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Experiments are conducted in an open-channel flow where half of the section is smooth
and the other half consists of an array of cubes, which are either submerged or emergent.
A shear layer featuring large-scale Kelvin–Helmholtz structures develops between the two
subsections. The flows are first analysed in the framework of the double-averaging method
(averaging of the flow both in time and space). Double averaging could be performed
thanks to an experimental set-up (three-dimensional, two-component telecentric scanning
particle image velocimetry) that allows to measure the velocity field in a large volume,
including the interstices between the cubes. A momentum balance performed on the
smooth subsection indicates that the loss of momentum towards the rough subsection
has the same order of magnitude than the momentum loss through bed friction.
This lateral momentum flux occurs nearly exclusively through turbulent shear stress,
whereas secondary currents plays a minor role and dispersive shear stress is negligible.
A pattern recognition technique is then applied to investigate statistically the large-scale
Kelvin–Helmholtz structures that develop in the shear layer. The structures appear to be
coherent over the water depth and to be strongly inclined in the vertical, the top part
being ahead. The educed coherent structure is responsible by itself for the shape of the
velocity profile across the shear layer and for a large part of the turbulence (up to 60 %
for the turbulent shear stress). Finally, a coupling is identified between the passage of
the Kelvin–Helmholtz structures and the instantaneous wake flow around the cubes at the
interface.
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1. Introduction

Natural or artificial open-channel flows are often characterised by regions of high lateral
shear. This shear can be the result either of a lateral difference in bed elevation (so-called
compound channels), of a lateral difference in bed roughness (so-called composite
channels) or due to the confluence of two streams of different velocities. For literature
references, see e.g. Van Prooijen, Battjes & Uijttewaal (2005), Proust et al. (2017), Dupuis
et al. (2017) for compound channels, Vermaas, Uijttewaal & Hoitink (2011), White & Nepf
(2007), Akutina et al. (2019) for composite channels and Uijttewaal & Booij (2000), Cheng
& Constantinescu (2020) for confluences. Here, the investigation will focus on a composite
channel.

When the shear is strong, a significant lateral momentum exchange between the two
regions of different velocity occurs. In such cases, modelling the two regions as separated,
dynamically isolated subsections, for example with the divided channel method (Yen
2002), can result in significant errors. However, bulk flow models that take this interaction
into account (e.g. the independent section method of Proust et al. 2009) introduce a
supplementary parameter, which itself needs to be modelled. A suitable understanding
of the momentum exchange process in shear layers is therefore necessary.

The lateral transfer of longitudinal momentum across the shear layer can occur through
four different mechanisms (Van Prooijen et al. 2005; Vermaas et al. 2011; Akutina et al.
2019): (i) a net bulk transverse flow between the two flow regions (for non-uniform flows);
(ii) secondary currents; (iii) the lateral turbulent shear stress; and (iv) the lateral dispersive
shear stress. Generally, the dominant contribution is the turbulent shear stress.

Lateral shear layers in shallow open-channel flows can be of two types (Proust et al.
2017; Proust, Berni & Nikora 2022; Dupuis, Schraen & Eiff 2023). Type 1 is characterised
by the presence of quasi-periodic large-scale Kelvin–Helmholtz structures and by a
widening in the downstream direction. In contrast, shear layers of type 2 do not have
quasi-periodic structures and do not widen downstream. The shear parameter λ, which
is defined as λ = (U2 − U1)/(U2 + U1), where U2 and U1 are velocity scales of the fast
and slow region, respectively, allows to distinguish these two types of shear layer (Proust
et al. 2017). Shear layers of type 1 develop when λ is above a critical value λcrit, which
depends on the level of the background turbulence (Dupuis et al. 2023). For λ < λcrit,
shear layers of type 2 develop. For common open-channel flows, λcrit is close to 0.3.
In the following, only shear layers of type 1, i.e. with Kelvin–Helmholtz structures, are
considered.

Shear layers of type 1 can cease to widen for two reasons. First, the shear layer can
be laterally confined, for example by side walls. Second, an energetic equilibrium can
establish between turbulent energy production by the shear and energy dissipation, which
can be caused by wall friction or by the wake of solid elements (Dupuis et al. 2023).

Kelvin–Helmholtz structures are mainly two-dimensional (2-D): the velocity
fluctuations in the plane of shear (i.e. the plane formed by the streamwise direction
and the direction of the velocity gradient) are much larger than the fluctuations in the
direction normal to this plane (called herein the out-of-plane direction). Nonetheless, the
question arises about the coherence of the Kelvin–Helmholtz structures in the out-of-plane
direction. In unbounded shear layers with invariant conditions in the out-of-plane direction
(so-called plane shear layers), the out-of-plane coherence depends on the Reynolds
number. At low Reynolds number, the Kelvin–Helmholtz structures of the laminar plane
shear layer are nearly 2-D (Lasheras, Cho & Maxworthy 1986) and therefore fully
coherent in out-of-plane direction. With increasing Reynolds number, the laminar 2-D
Kelvin–Helmholtz vortices become turbulent and three-dimensional (3-D), because of
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secondary instabilities (Bernal & Roshko 1986; Lasheras et al. 1986). Yet, even for
fully turbulent plane shear layers at high Reynolds number, Browand & Troutt (1985)
showed that the Kelvin–Helmholtz structures maintain their coherence in the out-of-plane
direction over several δω, where δω is the vorticity thickness. In shear layers that are
confined in the out-of-plane direction (so-called shallow shear layers), as are shear layers
in compound and composite channels, the Kelvin–Helmholtz structures become more
complex as in the plane case, as they interplay with the boundary (wall or free surface).
Nonetheless, Dupuis et al. (2017) found, in the case of shear layers in a compound channel,
Kelvin–Helmholtz structures to keep their coherence over all the out-of-plane extent of the
shear layer.

Large-scale flow structures in a confined environment are known to be 3-D. For
example, a 2-D vortex dipole generator set vertically in a laminar open-channel flow gives
rise to a complex 3-D vortex structure (Albagnac et al. 2014). Little is known on the
three-dimensionality of Kelvin–Helmholtz structures in a shallow shear layer. White &
Nepf (2007), who investigated a shallow shear layer generated by an array of emerging
rods adjacent to a smooth bed, showed that there seemed to be a recirculation coupled
with the Kelvin–Helmholtz vortex, with near-bed fluid being entrained towards the vortex,
carried upwards along the vortex and ejected close to the surface.

The present study aims at investigating a composite channel flow where one side is a
smooth bed and the other side is made of an array of cubes. The objective is to quantify,
for both lowly submerged and emerged cubes conditions, the contributions (ii)–(iv) to
the momentum exchange listed above – contribution (i), the bulk transverse flow, is not
considered due to streamwise invariant conditions. The flow conditions are chosen such
that Kelvin–Helmholtz structures develop (λ > λcrit). The second objective is thus to
assess the contribution of these large-scale structures to the momentum exchange.

To measure the entire 3-D flow field with a fine spatial resolution, a new experimental
particle image velocimetry (PIV) set-up was developed, combining telecentric optics and
laser-scanning with transparent cubes. The measured flow field spans nearly all the width
of the flow, including the interstices between the roughness elements and extends over an
appropriate length in the streamwise direction for double-averaging purposes.

To describe and statistically define the large-scale Kelvin–Helmholtz structures
developing in the shear layer, an eduction method is carried out based on a pattern
recognition technique (PRT), originally developed for arrays of hot-films measurements
by Ferre & Giralt (1989) and subsequently applied to complex 3-D flows by Eiff & Keffer
(1997).

The article is organised as follows. After exposing the experimental method in § 2, the
flows are described in terms of double-averaged quantities in § 3. A momentum balance is
performed in § 4 to estimate the importance of the momentum exchange between the two
subsections. Section 5 focuses on the Kelvin–Helmholtz structures that develop in these
shear layers. In § 6, the coupling between these large structures and the flow around the
cubes is investigated. A conclusion is drawn in § 7.

