we

provide an overview of the metrics used in our evaluations. Detailed discussions of these

metrics can be found in the respective sections of this paper.

Global Explanations (Section 5.2):

• Number of Rules and Conditions (Section 5.2.1 and 5.2.2): Assesses the

simplification of the original model by counting the number of rules and conditions.

• Relevance (Section 5.2.3): Measures the relevance of the rules by comparing the

classification performance against the original model.

• Fidelity (Section 5.2.4): Measures the degree to which the rules accurately describe

the behavior of the original model.

• Run Time (Section 5.2.6): Measures the efficiency of generating global explana-

tions.

Local Explanations (Section 5.3):

• Number of Conditions (Section 5.3.1): Measures the conciseness of the local

explanations by counting the number of conditions.

• Local-Precision and Coverage (Section 5.3.2): Local-precision compares the

model’s predictions for instances covered by the local explanation with the pre-

diction for the instance that induced the explanation. Local-coverage measures

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue988

the proportion of instances in the validation set that are covered by the local

explanation.

• Run Time (Section 5.3.3): Measures the efficiency of generating local explanations.

5.1 Experimental setup

5.1.1 Datasets

We used in total 14 publicly available datasets, where except for the adult8 dataset, all

datasets were taken from the UCI Machine Learning Repository9 (Dua and Graff 2017).

Datasets were chosen from public repositories to ensure a diverse range in terms of the

number of instances, the number of categorical variables, and class balance. This was

done intentionally, to observe the variance in, for example, explanation generation times.

Additionally, the variation in categorical variables ratio and class balance was designed

to produce a wide array of tree-ensemble configurations (e.g., more or fewer trees, varying

widths and depths). We expected these configurations, in turn, to influence the nature

of the explanations generated. We included 3 datasets (adult , credit german, compas)

for comparison because they were widely used in local explainability literature. The

adult dataset is actually a subset of the census dataset, but we included the former

for consistency with existing literature, and the latter for demonstrating the applica-

bility of our approach to larger datasets. The summary of these datasets is shown in

Table 4.

5.1.2 Experimental settings

We used clingo 5.4.010 (Gebser et al . 2014) for ASP and set the time-out to 1,200 s.

We used RIPPER implemented in Weka Witten et al. (2016) and an open-source

implementation of RuleFit11 where Random Forest was selected as the rule generator,

and scikit-learn12 (Pedregosa et al . 2011) for general machine learning functionalities.

Our experimental environment is a desktop machine with Ubuntu 18.04, Intel Core i9-

9900K 3.6GHz (8 cores/16 threads) and 64GB RAM. For reproducibility, all source

codes for the implementation, experiments, and preprocessed datasets are available from

our GitHub repository.13

Unless noted otherwise, all experimental results reported here were obtained with 5-

fold cross validation, with hyperparameter optimization in each fold. To evaluate the

performance of the extracted rule sets, we implemented a naive rule-based classifier,

which is constructed from the rule sets extracted with our method. In this classifier, we

apply the rules sequentially to the validation dataset and if all conditions within a rule are

true for an instance in the dataset, the consequent of the rule is returned as the predicted

class. More formally, given a set of rules Rs ⊂R with cardinality |Rs| that shares the

same consequent class(Q), we represent this rule-based classifier as the disjunction of

8 https://github.com/propublica/compas-analysis
9 https://archive.ics.uci.edu/ml/index.php
10 https://potassco.org/clingo/
11 https://github.com/christophM/rulefit
12 https://scikit-learn.org/
13 https://github.com/atakemura/treetap

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

G
en

era
tin

g
G
lo
ba
l
a
n
d
L
oca

l
E
xp
la
n
a
tio

n
s

989

Table 4. Dataset description, selected hyperparameters and candidate rule counts

Decision
Tree

Random Forest LightGBM

MaxD |R| #Tree MaxD |R| #Tree MaxD |R|
Dataset #Instance #Feature #Ratio Meaning of y=1 (2, 9) (50, 500) (2, 9) (30, 1,000) (2, 9)

adult 48,842 12 (8) 0.24 income > 50k 9.0 104.6 240 9.0 8,180.0 206.2 5.0 4,227.6
autism 704 20 (18) 0.27 screening result 5.0 2.0 200 5.8 2,083.4 485.6 6.6 2.0
breast 699 9 (9) 0.34 malignant 6.4 16.8 200 5.0 1,391.2 131.2 6.4 194.0
cars 1,728 6 (6) 0.30 acceptable condition 9.0 41.4 396 8.4 13,027.4 889.0 7.4 1,308.0
census 299,285 40 (33) 0.06 income > 50k 8.2 81.8 320 9.0 9,773.4 198.2 9.0 9,533.0
compas 7,214 11 (7) 0.28 2 year recidivism 8.2 62.8 320 9.0 23,254.4 108.4 6.2 985.4
credit australia 690 14 (8) 0.44 application accepted 9.0 3.0 212 7.0 3,178.2 68.4 5.2 528.0
credit german 1,000 20 (13) 0.30 good creditor 8.4 32.4 280 9.0 13,488.4 55.2 5.0 364.6
credit taiwan 30,000 23 (10) 0.22 payment next month 7.0 53.6 280 9.0 15,976.4 138.8 7.0 4,150.0
heart 270 13 (8) 0.44 disease present 7.6 12.4 288 6.6 2,906.6 32.8 7.4 298.4
ionosphere 351 34 (0) 0.64 good radar return 4.8 9.2 324 5.4 1,317.2 48.0 5.8 311.8
kidney 400 24 (13) 0.62 chronic disease 5.4 6.8 200 5.0 996.4 817.8 8.2 359.0
krvskp 3,196 36 (36) 0.52 white can win 9.0 33.6 320 9.0 9,647.4 293.0 8.2 2,354.2
voting 435 16 (16) 0.61 democrat 5.8 10.2 240 6.6 2,555.0 44.6 5.8 168.0

aThe maximum depth parameter. The minimum and maximum values set during the hyperparameter search are shown in parentheses.
The hyperparameters shown in this table are averaged over 5 folds.
bThe number of candidate rules, averaged over 5 folds.
cThe number of trees (estimators) parameter.
dThe number of features (columns). The number of categorical features is shown in parentheses.

https://doi.org/10.1017/S1471068424000401 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue990

antecedents of the rules:

class(Q)⇐ body(R1)∨ body(R2)∨ . . .∨ body(Rr) where 1≤ r≤ |Rs|
For a given data point, it is possible that there are no rules applicable, and in such cases

the most common class label in the training dataset is returned.

5.2 Evaluating global explanations

Let us recall that the purpose of generating global explanations is to provide the user

with a simpler model of the original complex model. Thus, we introduce proxy measures

to evaluate (1) the degree to which the model is simplified, by the number of extracted

rules and conditions, (2) the relevance of the extracted rules, by comparing classifica-

tion performance metrics against the original model, and (3) the degree to which the

explanation accurately describes the behavior of the original model, by fidelity metrics.

We conducted the experiment in the following order. First, we trained Decision Tree,

Random Forest, and LightGBM on the datasets in Table 4. Selected optimized hyper-

parameters of the tree-ensemble models are also reported in Table 4. Further details on

hyperparameter optimization are available in Appendix B. We then applied our rule set

generation method to the trained tree-ensemble models. Finally, we constructed a naive

rule-based classifier using the set of rules extracted in the previous step and calculated

performance metrics on the validation set. This process was repeated in a 5-fold stratified

cross validation setting to estimate the performance. We compare the characteristics of

our approach against the known methods RIPPER and RuleFit.

We used the following selection criteria to filter out rules that were considered to be

undesirable; for example, those rules with low accuracy or low coverage. We used the

same set of selection criteria for all datasets, irrespective of underlying label distribution

or learning algorithms. When the candidate rules violate any one of those criteria, they

are excluded from the candidate rule set, which means that in the worst case where all

the candidate rules violate at least one criterion, this encoding will result in an empty

rule set (see Section 3.4).

% exclude long rules

invalid(I) :- size(I,S), S > 10, rule(I).

% exclude inaccurate rules

invalid(I) :- error_rate(I,E), E > 70, rule(I).

