CYCLES OF EACH LENGTH IN REGULAR TOURNAMENTS
. 1
Brian Alspach

(received November 17, 1966)

1. Introduction. It is known that a strong tournament of
order n contains a cycle of each length k, k=3, ..., n,
([1], Thm. 7). Moon [2] observed that each vertex in a strong
tournament of order n is contained in a cycle of each length K,
k=3,...,n. Inthis paper we obtain a similar result for each
arc of a regular tournament, thatis, a tournament in which all
vertices have the same score.

The property that each arc of a tournament of order n is
contained in a cycle of each length k, k=3,...,n, is subse-
quently referred to as property A . If there is an arc from a
vertex u to a vertex v in a tournament T , we use the termin-
ology '"u defeats v' or 'v is defeated by u' and the notation
(u,v) eT. I(v)={ueT :(uv)eT} and O(u) ={veT:(uv)eT}.

2. Main result.

THEOREM. A regular tournament of order 2n + 1
satisfies property A .

Proof. A 3-cycle and a regular tournament of order 5
obviously satisfy property A . In the following we assume

n>3.

Let (v, VO) ¢ T be an arbitrary arc of T . The theorem

will follow if for each k, k=1,...,2n-1, there exists a k-path
from v to some vertex of I(v) such that v is not a vertex in

the path.
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Since v and v, are in neither of the sets O(VO) and
I(v) , we have O(v )[1I(v) #¢ . Letting v, € O(vo)ﬂ I(v) we
o

obtain a 1-path (vo, v ) of the desired form.

1

y oo,V ) ,1<1r<2n-2,
1 r - =

such that V. ¢ I(v) and v is not a vertex of the r-path. Let

Assume there is an r-path (vo, v

U = {ui, .. .,up} be the vertices of I(v) that are notin the

r-path.

CASE 1. U # ¢ and (Vr’ uj) e T for some u‘j e U. Then

(vo,v c Voo uj) is an (r+1) -path of the desired form.

1
CASE 2. U #¢) and (vr,uj) ¢ T for all uj e U. Assume
r>n-1. If (u1,v,)eT for i=0,1,...,r, then u, would have
= i

score greater than n contradicting the regularity of T . Hence,
since (u1,v ) e T, there is a vertex v. of the r-path, i<r,
r i

such that (vi, ui) ¢ T and (ui, Vj) e T for j=1i+,i42,..., 1 .
Then (vo,v1, . ,vi, u1,vi+1,vi+2, e ’Vr) is an (r+1) -path of
the desired type. Notice that we have replaced an arc (vi’vi+1)

of the r-path by a 2-path from v, to which does not pass
i

V.
through v . Henceforth, this method o;.ljbtaining a path of length
one greater will be referred to as replacement.

Assume 1< r<n-2. Since v ¢ I(v), then p>n-r> 2.
Since (uj,vr) e T for all uj e U, then if (vi, uj) ¢ T for some
vi ,1=0,1,...,r-1, and some uJ, e U, an (r+1) -path of the
desired form can be obtained by replacement. Thus we assume

(uj,vi) ¢ T for 0<i<r andall uj e U. Thus v defeats at

1
Hence, there are at least n-r > 2 members of O(VO) in the

most r members of the set S:{V,VO,...,Vr,u yeee,U ).
P

complement of S . Let W1, e 'Wn r denote n-r members of
O(Vo) in the complement of S . Since u1 defeats VeV

T
and has score n, it cannot defeat each Wj . Let (Wt’ ui) eT .

If r =1, then (vo,w

¢ ui) is a 2-path of the desired form. If
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r #1, then (Vo’wt' Uy Vs Vs e .,vr) is an (r+1)-path of the

desired type.

CASE 3. U = hich impli C sV e
¢ which implies I(v) __{V'1 v, Vr}

and r>n . Let W={w1,.. } be the vertices of T

o Won-ro1

in the complement of {v,v ,v ,...,v_} . I (w.,,v )eT for
o 1 r j r

some WJ. e W, or if (vo, w.) e T for some w,. e W, then an
J

(r+1)-path of the desired type can be obtained by replacement
since r >n . Consequently, assume (v ,w.)eT and (w.,v )e T
- r i o

for all w. e W.
J

If r=n, then W contains n-1 vertices. Thus there is
a vertex Wj of W that can be defeated by at most n-1 vertices

notin W . If \# defeats Wj , then we can obtain an (r+1)-path

of the desired type by replacement. On the other hand, if r>n,
then v, can defeat no vertex of W or else replacement yields

an (r+1)-path of the desired form. In either case, we can
assume there is a vertex w, ¢ W such that (Wt,V1) eT .

Consider the n-1 vertices among {VZ,V ""Vr} that

37
are r-path successors of the vertices of I(v) in the r-path.
Since v is defeated by v and every member of W, there

exists a vertex Vo 2< s<r, of the r-path such that (vo,vs)e T
and Vo g€ I(v) . The desired (r+1)-pathis
) -

(v ,v ,v WV LW,V VY
o] S

s+47 7T e’ T 17 27T Ts

The theorem follows by induction on the length of the path.

3. Conclusion. Let S be a tournament with vertices

v ., v which satisfies (i) property A or (ii) each arc of S
n

R
is contained in a 3-cycle and each vertex is the initial vertex in a

path of length kK, k=1,...,n-1 . Adjoin two vertices v 1 and
n

to S dl1l d
Vn+2 o and let Vn+'1 defeat vn_l_2 , let Vn+'1 be defeated by

all the vertices of S, and let vn+2 defeat all the vertices of S .

The resulting tournament, call it S', of order n+2 satisfies
property A . If the score sequence of S is (51, e, sn) , then
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the score sequence of S' is (1, s1+1, sz+1, e, sn+'1,n) .

Hence, the tournaments satisfying property A form a class
lying between strong tournaments and regular tournaments.

In general, an almost regular tournament, thatis, a
tournament of order 2n having n vertices with score n and
the remaining vertices with score n-1, does not satisfy property
A . To see this we construct the following tournament with

vertices v ,V , ...,V . Let v. defeat v, ,...,v. for

o 1 2n-1 i i+ i+n
i=0,1,...,n-1 and let v,  defeat v, s e e e, V.
! Yy i+1(mod 2n) i+n-1(mod 2n)
for i=mn,...,2n-1 . The resulting tournament is almost regular

and it is easy to see that the arc (v ,V ) is not contained in a
n n

-1
3-cycle.

The author wishes to thank Professor Paul Kelly for his

many valuable suggestions during the course of the author's
research,
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