2. Experimental method

The experiments were performed in a 26 m long and 1.1 m wide glass-walled open-channel
flume, with a constant slope of S0 = 3.1 mm m−1, at IMFT in Toulouse, France. As
sketched in figure 1(a), one half-side of the flume was covered by smooth glass plates
and the other side by glass plates with attached cubes of side k = 40 mm arranged in
a square configuration. The elementary pattern of the array in the horizontal plane is a
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Figure 1. (a) Bottom view of the channel; the vertical line on the left side indicates the streamwise extent of
the field of view (FOV) of the camera. (b) Experimental set-up for lateral and (c) for vertical scanning 3-D-2-C
PIV. (d,e) Definition of some flow regions and references used in the text.

91.5 × 91.5 mm2 square, yielding a solid volume fraction within the canopy of N = 0.19.
The half-width B of the flume corresponds exactly to six elementary patterns.

The absolute longitudinal coordinate parallel to the bed with origin at the flume inlet is
noted as xa (x refers to a relative coordinate, defined below); y is the transverse coordinate
with y = 0 in the centre of the flume corresponding to the interface between the rough and
the smooth bed, y being positive over the smooth bed; z is normal to the bed, with z = 0
at the glass bed level and oriented upwards. The components of the velocity in the x-, y-
and z-directions are denoted as u, v and w. An overline symbol denotes a time-averaged
quantity and the notation 〈·〉x stands for spatial averaging in the longitudinal direction
over the length of the elementary cube array pattern (91.5 mm). The symbol 〈·〉x,y denotes
a spatial averaging in both longitudinal and lateral directions over an elementary cube
array pattern. Primes denote time fluctuations and tildes space fluctuations. The cube array
begins at xa = 3.5 m and stops at the channel outlet xa = 26 m. One row of cubes in the
measurement section at xa = 19.5 m is made of optical-grade glass with sharp edges for
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h h/k Qtot Ae/A Ue he Re Fr τe cf
Test case mm — L s−1 % cm s−1 mm ×103 — Pa —

SUB2 80 2 45.2 95 53.9 76.2 41 0.62 2.43 0.0159
SUB1 60 1.5 26.5 94 42.9 56.2 24 0.58 1.83 0.0186
EMG 32 0.8 10.7 91 33.6 28.9 10 0.63 0.97 0.0156

Table 1. Flow conditions for the three test cases: water depth h, relative submergence h/k, total discharge
Qtot, ratio Ae/A of the effective cross-sectional area Ae = ∫

A φ dA and the total channel cross-sectional
area A = 2Bh, effective bulk velocity Ue = Qtot/Ae, effective flow depth he = Ae/(2B), Reynolds number
Re = Uehe/ν, Froude number Fr = Ue/(ghe)

0.5, effective bed shear stress τe = ρgAeS0/(2B) and effective
bed-friction coefficient cf = τe/(0.5ρU2

e ).

optimum optical access. All other cubes are machined from polyvinyl chloride plates, also
with sharp edges.

Three flow regimes were investigated. For the first two, the cubes are submerged, with a
submergence ratio of h/k = 2 (test case SUB2) and h/k = 1.5 (test case SUB1), where h is
the water depth. For the third flow regime (EMG), the cubes are emergent, with h/k = 0.8.

The downstream weir of the flume was positioned to obtain as much as possible a
constant water depth along the flume. As the flow on the smooth side was close to
the critical state (Froude number locally close to one), local flow depth variations of
approximately ±2 mm were present due to very small stationary hydraulic jumps which
formed at certain positions. Yet, no large-scale water surface gradient was observed
between the upstream and downstream ends of the channel.

Table 1 contains values of the relevant flow parameters for the three flow regimes: the
total discharge Qtot; the effective bulk velocity Ue = Qtot/Ae, where Ae = ∫

A φ dA is the
effective cross-sectional area (Akutina et al. 2019), i.e. the integral of the porosity φ( y, z)
over the cross-section A (φ is the porosity along a line in the x-direction); the effective
depth he = Ae/(2B); the Reynolds number defined with the effective bulk velocity and
the effective depth Re = Uehe/ν = Q/(Bν); and the bulk effective Froude number Fr =
Ue/(ghe)

0.5. Also included in table 1 are the values of the effective bed shear stress τe =
ρgAeS0/(2B), which would be the bed shear stress acting on a wetted perimeter of 2B.
The corresponding effective bed-friction coefficient cf = τe/(0.5ρU2

e ) is also reported
and appears to be close for the three flow regimes.

A telecentric scanning three-dimensional, two-component particle image velocimetry
technique (3-D-2-C PIV) was developed to measure the complete flow, including the
interstices of the cube array. In this technique, a linear motor enables the laser sheet to
travel in the flow domain, as sketched in figure 1(b,c). The result is a two-component
velocity field (2C) in the volume scanned by the laser sheet (3-D). The frame rate of
the camera and the travelling velocity of the laser carriage are set up to obtain two
successive frames with a given percentage of overlap for the illuminating laser sheet.
Two-dimensional PIV correlations are computed on two successive frames. A 85 %
overlap of the laser sheet in two successive images was found to be the optimum for
PIV calculations (Dupuis et al. 2018). The use of a 180 mm diameter bi-telecentric lens
(Opto-Engineering TC4M 120) for the camera eliminates all parallax effects, which would
lead to the formation of hidden flow parts behind the cube sides. Similarly, the use of an
in-house lens system to produce a laser sheet with parallel rays is used to avoid shadows
and light focusing. More details on this set-up are given by Dupuis et al. (2018).
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Scanning was performed at xa = 19.5 m and in two directions: translation of a vertical
PIV plane in the lateral direction (lateral scanning, figure 1b) and translation of a
horizontal PIV plane in the vertical direction (vertical scanning, figure 1c). The lateral
scanning gives access to the velocity components u and w over nearly the whole width
of the channel (−400 < y < 547 mm), over the whole water column except for the last
centimetre near the free surface (due to waves and reflections) and over a streamwise
distance of approximately 15 cm. The vertical scanning gives access to the velocity
components u and v in the range −80 < y < 100 mm, over the whole water column
(except the last centimetre close to the free surface) and again over a streamwise distance of
approximately 15 cm. For the lateral scanning, a continuous 20 W laser (Verdi G) was used
and the number of scans (and therefore of samples) was approximately 110 for each test
case, this number being relatively small because of limited camera memory (nevertheless,
the standard error in the mean of ū remains less than 1 %); each scan leads to approximately
2400 velocity fields with a lateral spacing of dy = 0.4 mm. For the vertical scanning, a
pulsed two-cavity Nd:YAG laser (2 × 200 mJ) was used. Here, the number of scans was
approximately 2100 for each test case; each vertical scan generates 14 (case EMG) to 35
(case SUB2) velocity fields with a vertical spacing of dz = 1.9 mm, 1.8 mm and 1.3 mm
for test cases SUB2, SUB1 and EMG, respectively. In both scanning set-ups, the camera
was a high-speed PCO Dimax (1024 × 1024 px2 resolution at 4000 fps).

The scanning 3-D-2-C PIV technique allowed to resolve the whole flow domain, but at
low frequency. High frequency time-resolved two-dimensional, two-component (2-D-2-C)
PIV measurements were therefore additionally performed both in fixed vertical xz-planes
(y = −3 and −45 mm) and in fixed horizontal xy-planes (at z = 10, 20, 30, 45, 55 and
65 mm), at the longitudinal position xa = 19.5 m. The set-up was the same as for the
scanning 3-D-2-C PIV, but the laser was maintained at a fixed position. For the vertical
xz-planes (single-frame PIV), the sample frequency was respectively 700, 600 and 400 Hz
for test cases SUB2, SUB1 and EMG, with a number of samples (velocity fields) of
approximately 100 000. For the horizontal xy-planes (double-frame PIV), the sample
frequency was 100 Hz for each test case, with a number of samples (velocity fields) of
approximately 70 000. Due to the limitation of the camera memory, for each 2-D-2-C PIV
measurement, the recording was divided into 20 independent time series, and between
each of them, the camera memory had to be emptied.

The water was seeded with 60 µm diameter polyamide particles of density 1.03. The
image resolution is approximately 10 px mm−1 for both the horizontal and the vertical
planes. The images were processed with a fast Fourier transform-based deformation
method algorithm (CPIV-IMFT), using an interrogating window size of 24 × 24 px2 and
an overlap of 50 %.