% exclude low precision rules

invalid(I) :- precision(I,P), P < 2, rule(I).

% exclude low recall rules

invalid(I) :- recall(I,R), R < 2, rule(I).

% exclude low coverage rules

invalid(I) :- support(I,Sp), Sp < 2, rule(I).

Another scenario in which our method will produce an empty rule set is when

the tree-ensemble contains only “leaf-only” or “stump” trees, that have one leaf node

and no splits. In this case, we have no split information to create candidate rules;

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 991

thus, an empty rule set is returned to the user. This is often caused by inade-

quate setting of hyperparameters that control the growth of the trees, especially when

using imbalanced datasets. It is however outside the scope of this paper, and we

will simply note such cases (empty rule set returned) in our results without further

consideration.

5.2.1 Number of rules

The average sizes of generated rule sets are shown in Table 5. The sizes of candidate rule

sets, from which the rule sets are generated, are listed in the |R| columns in Table 4. Rule

set size of 1 means that the rule set contains a single rule only. As one might expect,

the Decision Tree consistently has the smallest candidate rule set, but in some cases the

Random Forest produced considerably more candidate rules than the LightGBM, for

example, cars, compas . Our method can produce rule sets which are significantly smaller

than the original model, based on the comparison between the sizes of the candidate rule

set |R| and resulting rule sets.

We will now compare our method to the two benchmark methods, RuleFit and

RIPPER. The average size of generated rule sets is shown in Table 5. RuleFit includes

original features (called linear terms) as well as conditions extracted from the tree-

ensembles in the construction of a sparse linear model, that is to say, the counts in Table 5

may be inflated by the linear terms. On the other hand, the output from RIPPER only

contains rules, and RIPPER has rule pruning and rule set optimization to further reduce

the rule set size. Moreover, RIPPER has direct control over which conditions to include

into rules, whereas our method and RuleFit rely on the structure of the underlying deci-

sion trees to construct candidate rules. Our method consistently produced smaller rule

sets compared to RuleFit and RIPPER, although the difference between our method

and RIPPER was not as pronounced when compared to the difference between our

method and RuleFit. RuleFit produced the largest number of rules compared with other

methods, although they were much smaller than the original Random Forest models

(Table 5).

5.2.2 Number of conditions in rules

In this subsection, we compare the average number of conditions in each rule and the

total number of conditions in rules. One would expect a more precise rule to have a

larger number of conditions in its body compared to the one that is more general. It

should be noted that, however, due to the experimental condition, the maximum number

of conditions in a single rule is set by the maximum depth parameter in each of the

learning algorithms, which in turn is set by the hyperparameter tuning algorithm.

The average number of conditions in each rule are shown in Table 5. We note that

sometimes the algorithms may produce rules without any conditions in the bodies, such

as when the induced trees have only a single split node at the root; thus the average

number reported in Table 5 may be biased toward lower numbers. From the table, we see

that the average number of conditions in a rule generally falls in the range of between 1

and 10, and this is consistent with the search range of hyperparameters we set for the

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A
.
T
a
kem

u
ra

a
n
d
K
.
In
o
u
e

992

Table 5. Size of rule sets, total and average number of conditions in rules

Average number of conditions in
Size of Rule Sets Total number of conditions in rules rules

Dataset DTa RFb LGBMc RuleFit RIPPER DT RF LGBM RuleFit RIPPER DT RF LGBM RuleFit RIPPER

adult 1.0 1.4 1.4 358.0 25.0 4.0 5.8 7.0 1142.6 110.8 4.0 3.6 5.0 3.2 4.4
autism 1.0 1.0 1.0 3.2 2.0 1.0 1.0 1.0 4.4 1.0 1.0 1.0 1.0 1.3 0.5
breast 1.0 1.2 1.0 508.0 14.8 5.8 6.0 1.0 1443.6 19.8 5.8 5.0 1.0 3.0 1.3
cars 1.0 1.0 1.0 478.0 28.0 6.4 5.4 1.0 1536.8 101.8 6.4 5.4 1.0 3.3 3.4
census 1.0 1.0 1.0 736.0 60.6 8.2 3.4 1.8 1967.4 381.2 8.2 3.4 1.8 2.7 6.3
compas 1.0 1.0 1.0 174.8 10.4 3.8 2.0 2.4 554.4 27.6 3.8 2.0 2.4 3.2 2.6
credit australia 1.0 1.0 1.0 50.6 5.4 2.0 2.4 3.2 134.4 9.8 2.0 2.4 3.2 2.6 1.6
credit german 1.2 2.0 1.2 392.8 4.2 4.6 18.0 3.0 1137.8 8.4 3.6 9.0 2.0 3.0 2.0
credit taiwan 1.0 1.8 2.6 110.2 7.2 5.2 13.4 7.6 311.2 18.0 5.2 6.2 3.4 2.8 2.5
heart 1.0 1.0 1.6 424.8 5.6 2.4 3.0 4.8 1127.0 13.4 2.4 3.0 3.0 2.3 2.1
ionosphere 1.0 1.0 1.0 398.8 5.0 4.6 4.8 5.4 973.4 6.2 4.6 4.8 5.4 2.5 1.1
kidney 1.0 1.0 1.2 94.6 4.6 1.6 2.4 4.2 259.2 7.2 1.6 2.4 3.6 2.7 1.5
krvskp 1.0 1.0 1.0 276.0 16.4 6.0 7.8 3.0 881.2 52.8 6.0 7.8 3.0 3.2 3.2
voting 1.0 1.0 1.0 300.6 3.4 2.2 1.0 2.0 803.6 5.8 2.2 1.0 2.0 2.6 1.3

aDecision Tree + ASP
bRandom Forest + ASP
cLightGBM + ASP

https://doi.org/10.1017/S1471068424000401 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 993

experiments. Table 5 shows the total number of conditions in a rule set. Unlike the average

number of conditions in a rule, we see a large difference between our method and the

benchmark methods. In all datasets, RuleFit produced the highest counts of conditions

in rules, followed by RIPPER and the ensemble-based methods. From Table 5, we make

the following observations: (1) the length of individual rules does not vary as much as

the number of rules between different methods (2) the high number of conditions in rules

extracted by RuleFit can be explained by the high number of rules, where the length of

individual rules are comparable to other methods.

5.2.3 Relevance of rules

To quantify the relevance of the extracted rules, we measured the ratio of performance

metrics using the naive rule-based classifier by 5-fold cross validation (Table 6). A perfor-

mance ratio of less than 1.0 means that the rule-based classifier performed worse than the

original classifier (LightGBM and Random Forest), whereas a performance ratio greater

than 1.0 means the rule set’s performance is better than the original classifier. We used

a version of the ASP encoding shown in Section 3.5 where the accuracy and coverage

are maximized. RIPPER was excluded from this comparison because it has a built-in

rule generation and refinement process, and it does not have a base model, whereas our

method and RuleFit use variants of tree-ensemble models as base

models.

From Table 6 we observe that in terms of accuracy, RuleFit generally performs as

well as, or marginally better than, the original Random Forest. On the other hand,

although our method can produce rule sets that are comparable in performance against

the original model, they do not produce rules that perform significantly better. With

Decision Tree and Random Forest, the generated rule sets perform much worse than

the original model, for example, in kidney , voting . The LightGBM+ASP combination

resulted in the second-best performance overall, where the resulting rules’ performances

were arguably comparable (0.8-0.9 range) to the original model with a few exceptions

(e.g., census F1-score) where the performance ratio was about half of the original. While

RuleFit’s performance was superior, our method could still produce rule sets with rea-

sonable performance with much smaller rule sets that are an order of magnitude smaller

than RuleFit. A rather unexpected result was that using our method (Random Forest)

or RuleFit significantly improved the F1-score in the census dataset. In Table 6 we can

see that recall was the major contributor to this improvement.