To analyse the velocity data, we define a new coordinate x = xa − 19.5 m as the
longitudinal coordinate with the reference (xa = 19.5 m) being the frontal edge of the
cube lying in the centre of the camera field of view.

To help with the flow description, flow regions and references are defined in
figure 1(d,e). The alleys are the free regions between two longitudinal rows of cubes. The
interface is the vertical plane at y = 0 (and the interface region is the region around this
plane). The outer cube denotes the cube (or cube row) that is closest to the smooth bed.
The cavity is the flow region between two successive cubes in the streamwise direction.

Throughout the figures in the article, the yz-planes are viewed from downstream and
the xy-planes are viewed from below (bottom view). This choice was made to follow the
convention that the low-speed side of the shear layer is on the left-hand side of the figure.
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Figure 2. Autocorrelation of the longitudinal velocity fluctuation u′(t) for nine positions along the channel for
test case SUB1 at y/B = 0.018 and z/h = 0.58. Inset shows the longitudinal development of the time scale
τu multiplied by the effective bulk velocity Ue for test case SUB2 at y/B = 0.018 and z/h = 0.69, and test
case SUB1 at y/B = 0.018 and z/h = 0.58. Here, τu is inferred from the autocorrelation using either two times
the time-lag corresponding to the first minimum of the autocorrelation (‘min’ in the legend) or two times the
time lag between the first minimum and the subsequent maximum (‘max-min’ in the legend). Open symbols are
LDV measurements and the solid symbol � refers to the PIV measurement for SUB2 at the same (y, z)-location
(at xa = 19.5 m). There is no LDV measurement at xa = 19.5 m because of probe access limitation.

2.1. Longitudinal flow development
As discussed in § 1, shallow shear layers of type 1 expand laterally when going
downstream, and can reach a constant width if equilibrium with the bed friction is found
or if they reach the side walls. As the PIV set-up could not be easily moved and remained
at position xa = 19.5 m, we used a mobile laser Doppler velocimetry (LDV) measurement
set-up to investigate the downstream flow development of the large-scale structures’ size
by means of autocorrelation. The single-point LDV measurement of the longitudinal
velocity u was carried out at nine xa-locations along the channel for test cases SUB2 and
SUB1 (no measurements could be made for EMG due to probe access limitations). The
measurement position was y = 10 mm and z = 55 mm for test case SUB2, and y = 10 mm
and z = 35 mm for test case SUB1. The measurements were 30 minutes long with a
frequency of 100 Hz.

Figure 2 shows the autocorrelations of the fluctuation of the streamwise velocity
for the nine xa positions along the channel for SUB1. The autocorrelations all exhibit
damped sinusoids, a signature of quasi-periodic signals, as expected from the advection
of Kelvin–Helmholtz-type structures. Two methods were used to estimate the quasi-period
τu: the time lag corresponding to the first minimum of the autocorrelogramm, multiplied
by two (‘min’ method); and the time lag between the first minimum and the subsequent
maximum, again multiplied by two (‘max-min’ method). A rough estimate of the
structures’ length λx is then obtained by means of Taylor’s hypothesis using as convection
velocity the bulk velocity Ue (which is constant with x), i.e. λx = τuUe.
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Figure 3. Cross-sectional distribution of double-averaged longitudinal velocity 〈ū〉x for test cases SUB2,
SUB1 and EMG.

The longitudinal evolution of λx with the two methods of calculating τu is shown in
the inset of figure 2 for both SUB2 and SUB1. For comparison, τuUe measured with the
2-D PIV set-up for SUB2 at xa = 19.5 m and the same (y, z)-location is also reported on
the graph (solid symbol). The two ways of calculating τu give very close results (note
that at the first two xa-positions for SUB2, the first maximum was hardly detectable,
such that there is no value for the ‘max-min’ method there). It appears that λx grows
continuously from the cube array leading edge to the channel end without converging to
a finite value in the experiments presented here. While the large-scale structures’ length
is still growing at the PIV measurement section (xa = 19.5 m), it has already attained a
length of approximately 1.6 m. It can be noted that the quasi-periodicity (quantified by the
level of the first minimum and the first maximum in the autocorrelation) at first increases
with xa before reaching similar amplitudes after approximately 14 m, suggesting that the
primary development is achieved at this stage while the structures continue to grow in
length.

3. Double-averaged flow statistics

As the flow is heterogeneous in the streamwise direction in and above the cube array, it is
appropriate for describing these flows to use double-averaged quantities, i.e. to average the
flow quantities in time and in space (here in the streamwise direction on the pattern length).
The space average used is intrinsic, i.e. only over the fluid part (Nikora et al. 2007), and
performed over the length of a pattern of the cube array.

Figure 3 shows the cross-sectional distribution of the double-averaged longitudinal
velocity 〈ū〉x. For the three test cases, there is, as expected, a high velocity difference
between the smooth and rough subsections.

The discharge in the rough and smooth subsections, Qr and Qs, is calculated by
integrating φ〈ū〉x over each cross-section (the velocity in the white zones without
measurements in figure 3 was extrapolated). The discharge ratio Qr/Qtot is reported in
table 2. It is seen to decrease from 24 % for SUB2 to 13 % for EMG. Table 2 also gives
the subsectional effective bulk velocities Ue,r = Qr/Ae,r and Ue,s = Qs/Ae,s, where Ae,r
and Ae,s are the effective cross-sectional areas of the subsections (integral of φ), the
subsectional Reynolds numbers Rer = hUe,r/ν and Res = hUe,s/ν, and the subsectional
Froude numbers Frr = Ue,r/(gh)0.5 and Frs = Ue,s/(gh)0.5.
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Interaction between a rough bed and an adjacent smooth bed

Qr/Qtot Ue,r Ue,s Rer Res Frr Frs λ

Test case % cm s−1 cm s−1 ×103 ×103 — — —

SUB2 24 27.6 77.7 20.0 62.2 0.33 0.88 0.45
SUB1 17 16.0 66.4 8.4 39.8 0.22 0.87 0.58
EMG 13 9.8 52.8 2.5 16.9 0.20 0.94 0.84

Table 2. Subsectional flow quantities and non-dimensional numbers (index r refers to the rough and index s to
the smooth subsection): the discharge ratio Qr/Qtot; the subsectional effective bulk velocities Ue,r = Qr/Ae,r

and Ue,s = Qs/Ae,s, where Qr = ∫ 0
y=−B

∫ h
z=0 φ〈ū〉x dA, Qs = ∫ B

y=0

∫ h
z=0 φ〈ū〉x dA, Ae,r = ∫ 0

y=−B

∫ h
z=0 φ dA,

Ae,s = ∫ B
y=0

∫ h
z=0 φ dA; the subsectional Reynolds numbers Rer = hUe,r/ν and Res = hUe,s/ν; the subsectional

Froude numbers Frr = Ue,r/(gh)0.5 and Frs = Ue,s/(gh)0.5; the shear parameter λ = (U2 − U1)/(U2 + U1);
the definitions of U2 and U1 are given in the text.

Figure 4(a–c) shows, for different relative elevations z/k, the lateral profiles of
the double-averaged longitudinal velocity 〈ū〉x( y) and the lateral profiles of the
streamwise-averaged longitudinal turbulent normal stress 〈u′2〉x( y) are shown in
figure 4(d–f ). The blue profiles for SUB2 and SUB1 are taken at mid-height of the
fluid layer above the canopy and the red profiles are taken at mid-height of the cubes
(z/k = 0.5). The black dotted profile is the velocity additionally spatial-averaged in the
lateral direction over a pattern length, 〈ū〉x,y( y). At the interface (around y = 0), SUB2
and SUB1 feature the typical characteristics of a shear layer: a velocity profile with an
inflection point and a peak of turbulence intensity. Concerning test case EMG, the velocity
profile departs from the typical shear layer profile, as the velocity in the low-speed part is
decreasing towards the high-speed part, instead of increasing. This atypical behaviour will
be discussed later in this section.