5.2.4 Fidelity metrics of global explanations

In Section 5.2.3, we compared the ratio of performance metrics of different methods when

measured against original labels. In the context of evaluating explanation methods, it is

also important to investigate the fidelity , that is to which extent the explanation is able to

accurately imitate the original model (Guidotti et al . 2018). A fidelity metric is calculated

as an agreement metric between the prediction of the original model and the explanation,

the latter in this case is the rule set. More concretely, when the predicted class by the

model is positive and that by the explanation is positive, it is a true positive (TP),

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A
.
T
a
kem

u
ra

a
n
d
K
.
In
o
u
e

994

Table 6. Average ratio of rule-based classifiers’ performance vs. original tree-ensembles, averaged over 5 folds. (Global explanations)

Accuracy ratio F1 ratio Precision ratio Recall ratio

Dataset DTa RFb LGBMc RuleFit DT RF LGBM RuleFit DT RF LGBM RuleFit DT RF LGBM RuleFit

adult 0.92 0.91 0.94 1.01 0.34 0.63 0.78 1.12 1.30 0.95 0.86 0.94 0.22 0.75 0.74 1.25
autism 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01
breast 0.91 0.96 0.95 0.98 0.80 0.93 0.91 0.97 0.97 0.97 0.96 0.99 0.70 0.91 0.87 0.95
cars 0.80 0.81 0.52 1.01 0.41 0.50 0.44 1.02 1.04 1.05 0.36 1.04 0.26 0.32 0.60 1.00
census 0.97 0.99 0.80 1.02 0.16 5.63 0.40 10.87 0.18 0.44 0.30 0.76 0.16 8.38 1.26 17.14
compas 0.95 0.85 0.85 1.01 0.44 0.84 0.77 1.08 1.12 0.63 0.73 0.96 0.32 1.13 0.96 1.18
credit australia 0.89 0.89 0.88 1.00 0.77 0.82 0.77 1.00 1.17 1.00 1.04 1.00 0.55 0.73 0.67 0.99
credit german 0.91 0.92 0.88 0.95 0.46 0.83 0.90 1.18 1.01 0.69 0.72 0.78 0.39 0.94 1.13 1.56
credit taiwan 0.96 0.93 0.99 1.01 0.21 0.63 0.83 1.11 0.90 0.74 1.05 0.98 0.15 0.70 0.75 1.18
heart 0.93 0.90 0.95 1.00 0.78 0.82 0.80 1.00 1.11 0.96 1.22 1.00 0.69 0.73 0.63 1.00
ionosphere 0.73 0.69 0.98 0.99 0.86 0.82 0.98 0.99 0.71 0.70 1.00 0.99 1.10 1.02 0.96 0.99
kidney 0.66 0.62 0.91 1.00 0.80 0.77 0.93 1.00 0.66 0.62 0.92 1.00 1.04 1.00 0.94 1.00
krvskp 0.53 0.54 0.59 1.02 0.69 0.71 0.67 1.02 0.53 0.54 0.65 1.03 1.00 1.02 0.76 1.01
voting 0.64 0.64 0.96 0.99 0.78 0.79 0.96 0.99 0.62 0.63 1.01 0.98 1.04 1.05 0.92 1.01

aDecision Tree + ASP
bRandom Forest + ASP
cLightGBM + ASP

https://doi.org/10.1017/S1471068424000401 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 995

and when the latter is negative, it is a false negative (FN). Thus, the fidelity metrics can

be calculated in the same manner as performance metrics using the equations shown in

Section 3.3. RIPPER was excluded from this comparison for the same reasons as outlined

in Section 5.2.3.

The average fidelity metrics (accuracy, F1-score, precision, and recall) are shown in

Table 7. The overall trend is similar to the previous section on rule relevance, where

RuleFit performs the best overall in terms of fidelity. The accuracy metrics for our method

shows that the global explanations, in general, behaved similarly to the original model,

although RuleFit was better in most of the datasets. The precision metrics show that,

even when excluding the results for Decision Tree (which is not a tree-ensemble learning

algorithm), our method could produce explanations that had high fidelity in terms of

precision compared to RuleFit. The fidelity metrics may be improved further by includ-

ing them in the ASP encodings, since they were not part of the selection criteria or

optimization goals.

5.2.5 Changing optimization criteria

The definition of optimization objectives has a direct influence over the performance

of the resulting rule sets, and the objectives need to be set in accordance with user

requirements. The answer sets found by clingo with multiple optimization statements

are optimal regarding the set of goals defined by the user. Instead of using accuracy,

one may use other rule metrics as defined in Table 1 such as precision and/or recall. If

there are priorities between optimization criteria, then one could use the priority notation

(weight@priority) in clingo to define them. Optimal answer sets can be computed in

this way, however, if enumeration of such optimal sets is important, then one could use

the pareto or lexico preference definitions provided by asprin (Brewka et al . 2015) to

enumerate Pareto optimal answer sets. Instead of presenting a single optimal rule set to

the user, this will allow the user to explore other optimal rule sets.

To investigate the effect of changing optimization objectives, we changed the ASP

encoding from max. accuracy-coverage to max. precision-coverage (shown in Section 3.4)

while keeping other parameters constant. The results are shown in Table 8. Note that

it is the ratio of precision score shown in the table, as opposed to accuracy or F1-

score in the earlier tables. Here, since we are optimizing for better precision, we expect

the precision-coverage encoding to produce rule sets with better precision scores than

the accuracy-coverage encoding. For the Decision Tree and Random Forest + ASP, the

effect was not as pronounced as we expected, but we observed noticeable differences in

datasets compas and credit german. For the LightGBM+ASP combination, we observed

more consistent difference, except for the credit german dataset, the encoding produced

intended results in most of the datasets in this experiment.

5.2.6 Global explanation running time

The average running time of generating global explanations is reported in Table 9. The

running time measures the rule extraction and rule set generation steps for our method,

and measures the running time for RuleFit, but excludes the time taken for the model

training (e.g., Random Forest) and hyperparameter optimization. Comparing the meth-

ods that share the same base model (RF+ASP and RuleFit, both based on Random

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A
.
T
a
kem

u
ra

a
n
d
K
.
In
o
u
e

996

Table 7. Fidelity metrics, averaged over 5 folds. (Global explanations)

Accuracy F1-score Precision Recall

Dataset DTa RFb LGBMc RuleFit DT RF LGBM RuleFit DT RF LGBM RuleFit DT RF LGBM RuleFit

adult 0.85 0.87 0.86 0.94 0.29 0.42 0.44 0.83 1.00 0.87 0.93 0.73 0.17 0.33 0.35 0.96
autism 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00
breast 0.91 0.86 0.89 0.97 0.82 0.75 0.81 0.96 1.00 0.97 0.96 0.98 0.72 0.64 0.71 0.94
cars 0.77 0.79 0.60 0.98 0.39 0.48 0.52 0.97 1.00 1.00 0.50 0.99 0.25 0.31 0.63 0.95
census 0.92 0.97 0.90 0.96 0.00 0.07 0.36 0.09 0.00 0.04 0.56 0.05 0.00 0.61 0.43 1.00
compas 0.82 0.75 0.79 0.94 0.38 0.50 0.50 0.83 0.93 0.41 0.68 0.76 0.26 0.71 0.53 0.93
credit australia 0.72 0.81 0.78 0.96 0.64 0.73 0.65 0.95 1.00 0.92 0.95 0.96 0.47 0.66 0.55 0.95
credit german 0.83 0.85 0.75 0.81 0.48 0.28 0.43 0.55 0.93 0.66 0.54 0.43 0.42 0.25 0.50 0.83
credit taiwan 0.89 0.91 0.93 0.98 0.20 0.46 0.55 0.89 0.73 0.80 0.98 0.82 0.12 0.36 0.44 0.98
heart 0.86 0.79 0.80 0.89 0.74 0.66 0.67 0.86 1.00 0.93 1.00 0.86 0.66 0.55 0.52 0.86
ionosphere 0.65 0.69 0.82 0.95 0.79 0.81 0.84 0.97 0.65 0.69 0.99 0.97 1.00 1.00 0.75 0.96
kidney 0.63 0.62 0.86 1.00 0.77 0.77 0.88 1.00 0.63 0.62 0.95 1.00 1.00 1.00 0.83 1.00
krvskp 0.53 0.53 0.62 0.97 0.69 0.69 0.67 0.97 0.53 0.53 0.72 0.98 1.00 1.00 0.72 0.96
voting 0.60 0.60 0.93 0.97 0.75 0.75 0.94 0.98 0.60 0.60 1.00 0.96 1.00 1.00 0.88 1.00

aDecision Tree + ASP
bRandom Forest + ASP
cLightGBM + ASP

https://doi.org/10.1017/S1471068424000401 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 997

Table 8. Average ratio of rule-based classifier’s precision vs. original tree-ensembles,
averaged over 5 folds. (Global explanations)

Decision Tree+ASPa Random
Forest+ASP

LightGBM+ASP

Dataset acc.cova prec.covc acc.cov prec.cov acc.cov prec.cov

adult 1.30 1.30 0.95 1.13 0.86 1.27
autism 1.00 1.00 1.00 1.00 1.00 1.00
breast 0.97 0.97 0.97 1.04 0.96 1.01
cars 1.04 1.04 1.05 1.05 0.36 0.36
census 0.07 0.24 0.44 0.47 0.30 0.90
compas 1.12 1.26 0.63 0.63 0.73 0.96
credit australia 1.17 1.17 1.00 1.01 1.04 1.06
credit german 1.01 1.39 0.69 0.92 0.72 0.60
credit taiwan 0.90 1.04 0.74 1.08 1.05 1.08
heart 1.11 1.11 0.96 1.06 1.22 1.27
ionosphere 0.71 0.71 0.70 0.70 1.00 1.02
kidney 0.66 0.66 0.62 0.62 0.92 0.97
krvskp 0.53 0.53 0.54 0.54 0.65 0.70
voting 0.62 0.62 0.63 0.63 1.01 1.02

aPerformance ratio of 1 means the rule set’s precision is identical to the original clas-
sifier. Numbers are shown in bold where the performance ratio was better than more
than 0.01 compared to the other encoding.
bacc.cov=accuracy and coverage encoding, see Section 4.
cprec.cov=precision and coverage encoding, see Section 4.

Forest), we observe that our method is slower than RuleFit except when the datasets are

relatively large (e.g., adult, census, compas, and credit taiwan), and in the latter cases

our method can be much faster than RuleFit. Similar trend is observed for LightGBM,

but here in some cases our method was faster than RuleFit (e.g., autism, heart, and

voting).

5.3 Evaluating local explanations

The purpose of generating local explanations is to provide the user with an explanation for

the model’s prediction for each predicted instance. Here, we use commonly used metrics

local-precision and coverage as proxy measures for the quality of the explanation.14 The

local-precision compares the (black-box) model predictions of instances covered by the

local explanation and the model prediction of the original instance used to induce the

local explanation. The coverage is the ratio of instances in the validation set that are

covered by the local explanation. These two metrics are in a trade-off relationship, where

pursuing high coverage is likely to result in low precision explanation and vice versa.

Furthermore, we also study the number of conditions in the explanation to measure the

14 In the original Anchors paper, the authors use the term precision, but here we add local- to distinguish
from the more commonly used definition of precision.

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue998

Table 9. Average running time of generating global explanations, averaged over 5
folds. (Global explanations)

Dateset DTa+ASP RFb+ASP LGBMc+ASP RuleFit

adult 3.07 68.24 109.08 370.17
autism 0.01 7.09 0.00 1.80
breast 0.06 5.11 0.30 1.82
cars 0.18 61.59 49.52 1.79
census 13.94 569.33 60.38 2,887.17
compas 0.46 95.20 19.97 45.13
credit australia 0.01 24.87 3.14 1.76
credit german 0.13 66.71 1.91 2.15
credit taiwan 0.99 123.58 481.65 250.65
heart 0.04 73.84 1.28 3.21
ionosphere 0.03 12.52 0.80 1.78
kidney 0.02 4.93 0.83 1.74
krvskp 0.16 74.80 35.03 2.50
voting 0.04 12.22 0.12 1.67

aDT=Decision Tree
bRF=Random Forest.
cLGBM=LightGBM.

conciseness of the extracted rules. Additionally, we will also compare the running time

to generate the local explanation.

The experiments were carried out similarly to the global explanation evaluation, except

that: (1) we replaced RIPPER and RuleFit with Anchors, (2) instead of using the full

validation set, we resampled the validation dataset to generate 100 instances in each

cross-validation fold for each dataset to estimate the metrics, to complete the experi-

ments in a reasonable amount of time, and (3) in the ASP encoding, we removed the

rule selection criteria to avoid excluding rules that are relevant to the predicted instance.

We were unable to complete Anchors experiment with the census dataset due to limited

memory (64GB) on our machine. For comparison, we computed direct and sufficient

explanations with the PyXAI15 library, which internally uses SAT and MaxSAT solvers

to compute local explanations (Audemard et al. 2022b,a). Our method currently does

not include the rule simplification feature. Therefore, to maintain a consistent compar-

ison, we also deactivated the rule simplification feature in PyXAI. Furthermore, as of

writing, PyXAI does not yet support LightGBM classifier, so only results for decision

tree and random forests are included. For the running time comparison, we exclude all

data preprocessing, training and tree processing and focus solely on the time taken to

generate local explanations.

5.3.1 Number of conditions in rules

Similarly to the evaluation of global explanations (Section 5.2.2), we evaluate the number

of conditions in local explanations in this section. The average number of conditions in

15 https://www.cril.univ-artois.fr/pyxai/

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 999

rules are listed in Tables 10, 11, 12. For the Decision Tree (Table 10) and Random Forest

(Table 11), the Anchors produced rules with smaller number of conditions on average

overall compared to our method. As for the LightGBM, the Anchors produced rules with

significantly larger number of conditions than our method, and often there was an order of

magnitude of difference in the number of rules. It is possible that the precision guarantee

of the Anchors required the algorithm to produce more specific rules, as also indicated by

the long run time especially on the datasets that produced the longest rules (e.g., census,

credit taiwan, and adult). This result shows that depending on the underlying learning

algorithm, our method can produce shorter and more concise explanations compared to

the Anchors.

It is interesting to note that, while PyXAI’s direct explanations performed almost

identically to ours for Decision Tree, it produced much larger rules for Random Forest.

Similarly, PyXAI’s sufficient explanations produced more conditions in the explanations

compared to our method or Anchors. It is possible that rule simplification could help

reduce the number of conditions in such cases.

5.3.2 Local-precision and coverage

The average local-precision, averaged over 5 cross-validation folds, is reported in

Tables 10, 11, 12. Note that while Anchors has a minimum precision threshold (we used

the default 0.95 setting), ours does not, and indeed we see that all Anchors explanations

have higher local-precision than the threshold. PyXAI produced the most precise expla-

nations out of the three methods compared, and both direct and sufficient explanations

almost always had the perfect local-precision of 1. The Decision Tree will always have

exactly one rule that is relevant to the prediction; therefore, we expect to see exactly 1

local-precision using our method. For the Random Forest and LightGBM, our method

produced local explanations with local-precision in 0.8-0.9 range for most of the datasets,

but Anchors’ explanations had higher local-precision in most cases.

The average coverage, averaged over 5 cross-validation folds, is reported in Tables 10,

11, 12. Interestingly, when using simpler models such as the Decision Tree and Random

Forest, Anchors can produce rules that have relatively high coverage, but the pattern

does not hold when using a more complex model, which in our case is LightGBM. With

LightGBM, our method consistently outperformed Anchors in terms of coverage in all

datasets, except for the census dataset, which we could not run. For Random Forest,

PyXAI’s direct explanations are much more precise and apply to a smaller number of

instances compared to our method. Sufficient explanations from PyXAI tended to show

greater coverage compared to direct explanations, which aligns with expectations given

their fewer number of conditions.