The shear parameter λ = (U2 − U1)/(U2 + U1) was calculated from the lateral profiles
of 〈ū〉x,y( y) respectively at z/k = 1.50, z/k = 1.25 and z/k = 0.50 for SUB2, SUB1 and
EMG, and reported in table 2 (note that for SUB2 and SUB1, 〈ū〉x,y nearly collapses with
〈ū〉x at those z-elevations). Here, U2 was taken as the maximum of 〈ū〉x,y in the smooth
subsection, and U1 as the value of 〈ū〉x,y around the fourth cube for SUB2 and SUB1, i.e.
in the plateau region of 〈ū〉x,y, and as the local minimum of 〈ū〉x,y for EMG, between the
first and second cube. For all flows, λ is much higher than 0.3, i.e. higher than the critical
value λcrit which prevails for such flows for the onset of Kelvin–Helmholtz structures (see
§ 1).

The cross-sectional distribution of different turbulent stresses in the interface region is
plotted in figures 5 and 6: the longitudinal turbulent normal stress 〈u′2〉x in figure 5(a–c),
the lateral turbulent normal stress 〈v′2〉x in figure 5(d–f ), the lateral turbulent shear stress
〈u′v′〉x in figure 6(a–c) and the lateral dispersive shear stress 〈 ˜̄ũv̄〉x in figure 6(d–f ). As
for the velocities, the turbulence stresses are normalised by the effective bulk velocity
Ue. Other turbulent stresses which are not directly analysed in the paper are given in the
Appendix.

Above the cube (for SUB2 and SUB1), a typical shear layer behaviour is observed,
characterised by peaks of the turbulent stresses. Yet, the positions of maxima are different
for the longitudinal and the lateral turbulent normal stresses. The maximum of 〈v′2〉x

is located right above the outer cubes, whereas the maximum of 〈u′2〉x is closer to the
interface. For plane shear layers, the position of the peaks for the different turbulent
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Figure 4. (a–c) Lateral profiles of time- and x-averaged longitudinal velocity (blue and red lines) and time-,
x- and y-averaged longitudinal velocity (dashed black line) for the three test cases. (d–f ) Same as panels (a–c)
but for the longitudinal turbulent normal stress.

stresses usually coincide, or are very close, and also coincide with the inflection point
in the velocity profile (Bell & Mehta 1990; Olsen & Dutton 2002; Loucks & Wallace
2012). For shallow shear layers, however, the position of the peak can vary significantly
for the different turbulent stresses (Dupuis et al. 2023), mainly because several turbulent
sources are present. Here, the wakes of the outer cubes, in particular the boundary layers
on the upper faces, produce additional turbulence, which probably shifts the peak of the
lateral turbulent normal stress.

For test case EMG, and below the cubes’ top for SUB2 and SUB1, the influence
of the outer cubes is even stronger. The high 〈u′2〉x with a maximum against the
lateral cube face is likely due to the flow impingement against this face, especially the
impingement of strong sweeps (lateral flow towards the low-speed side), which accompany
the Kelvin–Helmholtz structures. In the region below the cubes’ top, the shear layer
turbulence is therefore hidden by the turbulence from the cubes’ wake.

The lateral turbulent shear stress −〈u′v′〉x, shown in figure 6(a–c), gives the intensity
and the direction of the lateral momentum transfer due to turbulent motion. For the
submerged cases (SUB2 and SUB1), it is the strongest in the free-flow region above the
cubes and the momentum transfer is towards the rough bed, i.e. towards the low-speed
region. Below the cubes’ top, there is also a momentum transfer from the smooth side
towards the cubes, although much weaker than the one above the cubes. Moreover, on the
left-hand side of the outer cubes, a momentum transfer exists in the opposite direction,
from the alley towards the cavity of the outer cubes. This momentum transfer is driven by
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Figure 5. (a–c) Longitudinal and (d–f ) lateral x-averaged turbulent normal stress in the yz-plane around the
interface for test cases SUB2, SUB1 and EMG.
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Figure 6. (a–c) x-Averaged lateral turbulence shear stress and (d–f ) lateral dispersive shear stress in the
yz-plane around the interface for test cases SUB2, SUB1 and EMG.

the velocity gradient between the alley and the cavity, which is of opposite sign to that of
the large-scale shear layer.

The lateral dispersive shear stress −〈˜̄u ˜̄v〉x, shown in figure 6(d–f ), is another contributor
to the lateral transfer of longitudinal momentum. In comparison with the turbulent shear
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SUB2, SUB1 EMG Mom. flux by turbulence
Mom. flux by recirculation
Mom. loss by impingment

Figure 7. Sketch of the fluxes of longitudinal momentum in the cross-section near the interface. Simple arrows
indicate momentum transfers due to turbulence (turbulent shear stress) and double arrows momentum transfers
due to recirculations (dispersive shear stress). For the purpose of representation, in this sketch, the view is from
upstream and the flow is laterally mirrored (the smooth bed is on the right-hand side of the sketch).

stress, the dispersive shear stress is negligible (consider the scale in the figure) and is
concentrated within and close to the cavity. The dispersive shear stress tends to transfer
longitudinal momentum towards the cavity from both sides. It is due to recirculations and
vortices developing in the cavity, which will be presented and discussed in § 6.1.

The fact that, in the present case, the dispersive shear stress is negligible outside of
the canopy should not lead to the conclusion that it is a general case. It is known from
boundary layer research that the extension of the roughness sublayer above the roughness
crest, i.e. the region above the roughness crest where the dispersive shear stress still plays a
role, is dependant on the geometry of the roughness. Very regular and dense canopies, for
which the flow cannot reattach to the bottom between two successive roughness elements,
induce a very weak dispersive shear stress outside the canopy (Chagot, Moulin & Eiff
2020). In the case of irregular canopies (Mignot, Hurther & Barthélemy 2009) or regular
canopies for which the distance between the elements enables a reattachment of the flow to
the bottom (Pokrajac et al. 2007), the dispersive shear stress can be significant also outside
the canopy. Pokrajac et al. (2007) for example showed that the dispersive shear stress still
contributes significantly to the total stress even 2k above the canopy height, where k is
the height of the roughness elements. The negligible dispersive shear stress outside of the
canopy in the present case is therefore related to the specific geometry of the roughness
used.

Figure 7 summarizes the directions of the lateral and vertical transfers of longitudinal
momentum in the interface region. The vertical transfers were determined by examining
the vertical turbulent shear stress −〈u′w′〉x, shown in the Appendix. For the submerged
cases SUB2 and SUB1, most of the lateral transfer of momentum occurs above the top of
the outer cubes, and is directed towards the rough bed. The first alley is fed in longitudinal
momentum from above (high −〈u′w′〉x in this region). The cavities of the outer cubes
are fed in longitudinal momentum from the smooth side as from the first alley, through
turbulent motion (turbulent shear stress) as well as through recirculations (dispersive shear
stress). For the emergent case EMG, no momentum transfer can occur directly from the
smooth bed to the alley, as the alley is isolated from the smooth bed by the cavities and
there is no passage above the cubes.

Instantaneously however, momentum transfers do occur directly between the smooth
bed and the alley in both directions, notably in form of large sweeps or ejections, as will
be shown in § 6. However, averaged in time, the alley does not gain momentum from the
cavity.

The cavities are fed by momentum from both sides. However, as there is no bulk
longitudinal flow in the cavity, this momentum input is necessarily dissipated. It is
converted into pressure force on the front face of the downstream cube and, to a lesser
extent, into bottom friction and possibly into a suction force on the lee face of the
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Interaction between a rough bed and an adjacent smooth bed

upstream cube. In other words, the longitudinal momentum that enters the cavity is mostly
lost by flow impingement against the face of the downstream cube.