5.3.3 Local explanation running time

The average running time per instance is reported in Tables 10, 11, 12. For Decision

Tree, PyXAI was much faster than both our method and Anchors, whereas for Random

Forest, our method was faster than Anchors and PyXAI’s sufficient explanations in most

datasets. For LightGBM, our method consistently outperformed Anchors in terms of

run time. We also note that our method has a more consistent running time of below

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A
.
T
a
kem

u
ra

a
n
d
K
.
In
o
u
e

1000

Table 10. Decision tree local explanation metrics

Decision Tree

#Conditions Precision Coverage Run Time(s)

Dataset Ours Anch.a SATdb SATsc Ours Anch. SATd SATs Ours Anch. SATd SATs Ours Anch. SATd∗d SATs

adult 8.65 3.31 8.65 5.32 1.0 0.98 1.0 1.0 0.10 0.26 0.10 0.33 0.02 1.90 0.0003 0.0014
autism 1.00 1.55 1.00 1.00 1.0 1.00 1.0 1.0 0.62 0.11 0.62 0.62 0.01 0.86 0.0001 0.0003
breast 4.32 1.48 4.17 3.00 1.0 1.00 1.0 1.0 0.38 0.38 0.38 0.45 0.01 1.04 0.0002 0.0005
cars 4.03 2.20 4.03 3.07 1.0 0.99 1.0 1.0 0.17 0.21 0.17 0.21 0.01 0.22 0.0002 0.0007
census 8.08 n/a 8.08 3.12 1.0 n/a 1.0 1.0 0.20 n/a 0.20 0.57 0.03 n/a 0.0003 0.0009
compas 4.99 3.64 5.37 3.02 1.0 0.99 1.0 1.0 0.08 0.10 0.08 0.34 0.02 0.27 0.0002 0.0010
credit australia 1.87 1.00 1.52 1.00 1.0 1.00 1.0 1.0 0.38 0.51 0.38 0.51 0.01 0.25 0.0001 0.0003
credit german 4.32 3.08 4.38 3.04 1.0 0.99 1.0 1.0 0.14 0.27 0.14 0.31 0.01 0.92 0.0002 0.0007
credit taiwan 5.69 2.07 6.67 2.91 1.0 1.00 1.0 1.0 0.15 0.52 0.15 0.61 0.01 1.48 0.0002 0.0008
heart 2.60 1.85 3.24 2.37 1.0 1.00 1.0 1.0 0.23 0.31 0.23 0.40 0.01 0.33 0.0001 0.0004
ionosphere 3.63 2.85 3.88 3.27 1.0 1.00 1.0 1.0 0.37 0.04 0.37 0.44 0.01 1.34 0.0002 0.0004
kidney 2.84 1.69 2.49 1.83 1.0 1.00 1.0 1.0 0.30 0.10 0.30 0.41 0.01 0.88 0.0001 0.0003
krvskp 4.78 2.62 4.78 3.66 1.0 0.99 1.0 1.0 0.13 0.17 0.13 0.15 0.01 1.20 0.0002 0.0007
voting 2.45 1.22 2.45 1.79 1.0 0.99 1.0 1.0 0.33 0.50 0.33 0.48 0.01 0.37 0.0001 0.0004

aAnchors.
bPyXAI, direct explanations.
cPyXAI, sufficient explanations.
dExcluded from the run time comparison since the SAT solver is not involved in computing direct explanations.

https://doi.org/10.1017/S1471068424000401 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068424000401

G
en

era
tin

g
G
lo
ba
l
a
n
d
L
oca

l
E
xp
la
n
a
tio

n
s

1001

Table 11. Random forest local explanation metrics

Random Forest

#Conditions Precision Coverage Run Time(s)

Dataset Ours Anch.a SATdb SATsc Ours Anch. SATd SATs Ours Anch. SATd SATs Ours Anch. SATd∗d SATs

adult 6.37 3.07 107.51 18.80 0.77 0.99 1.00 0.99 0.14 0.36 0.01 0.03 0.15 5.43 0.01 0.81
autism 3.75 2.45 62.42 11.19 0.78 1.00 1.00 1.00 0.17 0.08 0.02 0.11 0.07 12.52 0.00 0.11
breast 3.91 2.03 65.35 23.30 0.71 1.00 1.00 1.00 0.32 0.28 0.03 0.09 0.08 25.64 0.01 0.08
cars 6.28 2.23 20.95 4.85 0.88 0.99 1.00 0.99 0.06 0.21 0.01 0.19 0.25 5.89 0.01 0.39
census 7.86 n/a 241.58 10.80 0.99 n/a 1.00 1.00 0.27 n/a 0.01 0.12 0.26 n/a 0.02 15.70
compas 3.74 2.88 146.55 33.15 0.78 0.98 1.00 1.00 0.20 0.12 0.01 0.02 0.27 4.04 0.01 1.45
credit australia 3.17 2.51 139.14 38.25 0.71 0.99 1.00 1.00 0.25 0.22 0.02 0.09 0.10 15.89 0.00 0.12
credit german 6.32 4.83 167.86 71.99 0.92 1.00 1.00 1.00 0.03 0.07 0.01 0.01 0.20 17.57 0.01 3.12
credit taiwan 7.47 1.57 479.19 42.56 0.92 0.99 1.00 1.00 0.07 0.61 0.01 0.04 0.20 5.00 0.02 2.30
heart 2.22 2.89 110.21 29.06 0.71 0.99 0.99 0.99 0.21 0.14 0.04 0.07 0.23 17.93 0.00 0.22
ionosphere 3.95 2.94 314.19 126.37 0.81 1.00 1.00 1.00 0.35 0.03 0.02 0.04 0.26 35.40 0.01 0.20
kidney 2.61 2.31 94.42 30.40 0.80 1.00 1.00 1.00 0.35 0.05 0.02 0.04 0.07 35.60 0.00 0.08
krvskp 6.11 3.78 65.17 17.53 0.80 1.00 1.00 1.00 0.14 0.13 0.01 0.05 0.23 20.87 0.01 3.94
voting 2.27 2.23 44.46 9.86 0.91 1.00 1.00 1.00 0.42 0.42 0.02 0.19 0.13 27.90 0.01 0.50

aAnchors.
bPyXAI, direct explanations.
cPyXAI, sufficient explanations.
dExcluded from the run time comparison since the SAT solver is not involved in computing direct explanations.

https://doi.org/10.1017/S1471068424000401 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue1002

Table 12. LightGBM local explanation metrics

LightGBM

#Conditions Precision Coverage Run Time(s)

Dataset Ours Anch.a Ours Anch. Ours Anch. Ours Anch.

adult 4.94 93.60 0.87 1.00 0.79 0.01 0.35 27.92
autism 1.00 1.55 1.00 1.00 0.62 0.11 0.01 1.02
breast 1.41 27.26 0.90 0.99 0.60 0.05 0.07 6.66
cars 1.17 20.46 0.72 1.00 0.54 0.01 0.16 1.23
census 7.57 n/a 0.94 n/a 0.94 n/a 0.34 n/a
compas 3.34 21.82 0.90 1.00 0.42 0.01 0.13 1.36
credit australia 2.63 35.63 0.93 1.00 0.27 0.02 0.08 3.19
credit german 2.81 51.96 0.86 1.00 0.31 0.01 0.05 8.38
credit taiwan 3.99 141.96 0.98 1.00 0.34 0.01 0.29 44.96
heart 2.40 25.54 0.96 1.00 0.21 0.03 0.02 2.22
ionosphere 3.50 31.10 0.98 1.00 0.37 0.02 0.03 14.44
kidney 2.19 40.74 0.89 1.00 0.51 0.02 0.05 11.25
krvskp 2.52 63.89 0.75 1.00 0.51 0.01 0.28 12.25
voting 2.06 14.78 1.00 0.98 0.44 0.05 0.02 3.96

aAnchors.

1 s across all datasets, regardless of the complexity of the underlying models, whereas

Anchors’ running time varies from sub-1 s to tens of seconds, depending on the dataset

and model. This is likely to be caused by the differences in which these methods query or

use information from the original model and generate explanations. In fact, a significant

amount of time is spent in tree processing in our method, whereas in Anchors the search

process is often the most time-consuming step. Nonetheless, this comparative experiment

demonstrated that our method can produce local explanations in a matter of seconds even

when the underlying tree-ensemble is large.