For test case EMG, a particular flow pattern appears which departs from the expected
shear layer behaviour. In figure 4(c), as mentioned above, the double-averaged velocity
〈ū〉x,y on the low-speed side (cube array) decreases when approaching the high-speed
smooth bed. Similarly, the peaks of 〈ū〉x in the alleys decrease when approaching the
interface. This seeming anomaly can be explained as follows. Away from the shear layer
and the interface, the flow in the canopy is characterised by strong and straight flows
in the alleys. Close to the interface instead, turbulent large-scale structures (which will
be analysed and discussed in more detail in § 5) generate strong lateral instantaneous
flows through the canopy, especially in the first alley behind the outer cubes. These
quasi-periodic transverse flows generate enhanced drag forces on the cubes (momentum
loss), compared with the situation away from the shear layer and the interface. In addition,
these transverse flows associated with quasi-periodic large-scale structures lead to the
advection into the alley of the low-momentum fluid from the cavities, preventing the
development of a straight and strong flow in the alley, and leading to velocities weaker
than in alleys further away from the interface. In test cases SUB2 and SUB1, however,
where this particular flow pattern is not observed, longitudinal momentum is additionally
provided from above the canopy through vertical turbulent shear stress −u′w′, which can
compensate the effect of the large-scale periodic motions. This reversed velocity gradient
within the shear layer was not observed in sparser canopies (White & Nepf 2007; Dupuis
et al. 2017), likely because the channelisation of the flow in preferential alleys is not so
strong in such cases.

4. Momentum balance in the smooth subsection

To quantify the interaction between the smooth bed and the cube array, a momentum
balance can be carried out on either of the two subsections. Here, the momentum balance
is performed on the smooth part of the channel (0 < y < B), which is easier, and reads,
under the assumption of uniform flow:

S0 = 1
ρghB

∫ B

y=0
(τxz)z=0 dy + 1

ρghB

∫ h

z=0
(τxy)y=B dz︸ ︷︷ ︸

SF : friction

− 1
ρghB

∫ h

z=0
(τxy)y=0 dz︸ ︷︷ ︸

ST : exchange by turbulence

+ 1
ρghB

∫ h

z=0
(ρ〈ū〉x〈v̄〉x)y=0dz︸ ︷︷ ︸

SSC: exchange by secondary currents

, (4.1)

where τij is the total stress tensor, which is the sum of turbulent stress tensor, dispersive
stress tensor and viscous stress tensor (see for example Nikora et al. 2013):

τij = ρ

(
−〈u′

iu
′
j〉 − 〈ũi ũj〉 + ν

φ

∂φ〈ui〉
∂xj

)
. (4.2)

As was seen above in figure 6, the dispersive stress in (4.2) is negligible at y = 0. As
the viscous stress is also negligible, the exchange term ST only accounts for turbulent
momentum exchange, the total shear stress being reduced to the lateral turbulent shear
stress, τxy = −ρ〈u′v′〉x.

The momentum balance of (4.1) therefore states that the driving force (gravity force)
which, once normalised, reduces to the slope S0, balances three terms: the friction force
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on the bed and the side wall SF, the momentum flux coming from the cube array due to
turbulent motion ST (which is here a sink of momentum) and the momentum flux coming
from the cube array due to secondary currents SSC (which appears also to be a sink of
momentum here). Secondary currents refer to the components of the time- and eventually
space-averaged velocity vector that are in the cross-section plane (Tominaga & Nezu 1991;
Nikora et al. 2019), i.e. 〈v̄〉x and 〈w̄〉x.

The lateral turbulent shear stress at y = 0 could be directly calculated from the
measurements. The secondary currents term SSC could also be calculated directly from
the measurements. As the flow is considered to be uniform, there should be no bulk lateral
velocity. Therefore, the depth-averaged lateral velocity,

∫ h
z=0(〈v̄〉x)z=0 dz, which was not

completely zero due to measurement inaccuracy, was first subtracted from 〈v̄〉x to compute
SSC. Concerning the stress on the walls, (τxz)z=0 and (τxy)y=B, an estimate based on a
Manning relationship was used, assuming that the wall shear stress τw is the same on the
bottom and the side walls (all made of glass) and given by

τw = ρgn2U2
e,s

h1/3 , (4.3)

where n is the Manning coefficient of glass (n = 0.0096 s m−1/3). The value obtained for
τw was close to the measured values of −ρ〈u′w′〉x and −ρ〈u′v′〉x in the vicinity of the
bottom and the side wall, respectively (these measured quantities are hard to use directly
to estimate the wall shear stress, as it is difficult to interpolate the total shear stress at the
wall).

Figure 8 shows the contribution of the different terms of the momentum balance (4.1)
for the three test cases. The fact that the budget is well balanced (the sum of the terms on
the right-hand side of (4.1) approximately equals the slope S0) supports the hypotheses
and approximations done for the momentum balance. The weight of the momentum
exchange with the cube array (ST + SSC) increases with water depth. The contribution
of the secondary currents in the momentum exchange (SSC) appears to be very small, even
zero for the case EMG. The momentum exchange between the two subsections is therefore
mainly driven by the turbulent shear stress.

The momentum balance highlights that for such flows, the interaction between adjacent
subsections of different roughness has to be taken into account for an accurate prediction
of the flow quantities, at least for the submerged cases. For the emergent case EMG, the
weight of the momentum exchange with the adjacent bed remains quite small, such that in
this case, a simple model as the divided channel method (isolated subsections) could be
sufficient. It was seen indeed in the previous section that for EMG, the first row of cubes
has the effect of blocking the momentum transfer towards the cube array, as would do a
wall. In this case, the momentum transfer cannot cross the cavity.

The momentum exchange due to turbulent shear stress, which appears to be the
dominant contribution of the dynamical interaction between the two beds, is known to be
largely driven by turbulent coherent structures. These will be analysed in the next section.

5. Turbulent coherent structures

In the two preceding sections, the flow was analysed within the framework of the
double-average approach. This approach, however, hides the underlying spatio-temporal
turbulent structures, which are the focus of this section. Spatio-temporal correlation as
well as coherent structure eduction will be considered.
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S0 (gravity)
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Figure 8. Momentum balance in the smooth subsection of the channel for the three test cases. The bars
represent the different terms of (4.1), all normalised by the slope S0 and multiplied by 100. The blue bar is
the slope itself (left-hand side of (4.1)), the green bar is the friction on the bottom and side wall, the red bar is
the lateral exchange at y = 0 due to turbulence and the yellow bar the lateral exchange at y = 0 due to secondary
currents.

Large spatio-temporal organised motions, also referred to as coherent structures
(Hussain 1986), are a ubiquitous feature of turbulent flows. In the present flows, several
coherent structures are a priori expected in the different canonical subflows – the boundary
layer on the bed, the cube wakes and the shear layer. These are likely to interact with each
other. In this section, we will focus on the primary structures of the shear layer, namely the
Kelvin–Helmholtz structures, as the expected main contributor to the lateral momentum
transfer.

5.1. Vertical coherence
As discussed in § 1, the coherence in the out-of-plane direction (here the vertical
direction) of the Kelvin–Helmholtz structures remains an open question at large Reynolds
numbers. Figure 9(a) shows simultaneous time series of the longitudinal velocity u(t)
at different z-elevations and at y = −3 mm, i.e. close to the interface, for test case
SUB2 (the time-resolved 2-D PIV measurements in vertical planes are used for this
purpose). Comparing the signals at different z-elevations reveals that the large-scale
fluctuations of the velocity signals are coherent across the whole water column, but
also that smaller structures are superimposed to these large-scale fluctuations, especially
near the bottom. This vertical correlation is confirmed by figure 9(b), which shows the
maximum of correlation between the u′(t)-signal at a reference location near the surface
(z/h = 0.86) and the u′(t)-signal at lower z/h-locations, R(3)

11,max = maxτ R(3)
11 (τ ). The

correlation decreases with increasing vertical separation, but remains higher than 0.4, i.e.
significant, even close to the bed.

The time lags for which the correlation maxima are reached, τ
(3)
11,max, are reported in

figure 9(c). It shows that statistically, the u-signal at lower z-elevations is retarded as
compared to higher z-locations. This shifted phase when going down in the water column
can also be observed in figure 9(a) for the rising edge occurring at approximately t = 3.4 s
at z/h = 0.86 and at t = 3.8 s at z/h = 0.05.

969 A32-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.581


V. Dupuis, F.Y. Moulin and O. Eiff

0 2 4 6 8

t (s)
10 12 14

z/h = 0.86

z/h = 0.70

z/h = 0.54

0

u 
(c

m
·

s–
1
)

50

0

50

0

50

0

50

0

50

0

50

0.2 0.4 0.6

R(3)

0.8 1.00

0.2

0.4

z/h
0.6

0.8

1.0

–0.6 –0.4 –0.2

(s)

0
0

0.2

0.4

0.6

0.8

1.0

z/h = 0.37

z/h = 0.21

z/h = 0.05

11,max τ(3)
11,max

(b)

(a)

(c)

Figure 9. (a) Time series of longitudinal velocity at x = 56 mm, y = −3 mm and at different z-elevations
(mentioned on the plot) for test case SUB2; note that the vertical axis origin is shifted for each z-elevation.
(b) Maximum of correlation between the u′(t)-signal at the reference location z/h = 0.86 (the position of
the horizontal dashed line) and the u′(t)-signal at lower z-locations. (c) Time lag for which the maximum of
correlation is reached (a negative time lag indicates that the u′(t)-signal has a retardation compared to the
reference u′(t)-signal at z/h = 0.86).

Considering a constant convection velocity of the structures, estimated by the effective
bulk velocity Ue, the inclination angle α of the coherent structure with the vertical can be
inferred from the phase shift of figure 9(c): if 
τ is the time lag over a vertical separation
of 
z, then α ≈ atan(Ue
τ/
z). Interpolating linearly τ

(3)
11,max(z), the value obtained for

this angle is 81◦, implying that the structures are very much inclined, their axis being
almost horizontal. Similarly strong inclinations are also observed for the two other test
cases, with very similar inclination angles (76◦ for SUB1 and 79◦ for EMG). A phase
shift of the same sign and of very similar value (81◦) was also observed by Dupuis (2016)
(p. 74) for Kelvin–Helmholtz structures in a compound channel shear layer. It should be
noted though that the inclination of the structures, i.e. the inclination of their axes, does
not imply that their vorticity vector is oriented along this axis. On the contrary, the velocity
fluctuations are still maximum in the horizontal plane and the vorticity is mainly vertical.
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It can be noticed that the inferred inclination angle of the Kelvin–Helmholtz structures
with respect to the bottom (around 20◦–25◦) is relatively close to the inclination angle of
hairpin packets in turbulent boundary layers, which lies in the range 10◦–20◦ (Christensen
& Adrian 2001; Deng et al. 2018). However, as the generation mechanisms of hairpin
packets and of Kelvin–Helmholtz vortices are assumed to be quite different, it seems
unlikely that there is a common explanation for these two inclination angles. Further
investigations on the generation of Kelvin–Helmholtz vortices in shallow flows are
necessary to shed light on the origin of their inclination.

The fact that the coherent structures are coherent across the water column would suggest
at first sight that the convection velocity of the large-scale structure is also constant
across the water column. However, there is an important vertical gradient of velocity. In
figure 9(a), the mean velocity 〈ū〉x is nearly multiplied by two between z/h = 0.05 and
z/h = 0.86. In such conditions, how do the large-scale structures remain coherent in z
and are not torn apart by the strong shearing? Different explanations, listed below, can be
given. They are not mutually exclusive.

• In the same way as the lateral gradient of velocity is due to the large-scale structure
itself, as will be shown in figure 13, the vertical gradient of velocity could be
explained by a 3-D configuration of the large-scale structure, for example a vortex
of y-axis superposed to the main structure of Kelvin–Helmholtz type, constituting a
complex 3-D topology.

• Another possibility would be that the large-scale structures, which are located in the
interface region, are skewed laterally to follow iso-velocity lines. From figure 3, it
can be seen that the iso-velocity lines in the interface region are laterally inclined
with an angle of approximately 45◦ (except very close to the bottom). It is possible
that the coherent structures are also inclined with the same angle. In this case, the
structures would not be sheared.

• A third possible explanation is that the coherent structures are in fact longitudinally
sheared due to the vertical velocity gradient, but they return to a more vertical
position by branching and merging. In this view, a branched vortex line could merge
with the vortex lines of the neighbouring vortices and, in this way, redress. Branched
vortex lines were indeed observed by Browand & Troutt (1985) in plane shear layers.

Further measurements and investigations would be necessary to validate or invalidate
these hypotheses.

5.2. Pattern recognition technique
To obtain a visual representation of the typical Kelvin–Helmholtz structures that develop
in the shear layers of the present flows, a PRT is used. This technique, developed by Ferre
& Giralt (1989), consists in defining an initial pattern (called the template), for example a
vortex of given size, and to detect all regions in the flow field that are sufficiently correlated
with this pattern. The detected regions are then ensemble-averaged and this average is in
turn used as new pattern. This procedure is repeated iteratively until it converges into a
final pattern, which yields the dominant coherent structure of the flow (Ferre & Giralt
1989).

The PRT was applied to the 2-D PIV measurements in the horizontal fixed planes.
The turbulent structures to be educed are approximately 1.6 m in length, as was seen in
figure 2, which is much longer than the field of view of the PIV (20 cm). Therefore, the
PRT could not be applied to the PIV fields directly, and a preliminary step was to build
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v(t, y)
u(t, y) uT (x′, y) uEA(x

′′, y′′)
vEA(x

′′, y′′)vT (x′, y)

Taylor hypothesis PRT

(ensemble average)with x′ = Uct 

Figure 10. Process to obtain the educed structure. The temporal velocity field along a lateral line u(t, y) is
first transformed into a spatial field uT (x′, y) using Taylor’s hypothesis with a constant convection velocity Uc
taken as the double-averaged velocity at the interface at the given z-elevation. The PRT is then applied to this
spatial velocity field, resulting in the ensemble-averaged field uEA(x′′, y′′), where the educed coherent structure
appears. The coordinates x′′ and y′′ have their origin defined at the centre of the pattern.

a large-scale spatial flow field from the temporal field. To this end, Taylor’s hypothesis
was used. Starting with a spatio-temporal field along a single lateral line u(t, y) at a fixed
x-position of the velocity field, a spatial field uT(x′, y) was built (the index T refers to
Taylor’s hypothesis), using a constant convection velocity Uc, taken as the double-averaged
velocity at y = 0 at that z-elevation: x′ = Uct, with Uc = 〈ū〉( y = 0, z).

In the PRT, the ensemble-averaging of all detected events is realised on a wider area
than the pattern size. The final velocity field obtained is hereafter referred to as the
ensemble-averaged field uEA(x′′, y′′), where the coordinates x′′ and y′′ have their origin
defined at the centre of the pattern. The number of detected events, and hence the number
of samples to build the ensemble-average, varied between 154 and 232 for the different
flows. Figure 10 summarises the different steps of the eduction method by the PRT.

It was verified that the results presented below are qualitatively not dependent on the
choice of the convection velocity used in Taylor’s hypothesis, nor on the correlation
threshold used for the PRT (the correlation threshold for the detection was set at 60 %).
Eiff & Keffer (1997) showed that, due to the iterative process, the result of the PRT does
not depend on the details of the initial pattern (template), but instead depends on the size
of this template. If the template is set too large, subharmonic scale structures, if present,
can be filtered out. In the present case, the longitudinal size of the template was set to
0.5 m, i.e. approximately one third of the expected size of the structures. The lateral size
of the template was set to 80 mm. Small variations around these sizes did not affect the
results. The search for the structures was performed in the x′-direction, but also in the
lateral y-direction to allow for meandering positions.

It should be noted that the educed structures are not to be viewed as an exact
representation of the instantaneous large-scale structures, since the conditions of validity
of Taylor’s hypothesis (see e.g. Zaman & Hussain 1981), wherein the velocity fluctuations
are assumed to be much smaller than the convection velocity and the term v∂u/∂y
negligible compared to ∂u/∂t, are not well fulfilled in the present case. In particular, the
velocity fluctuations in the longitudinal and in the lateral direction are of the order of
50 % of the mean velocity. The large-scale lateral fluctuations are especially problematic
because Taylor’s hypothesis does not take into account lateral convection. In the present
case, the term v∂u/∂y (lateral convection) is of the same order of magnitude as ∂u/∂t.
Nevertheless, the results are expected to reveal the main features of these structures.