To conclude the experimental section, we summarize the main results obtained in this

section. For global explanations, we analyzed (1) the average size of generated rule sets

and compared it against known methods, as a proxy measure for the degree of simpli-

fications, (2) the relative performance of the rule sets and compared it against known

methods, as a proxy measure for the relevance of the explanations, (3) the fidelity of the

explanations, and (4) the effect of modifying the ASP encoding on the precision metric of

the explanations. Overall, our method was shown to be able to produce smaller rule sets

compared to the known methods, however, in terms of the relevance and fidelity of the

rules, RuleFit performed better in most cases, demonstrating the trade-off relationship

between the complexity of the explanations and performance.

For local explanations, we compared (1) number of conditions, (2) local-precision, (3)

coverage and (4) running time of our method against Anchors and PyXAI. In terms of

local-precision, although our method could produce explanations with reasonably high

precision (0.8–0.9 range), Anchors and PyXAI performed better overall. As for coverage,

we found that explanations generated by our method can cover more examples for tree-

ensemble. Regarding running time, our method had a consistent running time of less

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 1003

than 1 s, whereas the running time of Anchors varied between datasets. The experiments

for local explanations also highlight the differences between our method and Anchors:

while Anchors can produce high-precision rules, our method has an advantage in terms

of memory requirement and consistent running time.

6 Related works

Summarizing tree-ensemble models has been studied in literature, see for example, Born

Again Trees (Breiman and Shang 1996), defragTrees (Hara and Hayashi 2018) and inTrees

(Deng 2019). While exact methods and implementations differ among these examples, a

popular approach to tree-ensemble simplification is to create a simplified decision tree

model that approximates the behavior of the original tree-ensemble model. Depending

on how the approximate tree model is constructed, this could lead to a deeper tree with

an increased number of conditions, which makes them difficult to interpret.

Integrating association rule mining and classification is also known, for example, Class

Association Rules (CARs) (Liu et al . 1998), where association rules discovered by pattern

mining algorithms are combined to form a classifier. Repeated Incremental Pruning to

Produce Error Reduction (RIPPER) (Cohen 1995) was proposed as an efficient approach

for classification based on association rule mining, and it is a well-known rule-based

classifier. In CARs and RIPPER, rules are mined from data with dedicated association

rule mining algorithms, then processed to produce a final classifier.

Interpretable classification models is another area of active research. Interpretable

Decision Sets (IDSs) (Lakkaraju et al. 2016) are learned through an objective function,

which simultaneously optimizes accuracy and interpretability of the rules. In Scalable

Bayesian Rule Lists (SBRL) (Yang et al . 2017), probabilistic IF-THEN rule lists are

constructed by maximizing the posterior distribution of rule lists. In RuleFit (Friedman

and Popescu 2008), a sparse linear model is trained with rules extracted from tree-

ensembles. RuleFit is the closest to our work in this regard, in the sense that both

RuleFit and our method extract conditions and rules from tree-ensembles, but differ

in the treatment of rules and representation of final rule sets. In RuleFit, rules are

accompanied by regression coefficients, and it is left up to the user to further interpret

the result.

Lundberg et al . (2020) showed how a variant of SHAP (Lundberg and Lee 2017), which

is a post hoc explanation method, can be applied to tree-ensembles. While our method

does not produce importance measures for each feature, the information about which rule

fired to reach the prediction can be offered as an explanation in a human-readable format.

Shakerin and Gupta (2019) proposed a method to use LIME weights (Ribeiro et al. 2016)

as a part of learning heuristics in inductive learning of default theories. Anchors (Ribeiro

et al. 2018) generates a single high-precision rule as a local explanation with probabilistic

guarantees. It should be noted that both LIME and Anchors require the features to be

discretized, while recent tree-ensemble learning algorithms can work with continuous

features. Furthermore, instead of learning rules with heuristics from data, our method

directly handles rules which exist in decision tree models with an answer set solver.

There are existing ASP encodings of pattern mining algorithms, for example, (Järvisalo

2011; Gebser et al . 2016; Paramonov et al . 2019), that can be used to mine itemsets and

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue1004

sequences. Here, we develop and apply our encoding on rules to extract explanatory rules

from tree-ensembles. On the surface, our problem setting (Section 3.1) may appear similar

to frequent itemset and sequence mining; however, rule set generation is different from

these pattern mining problems. We can indeed borrow some ideas from frequent itemset

mining for encoding; however, our goal is not to decompose rules (cf. transactions) into

individual conditions (cf. items) then construct rule sets (cf. itemsets) from conditions,

but rather to treat each rule in its entirety then combining rules to form rule sets. The

body (antecedent) of a rule can also be seen as a sequence, where the conditions are

connected by conjunction connective ∧, however, in our case, the ordering of conditions

does not matter, thus sequential mining encodings that use slots to represent positional

constraints (Gebser et al . 2016) cannot be applied directly to our problem.

Solvers other than ASP solvers have been utilized for similar tasks. For example, Yu

et al . (2020) proposed SAT- and MaxSAT-based approaches to minimize the total number

of conditions used in the target decision set. Their approaches construct IDSs based on

SAT- and MaxSAT-encodings, instead of using a weighted objective function (Lakkaraju

et al . 2016) that contains multiple terms such as coverage, number of rules and conditions.

Chen et al . (2019) proposed an efficient algorithm for the robustness verification of tree-

ensemble models, which surpasses existing MILP (mixed integer linear programming)

methods in terms of speed. While they do not consider (local) explanations explicitly in

their setting, their method allows computation of anchor features such that changes out-

side these features cannot change the prediction. More recently, alternative methods to

generate explanations based on logical definitions have been proposed (Izza and Marques-

Silva 2021; Ignatiev et al . 2022; Audemard et al . 2022b,a). These methods focus on local

explanations conforming to logical conditions, such as abductive (sufficient) explanations.

Similar to our approach, these methods are tailored for tree-ensemble models and utilize

SAT and MaxSAT solvers for efficient processing. On the other hand, our method differs

from these methods by using heuristics for generating explanations, and, by leveraging

the flexibility of ASP, facilitates the inclusion of user-defined selection criteria and prefer-

ences. Regarding model-agnostic explanation methods, while Anchors is model-agnostic,

its reliance on sampling to construct explanations often results in a longer run time, as

exemplified by experimental results reported in Section 5.3.

Guns et al . (2011) applied constraint programming (CP), a declarative approach, to

itemset mining. This constraint satisfaction perspective led to the development of ASP

encoding of pattern mining (Järvisalo 2011; Guyet et al. 2014). Gebser et al. (2016)

applied preference handling to sequential pattern mining, and Paramonov et al . (2019)

extended the declarative pattern mining by incorporating dominance programming (DP)

from Negrevergne et al . (2013) to the specification of constraints. Paramonov et al .

(2019) proposed a hybrid approach where the solutions are effectively screened first with

dedicated algorithms for pattern mining tasks, then declarative ASP encoding is used

to extract condensed patterns. While the aforementioned works focused on extracting

interesting patterns from transaction or sequence data, our focus in this paper is to

generate rule sets from tree-ensemble models to help users interpret the behavior of

machine learning models. As for the ASP encoding, we use dominance relations similar

to the ones presented in Paramonov et al . (2019) to further constrain the search space.

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 1005

7 Conclusion

In this work, we presented a method for generating rule sets as global and local expla-

nations from tree-ensemble models using pattern mining techniques encoded in ASP.

Unlike other explanation methods that focus exclusively on either global or local expla-

nations, our two-step approach allows us to handle both global and local explanation

tasks. We showed that our method can be applied to two well-known tree-ensemble

learning algorithms, namely Random Forest and LightGBM. Evaluation on various

datasets demonstrated that our method can produce explanations with good quality

in a reasonable amount of time, compared to existing methods.

Adopting the declarative programming paradigm with ASP allows the user to take

advantage of the expressiveness of ASP in representing constraints and optimization cri-

teria. This makes our approach particularly suitable for situations where fast prototyping

is required, since changing the constraint and optimization settings require relatively low

effort compared to specialized pattern mining algorithms. Useful explanations can be

generated using our approach, and combined with the expressive ASP encoding, we hope

that our method will help the users of tree-ensemble models to better understand the

behavior of such models.

A limitation of our method in terms of scalability is the size of search space, which

is exponential in the number of valid rules. When the number of candidate rules is

large, we suggest using stricter individual rule constraints on the rules, or reducing the

maximum number of rules to be included into rule sets (Section 3.4), to achieve reasonable

solving time. Another limitation is the lack of rule simplification in the generation of

explanations, since more straightforward rules could enhance the user’s comprehension.