5.3. Educed coherent structures
Figure 11 shows the ensemble-averaged fields obtained for SUB2, SUB1 and EMG at
z/h = 0.81, 0.75 and 0.63, respectively. In this figure, the convection velocity Ucex is
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Figure 11. Velocity field (uEA − Uc, vEA) of the ensemble-averaged field obtained by PRT in the horizontal
plane for test case (a) SUB2 at z/h = 0.81, (b) SUB1 at z/h = 0.75 and (c) EMG at z/h = 0.63. The dashed
rectangle indicates the size of the template.

subtracted from the velocity field. In these plots, a coherent structure appears in the
ensemble-averaged flow field, having the topology of the Kelvin–Helmholtz structure,
i.e. a succession of vortices and saddle points. The structure is also observed at the other
z-elevations measured across the water depth, which are as close as 1 cm from the bed (not
shown). However, for the z-elevations below the cube top (as in figure 11c), the structure is
less perceptible. This is due to the fact that the structure penetrates and interacts with the
cube array (see § 6), while the PRT could not be carried out in the cube array. Indeed, a
velocity field reconstruction based on Talyor’s hypothesis is not possible there, due to the
presence of the cubes.

The PRT detection does not necessitate the large-scale structures to be quasi-periodic.
Nevertheless, a quasi-periodicity is observed in the ensemble-averaged fields of figure 11.
In particular, the saddle point, which in all cases is close to the middle of the field,
is flanked by two vortices – exceeding the size of the template. The periodicity is not
very strong, as exemplified by the difference between these two vortices right and left
from the saddle point (having different shapes and lateral positions). The relative lack
of periodicity can be explained by the variability in the individual structures’ size (in
the ensemble-averaging, the small and big structures are averaged together, such that the
correlation between the detected structures becomes weak when going away from the
middle of the pattern).

To illustrate this variability in structures’ size, figure 12 shows, for test case SUB2
at z/h = 0.81, the distribution of the separation distance between two detected events,

xdetection, which gives an estimate of the distribution of the length of the structures.
Equating separation distance with size assumes that there is no structural intermittency in
the interface region, i.e. that the velocity signal is always coherent and not a succession of
coherent sequences followed by chaotic fluctuations (Fiedler 1988). This assumption was
fulfilled here. As can be seen in figure 12, most structures have a length of approximately
1.5 m, as expected from figure 2, but the range of variations lies between 1 and 3 m.
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Figure 12. Distribution of the longitudinal separation distance between two detected events for test case
SUB2 at z/h = 0.81.

The distribution of 
xdetection was qualitatively similar for the other z-elevations and
the other test cases, with typically a factor 3 to 4 between the largest and the smallest
structures.

5.4. Contribution of the educed coherent structure to mean flow and turbulence
To estimate the contribution of the educed coherent structure to the overall flow, the
ensemble-averaged flow field uEA of test case SUB2 was x-averaged in space between
x′′ = −750 and 750 mm, i.e. approximately the length of the periodic pattern. The
obtained velocity 〈uEA〉x′′ is plotted in figure 13(a) at z/h = 0.81 and compared with the
double-averaged velocity of the original flow field 〈ū〉x. Similarly, the same was done for
the turbulent stresses ρ〈ũ2

EA〉x′′ , ρ〈ṽ2
EA〉x′′ and ρ〈ũEAṽEA〉x′′ , which were compared with

ρ〈u′2〉x, ρ〈v′2〉x and ρ〈u′v′〉x. For the quantities derived from the spatial averaging of the
ensemble-averaged field, the lateral coordinate y′′ was shifted by a value yshift, chosen such
that the maximum of turbulence is at the same y-position as for the original flow.

As shown in figure 13(a), the component 〈uEA〉x′′( y′′ + yshift) of the educed
coherent structure yields the shape and almost the same magnitude as 〈ū〉x( y). The
Kelvin–Helmholtz structure educed with a constant convection velocity therefore accounts
by itself for the lateral gradient of velocity at the interface.

Concerning the turbulent stresses shown in figures 13(b–d), it can be seen that the
velocity fluctuations associated with the educed coherent structure, ρ〈ũ2

EA〉x′′ , ρ〈ṽ2
EA〉x′′

and ρ〈ũEAṽEA〉x′′ , are responsible for approximately 35 % of ρu′2 and 60 % of ρv′2 and
ρu′v′, respectively.

While the fluctuations associated with the educed structure reproduce, to a large extent,
the shape of the turbulent stresses, in particular for ρ〈u′2〉x and ρ〈u′v′〉x (figures 13b and
13d), the peak in ρ〈v′2〉x appears more pronounced and shifted to the left compared with
ρ〈ṽ2

EA〉x′′ (figure 13c). In other words, there is an additional peak in ρ〈v′2〉x at y/B ≈ −0.08
above the cubes that is not due to the coherent structure (the peak in ρ〈v′2〉x can also be
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Figure 13. Lateral profiles of mean velocity and turbulent stresses for test case SUB2 at elevation z/h = 0.81,
obtained either by averaging in x the ensemble-averaged field delivered by the PRT (red curves) or by
double-averaging the original measured flow field (blue curves).

observed in figure 5d). It is therefore surmised that this excess energy in ρ〈v′2〉x is due
to another source of turbulence, namely the cube wakes. The difference in peak position
of the turbulence intensities, which was observed in § 3, can then be attributed to the fact
that two sources of turbulence interact here and determine together the overall turbulence
intensity.

Finally, it should be noted that the contribution to mean flow and turbulence of the
educed coherent structure presented in figure 13 does not take into account the variation
of size of the individual structures. This dispersive effect would enhance the contribution
of the coherent structure to the overall turbulence.

Figure 14 gives the power spectral density (PSD) of the time series of the longitudinal
and lateral velocity fluctuations u′(t) and v′(t) for test case SUB2 at z/h = 0.81 in
the interface region (y/B = 0.035). The frequencies corresponding to the length scale
of the smallest and largest detected structures (1 and 3 m), identified in figure 12,
are also reported (the conversion into frequency is made by means of Taylor’s
hypothesis with convection velocity Uc), as well as the integral time scale τu derived
from the autocorrelation (plotted in figure 2). It can be observed that the spectral
region corresponding to the variation range of the length of the coherent structures is
characterised by a departure from the −5/3 slope (the inertial region), with an increase
of the slope. For comparison, the −3 slope, which Uijttewaal & Jirka (2003) identified
to characterise quasi-2-D structures in shallow flows, is depicted in the figure. The
peak frequency of the spectra is the same as that given by the integral time scale τu.
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Figure 14. Power spectral density (PSD) of the fluctuations of the longitudinal (blue line) and lateral (red
line) velocity for test case SUB2 at z/h = 0.81, y/B = 0.035 and x/B = 0.11. The vertical dotted lines depict
the size range of the coherent structures between 1 and 3 m (converted to frequency using Uc as convection
velocity), and the integral time scale τu inferred from the auto-correlation of u(t) (figure 2).

The broadness of the peak region is a characterising feature of quasi-periodicity and can
be explained by the scatter in the size of the individual structures.

6. Coupling between coherent structures and obstacle wake

This section aims at providing evidence that there exists a dynamic coupling between the
passage of the Kelvin–Helmholtz structures and the wakes of the outer cubes. To this end,
the time-average flow around the outer cube is analysed first. All of § 6 will be restricted
to test case SUB2. The results are very similar for test case SUB1. For test case EMG, the
time-averaged flow pattern around the cube is different from the submerged cases, but the
coupling between Kelvin–Helmholtz structure and wake is similar. The interaction with
the other cubes (farther from the interface) is not investigated, but is expected to be much
weaker.

6.1. Time-averaged flow pattern around the outer cube
The time-averaged flow pattern around an isolated, surface-mounted cube is characterised
by the following main features (Larousse, Martinuzzi & Tropea 1991): (i) a separation of
the boundary layer upstream of the cube, with generation of a horseshoe vortex in the
recirculation region, whose legs extend far downstream on each side of the cube; (ii) an
arch vortex on the downstream side of the cube; (iii) local separation and reattachment on
the top and side faces of the cube, giving rise to small recirculation bubbles. Concerning
the arch vortex at the rear face of the cube (point ii), it remains an open question if
it is really a closed vortex forming an arch, or if it is formed by two disconnected
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Figure 15. Time-averaged velocity field (ū, w̄) in the xz-plane at the position y/B = −0.0818 (middle of the
cube) for test case SUB2.

counter-rotating vortices with one end at the channel floor and the other end being diffused
in the shear flow above the cube (Meinders & Hanjalić 1999).