Furthermore, while the current ASP encoding considers the overlap between rule sets

with the same consequent class (Section 3.5), it does not consider the overlaps between

the two rule sets with different consequent classes.

There are a number of directions for further research. First, while the current work did

not modify the conditions in the rules in any way, rule simplification approaches could

be incorporated to remove redundant conditions. Second, we could extend the current

work to support regression problems. Third, further research might explore alternative

approaches to implement a model-agnostic explanation method, for example, by combin-

ing a sampling-based local search strategy with a rule selection component implemented

with ASP. In addition, while the multi-objective optimization approach (Section 3.5)

allows for incorporating user desiderata, the fidelity to the original models can still be

improved. Future works could focus on exploring alternative encodings or additional

optimization strategies to better capture the nuances of the original models’ decision-

making processes, thereby improving the effectiveness of the explanations. Furthermore,

although local and global explanations serve different purposes and may not always align

perfectly (Section 4), achieving a certain level of consistency is important for main-

taining the credibility of the explanations. Future research could explore methods to

reconcile such differences, thereby creating a more unified model explanation framework.

More generally, in the future, we plan to explore how ASP and modern statistical machine

learning could be integrated effectively to produce more interpretable machine learning

systems.

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue1006

Acknowledgments

This work has been supported by JSPS KAKENHI Grant Number JP21H04905 and JST

CREST Grant Number JPMJCR22D3, Japan.

References

Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules. In Proceedings
of the 20th International Conference on Very Large Data Bases. VLDB ’94 , Vol. 1215, Morgan
Kaufmann Publishers Inc, San Francisco, CA, USA, 487–499.

Akiba, T. S., Yanase, S., Ohta, T. and Koyama, M. 2019. Optuna: A Next-generation
Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. KDD ’19 , Association
for Computing Machinery, New York, NY, USA, 2623–2631.

Audemard, G., Bellart, S., Bounia, L., Koriche, F., J.-M., Lagniez and Marquis, P.
2022a. On Preferred Abductive Explanations for Decision Trees and Random Forests. In
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence.
International Joint Conferences on Artificial Intelligence Organization, Vienna, Austria,
643–650

Audemard, G., Bellart, S.,Bounia, L., Koriche, F., Lagniez, J.-M. and Marquis, P. 2022b.
On the explanatory power of boolean decision trees. Data and Knowledge Engineering 142,
102088.

Breiman, L. 2001. Random forests. Machine Learning 45, 1, 5–32.

Breiman, L. and Shang, N. 1996. Born again trees. University of California, Berkeley, Berkeley,
CA, Technical Report 1, 2 .

Brewka, G., Delgrande, J., J., Romero and Schaub, T. 2015. Asprin: Customizing answer
set preferences without a headache. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence. AAAI ’15 , AAAI Press, 1467–1474.

Chen, H., Zheng, H., Si, S., Li, Y., Boning, D. and Hsieh, C.-J. 2019. Robustness verification
of tree-based models, In Advances in Neural Information Processing Systems, Vol. 32.Curran
Associates, Inc

Chen, T. and Guestrin, C. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’16 , ACM Press, San Francisco, California, USA, 785–794.

Cohen, W. W. 1995. Fast effective rule induction. In Proceedings of the Twelfth International
Conference on International Conference on Machine Learning. ICML ’95 , Morgan Kaufmann,
115–123.

Deng, H. 2019. Interpreting tree ensembles with intrees. International Journal of Data Science
and Analytics 7, 4, 277–287.

Doshi-Velez, F. andKim, B. 2017. Towards a rigorous science of interpretable machine learning,
arXiv: 1702.08608 [cs, stat].

Dua, D. and Graff, C. (2017). UCI machine learning repository. Available at
https://archive.ics.uci.edu/ml/index.php.

Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics 29, 5, 1189–1232.

Friedmann, J. H. and Popescu, B. E. 2008. Predictive learning via rule ensembles. The Annals
of Applied Statistics 2, 3, 916–954.

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 1007

Gebser, M., Guyet, T., Quiniou, R., Romero, J. and Schaub, T. 2016. Knowledge-based
sequence mining with ASP. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence. IJCAI 2016 , IJCAI/AAAI Press, 1497–1504.

Gebser, M., Kaminski,R., Kaufmann, B. and Schaub, T. 2014. Clingo = ASP + control:
Preliminary report. CoRR abs/1405.3694.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.
In ICLP/SLP. Vol. 88.1070–1080.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Glannotti, F. and Pedreschi, D.
2018. A survey of methods for explaining black box models. ACM Computing Surveys (CSUR)
51, 5, 593.

Guns, T., Nijssen, S. and De Raedt, L. 2011. Itemset mining: A constraint programming
perspective. Artificial Intelligence 175, 12-13, 1951–1983.

Guyet, T., Y., Moinard and Quiniou, R. 2014.Using answer set programming for pattern
mining, Actes Des Huitièmes Journées De l’Intelligence Artificielle Fondamentale (JIAF’14).

Hara, S. and Hayashi, K. 2018. Making Tree Ensembles Interpretable: A Bayesian Model
Selection Approach, International Conference on Artificial Intelligence and Statistics, 77–85.

Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J. and Baesens, B. 2011. An empirical
evaluation of the comprehensibility of decision table, tree and rule based predictive models.
Decision Support Systems 51, 1, 141–154.

Ignatiev, A., Izza, Y., Stuckey, P. J. and Marques-Silva, J. 2022. Using MaxSAT for
Efficient Explanations of Tree Ensembles. In Proceedings of the AAAI Conference on Artificial
Intelligence, 3776–3785.

Izza, Y. and Marques-SILVA, J. 2021. On Explaining Random Forests with SAT. In
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence.
International Joint Conferences on Artificial Intelligence Organization, Montreal, Canada,
2584–2591.

Jarvisalo, M. 2011 Itemset mining as a challenge application for answer set enumeration,
Logic Programming and Nonmonotonic Reasoning. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer,304–310

Ke, G., Meng,Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q. and Liu, T.-Y.
(2017) LightGBM: A highly efficient gradient boosting decision tree. In Advances in Neural
Information Processing Systems 30. Curran Associates, Inc,3146–3154

Lakkaraju, H., Bach, S. H. and Leskovec, J. 2016. Interpretable Decision Sets: A Joint
Framework for Description and Prediction. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’16 , ACM Press,
San Francisco, California, USA,1675–1684.

Lifschitz, V. 2008. What is answer set programming? In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, 1594–1597.

Liu, B., Hsu, W. and Ma, Y. 1998. Integrating Classification and Association Rule Mining.
In Proceedings of the Fourth International Conference on Knowledge Discovery and Data
Mining. KDD ’98 , AAAI Press, New York, NY,80–86.

Lundberg, S. M., Erion, G., Chen, H., Degrave, A., Prutkin, J. M., Nair, B., Katz,
R., Himmelfarb, J., Bansal, N. and Lee, S.-I. 2020. From local explanations to global
understanding with explainable AI for trees. Nature Machine Intelligence 2, 1, 56–67.

Lundberg, S. M. and Lee, S.-I.2017. A unified approach to interpreting model predictions.
In Advances in Neural Information Processing Systems, 4765–4774

Miller, T. 2019. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence 267, 1–38.

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue1008

Molnar, C. 2020. Interpretable machine learning, Lulu.com. https://christophm.github.io/
interpretable-ml-book/cite.html.

Negrevergne, B., Dries, A., Guns, T. and Nijssen, S. 2013. Dominance programming for
itemset mining. In Proceedings of the 2013 IEEE 13th International Conference on Data
Mining. ICDM ’13 , IEEE, 557–566.

Paramonov, S., Stepanova, D. and Miettinen, P. 2019. Hybrid ASP-based approach to
pattern mining. Theory and Practice of Logic Programming 19, 04, 505–535.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Duobourg, V., Vanderplas, J., Passos,
J., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. 2011. Scikit-learn:
machine learning in python. Journal of Machine Learning Research 12, 2825–2830

Ribeiro, M. T., Singh, S. and Guestrin, C. 2016. Why Should I Trust You?”: Explaining
the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’16 , ACM Press, San Francisco,
California, USA, 1135–1144.

Ribeiro, M. T., Singh, S. and Guestrin, C. 2018. Anchors: High-precision model-agnostic
explanations. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence.

Rudin, C. 2019. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence 1, 5,
206–215.

Shakerin, F. and Gupta, G. 2019. Induction of Non-Monotonic Logic Programs to Explain
Boosted Tree Models Using LIME. In Proceedings of the AAAI Conference on Artificial
Intelligence. AAAI ’19 , Vol. 33, 3052–3059

Takemura, A. and Inoue, K. 2021. Generating explainable rule sets from tree-ensemble learn-
ing methods by answer set programming. In Proceedings 37th International Conference on
Logic Programming (Technical Communications), ICLP Technical Communications 2021,
Porto (virtual event), 20-27th Sept. 2021,A. Formisano, Y. A. Liu, B. Bogaerts, A. Brik,
V.Dahl, C. Dodaro, P. Fodor, G. L. Pozzato, J. Vennekens and N. Zhou, Eds. EPTCS,
Vol. 345.127–140.

Witten, I. H., Frank, E. and Hall, M. A. 2016. The WEKA Workbench. Online Appendix
for “Data Mining: Practical Machine Learning Tools and Techniques”. Burlington: Morgan
Kaufmann.

Yang, H., Rudin, C. and Seltzer, M. I. 2017. Scalable bayesian rule lists. In Proceedings of
the 34th International Conference on Machine Learning. ICML 2017 , PMLR,3921–3930.

Yu, J., Ignatiev, A., Stuckey, P. J. and Le Bodic, P. 2020.Computing optimal deci-
sion sets with SAT. In Principles and Practice of Constraint Programming, H. Simonis,
Ed. Lecture Notes in Computer Science, Cham: Springer International Publishing.
952–970.

Appendix A Additional tables

The accuracy, F1-scores, precision and recall of the base models after hyperparameter optimiza-
tion are shown in Tables A1 and A2. The values in this table are used as the denominators when
calculating the performance ratio in Table 6.

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

Generating Global and Local Explanations 1009

Table A1. Base model accuracy and F1-scores, averaged over 5 folds

Accuracy F1-score

model DTa RFb LGBMc R.Fitd Rip.e DT RF LGBM R.Fit Rip.

adult 0.86 0.85 0.87 0.86 0.84 0.66 0.61 0.71 0.69 0.63
autism 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00
breast 0.93 0.97 0.97 0.95 0.94 0.90 0.96 0.95 0.93 0.91
cars 0.97 0.98 1.00 0.99 0.93 0.95 0.97 1.00 0.99 0.89
census 0.95 0.94 0.96 0.96 0.95 0.43 0.05 0.60 0.56 0.50
compas 0.78 0.80 0.80 0.80 0.79 0.57 0.55 0.58 0.59 0.59
credit australia 0.86 0.87 0.87 0.87 0.85 0.85 0.85 0.85 0.85 0.84
credit german 0.70 0.76 0.76 0.72 0.73 0.42 0.44 0.50 0.52 0.50
credit taiwan 0.81 0.82 0.82 0.82 0.82 0.46 0.43 0.47 0.47 0.46
heart 0.76 0.83 0.78 0.82 0.78 0.71 0.79 0.74 0.79 0.74
ionosphere 0.88 0.93 0.94 0.92 0.88 0.91 0.95 0.95 0.94 0.91
kidney 0.95 1.00 0.99 1.00 0.97 0.96 1.00 1.00 1.00 0.97
krvskp 0.99 0.97 0.99 0.99 0.99 0.99 0.97 0.99 0.99 0.99
voting 0.97 0.96 0.96 0.95 0.95 0.97 0.97 0.97 0.96 0.96

aDecisionTree
bRandomForest
cLightGBM
dRuleFit
eRIPPER

Table A2. Base model precision and recall, averaged over 5 folds

Precision Recall

model DT RF LGBM R.Fit Rip. DT RF LGBM R.Fit Rip.

adult 0.77 0.82 0.78 0.77 0.73 0.58 0.49 0.66 0.62 0.55
autism 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00
breast 0.92 0.94 0.94 0.93 0.94 0.88 0.97 0.96 0.93 0.89
cars 0.95 0.95 1.00 0.99 0.87 0.95 0.99 1.00 0.99 0.92
census 0.69 0.97 0.75 0.74 0.69 0.32 0.03 0.50 0.46 0.39
compas 0.62 0.71 0.69 0.68 0.64 0.53 0.45 0.50 0.53 0.55
credit australia 0.79 0.85 0.86 0.85 0.81 0.93 0.86 0.84 0.86 0.87
credit german 0.50 0.71 0.64 0.55 0.56 0.37 0.32 0.42 0.50 0.45
credit taiwan 0.65 0.69 0.67 0.67 0.66 0.35 0.31 0.36 0.36 0.36
heart 0.74 0.83 0.79 0.83 0.78 0.69 0.77 0.70 0.76 0.71
ionosphere 0.90 0.92 0.93 0.91 0.90 0.91 0.98 0.98 0.97 0.92
kidney 0.95 1.00 1.00 1.00 0.97 0.96 1.00 0.99 1.00 0.98
krvskp 0.98 0.96 0.99 0.99 0.99 1.00 0.98 1.00 0.99 0.99
voting 0.99 0.98 0.98 0.96 0.97 0.96 0.95 0.95 0.96 0.95

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

A. Takemura and K. Inoue1010

Appendix B Hyperparameter optimization

All hyperparameters were optimized using optuna Akiba et al . (2019). As evaluation metric,
we chose the F1-score. Hyperparameter tuning was performed separately for each fold on the
training data. Within each fold, we used 20% of the training data as the validation set. We used
early stopping for hyperparameter search, where the search was terminated after 30 trials if the
validation metric did not improve for 30 consecutive rounds. We set the maximum number of
search trials to 200, and the time-out for each study was set to 1,200 seconds. The search range
for each model is shown in Table B1.

Table B1. Search space definition for hyperparameter optimization

Model/Parameter Type Value Range Step

Decision Tree
max depth integer [2, 9]
min samples leaf float [0.01, 0.2]
min weight fraction leaf float [0.0, 0.5] 0.01
criterion categorical [gini, entropy]

Random Forest
n estimators integer [50, 500] 10
max depth integer [2, 9]
min samples leaf float [0.01, 0.2]
min weight fraction leaf float [0.0, 0.5] 0.01
criterion categorical [gini, entropy]

LightGBM
objective (fixed) categorical binary
metric (fixed) categorical binary logloss
num boost round (fixed) integer 1000
early stopping (fixed) integer 30
learning rate float [0.01, 0.2]
max depth integer [2, 9]
num leaves integer [2, 100]
min data in leaf integer [10, 500] 10
min child weight float [0.001, 10]
feature fraction float [0.05, 1.0]
subsample float [0.2, 1.0]
subsample freq int [1, 20]
lambda l1 float [1e-5, 10]
lambda l2 float [1e-5, 10]

RuleFit
rule generator categorical random forest
memory parameter float [0.0, 1.0] 0.1
lin standardise boolean
lin trim quantile boolean

RIPPER
num folds integer [2, 5] 1
prune boolean
no error check boolean

https://doi.org/10.1017/S1471068424000401 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000401

	Introduction
	Background
	Tree-ensemble learning algorithms
	Answer set programming
	Pattern mining

	Rule set generation
	Problem statement
	Rule extraction from decision trees
	Computing metrics and meta-data for selection
	Encoding inclusion criteria and constraints
	Optimizing rule sets

	Rule set generation for global and local explanations
	Experiments
	Experimental setup
	Datasets
	Experimental settings

	Evaluating global explanations
	Number of rules
	Number of conditions in rules
	Relevance of rules
	Fidelity metrics of global explanations
	Changing optimization criteria
	Global explanation running time

	Evaluating local explanations
	Number of conditions in rules
	Local-precision and coverage
	Local explanation running time

	Related works
	Conclusion
	References