In the case of an array of cubes in a square configuration, Meinders & Hanjalić (1999)
showed that if the longitudinal distance between two cubes is sufficient for the flow to
reattach between the cubes, then the flow pattern is essentially the same as for the isolated
cube, except that the vortices, especially the horseshoe vortex, can interact with those of
the neighbouring cubes. When the longitudinal gap between the cubes becomes of the
order of the cube size (as is the case in the present study), the flow cannot reattach on the
floor between two cubes and the time-averaged flow in the inter-cube space (the cavity) is
characterised by a recirculation cell of y-axis, which occupies the whole cavity, and by two
symmetric z-axis vortices (Coceal et al. 2006). In this case, there is no horseshoe vortex
and the time-averaged velocities in the cavity are very small (dead-water region).

Figure 15 shows the velocity field in the vertical xz-plane at a lateral position
corresponding to the middle of the cube, for test case SUB2. As in the case of the laterally
invariant cube array (Coceal et al. 2006, their figure 12), there is a recirculation cell of
y-axis that spans the whole cavity.

The velocity field in horizontal xy-planes is shown in figure 16 at three z-elevations.
Consider first the elevation at mid-height of the cube (z/k = 0.5), for which figure 16(g)
shows the topology that was inferred from the velocity field and the streamlines
(figures 16b and 16e). Here the topological rules (Hunt et al. 1978; Foss 2004; Foss et al.
2016) were verified to be fulfilled: the domain sketched in figure 16(g) is a collapsed
sphere (in the sense of Foss 2004) with four holes and no handles (the lateral extension
of the domain can be chosen such that it is laterally closed by streamlines), such that
the Euler characteristic is χ = 2 − ∑

holes − 2
∑

handles = −2; therefore, the following
relation should hold: 2

∑
N + ∑

N′ − 2
∑

S − ∑
S′ = χ = −2, where N are nodes,

N′ half-nodes, S saddle points and S′ half-saddle points (there is no obtuse angle in
this case, see Foss et al. 2016). The flow field at z/k = 0.5 (figures 16b, 16e and 16g)
differs significantly from the laterally invariant cube array case (Coceal et al. 2006, their
figure 14): the two counter-rotating z-axis vortices N1 and N2 are still present but are not
symmetric, and a third vortex N3 appears upstream of the cube on the high-speed side.
Additionally, two saddle points, S1 and S2, are present.

The flow is similar closer to the bottom, at z/k = 0.12 (figures 16c and 16f ). The three
vortices can still be identified (which are now repelling or attracting focuses) as well as the
two saddle points. Close to the cube top, at z/k = 0.87 (figures 16a and 16d), the vortices
and saddle points have disappeared and solely the top of the recirculating cell of y-axis
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Figure 16. (a–c) Time-averaged velocity field (ū, v̄) and (d–f ) corresponding streamlines in the xy-plane at
vertical positions (a,d) z/k = 0.87, (b,e) z/k = 0.50 and (c, f ) z/k = 0.12 for test case SUB2. Panel (g) is the
interpreted flow topology of panel (e).

can be seen (that which was observed in figure 15). Observations at intermediate planes
showed that, as claimed by Meinders & Hanjalić (1999), it does not seem that the two
counter-rotating vortices at the rear face of the cube connect to form an arch.

For test case SUB1, the time-average flow pattern around the outer cube is exactly the
same as for SUB2. For test case EMG however, there is neither a y-axis recirculation in
the cavity, nor vertical columnar vortices.

6.2. Phase-averaged flow pattern around the outer cube
To identify if there is a coupling between the passage of the Kelvin–Helmholtz structures
and the flow around the outer cube, a phase-average is carried out in the horizontal
xy-plane z/k = 0.5 around the outer cube for test case SUB2. In contrast to the preceding
section dedicated to the eduction of the coherent structures, here it is not necessary to
reconstruct the flow field using Taylor’s hypothesis, since the PIV field of view is large
enough to capture the outer cube’s wake. The errors introduced by Taylor’s hypothesis are
thus avoided. For detecting the passage of the individual Kelvin–Helmholtz structures, a
simpler method than in the preceding section was implemented, namely a detection based
on a trigger, as described for example by Wallace, Brodkey & Eckelmann (1977). Figure 17
shows the time series of the lateral velocity v(t) at z/k = 0.5 at the interface y = 0. At
this location, the periodicity of the lateral velocity fluctuation due to the passage of the
Kelvin–Helmholtz structures is quite marked and can therefore be used as a trigger for
the phase-average. To this end, the signal was first smoothed with a moving average of
time span 1.5 s (black line in figure 17) to define the maxima (circles) which are used
to indicate a given phase of the passage. The time between two of these v-maxima is
considered as a period. As there is no structural intermittency, the end of a given period is
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Figure 17. Time series of the lateral velocity v (grey line) for test case SUB2 at z/k = 0.5 and y = 0, and its
smoothed signal (black line) used for detecting a constant phase in the phase-averaging process. The circles
indicate the detections (local maximum).
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Figure 18. (a) Phase-averaged lateral velocity vPA,i at y = 0, x/B = 0.1 and z/k = 0.5 as a function of phase i.
(b) Lateral velocity averaged over the cavity length, vcavity, as a function of the phase at z/k = 0.5. The letters
A, B and C refer to the three different topologies that succeed during the passage of the structure.

also the beginning of the next one. Each period is then divided into 20 phases. The flow is
averaged within each phase and over all detected periods, resulting in the field (uPA,i, vPA,i)
(PA stands for phase-average and i is the number of the phase).

Figure 18(a) shows the resulting phase-averaged value of lateral velocity vPA,i at y = 0,
x/B = 0.1 and z/k = 0.5 as a function of phase i: phases 1 and 20 correspond to the
maximum of vPA,i, phase 10 to the minimum of vPA,i. The passage of the vortex centre of
the coherent structure corresponds approximately to phase 3 (at the centre of the vortex,
v is zero and goes from negative to positive values) and the passage of the saddle point
approximately to phase 18 (v is zero and goes from positive to negative).
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Figure 19. Phase-averaged flow field in the xy-plane obtained for the phase i = 1, 4, 14 and 18 for test case
SUB2 at z/k = 0.5: (a–d) (uPA,i, vPA,i)-field, (e–h) streamlines, (i–l) flow topology.

Observation of the 20 phase-averaged flow fields at z/k = 0.5 reveals that three different
flow topologies succeed during the passage of the structure, denoted A, B, and C. Topology
A lasts from phase 1 to 3, B from 4 to 16, C from 17 to 20, as reported in figure 18(a) by
vertical lines. To visualise this, the phase-averaged flow fields obtained for the phases 1, 4,
14 and 18 are shown in figure 19. The corresponding streamlines and the inferred topology
are also shown (as in figure 16g, the topological rules were verified to be fulfilled, i.e.
here χ = −2). Phase 1, for which v is maximum and topology A holds, is characterised
by two vortices (N1 and N2) and one saddle point (S1) in the cavity. Fluid is able to flow
through the cavity towards the high-speed side. Around phase 3, a bifurcation between the
topologies A and B takes place: a reversal of the flow occurs along the cube wall on the
downstream side of the cavity. This causes the saddle point S1 to disappear and the saddle
point S2 to appear (it is not S1 which moves towards the low-speed side; S1 and S2 are
fundamentally different as one of the divergent separatrices is going in one case left of
the downstream cube and in the other case right of it). Topology B (phase 4 in figure 19)
allows fluid to flow through the cavity in both the positive and the negative y-directions,
but mainly towards the low-speed side (negative y). This topology remains unchanged
until phase 16 (the changes concerning the half-saddle points S’1 and S’2 between phases
4 and 14 in figure 19 are not significant). However, the vortex N1 progressively moves
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downstream (figures 19b and 19c). Around phase 16, a new bifurcation occurs, wherein
the saddle point S2 and the vortex N1 disappear such that a strong cross flow towards the
high-speed side can develop (topology C, shown in phase 18 in figure 19). At phase 20, a
third bifurcation occurs, where the vortex N1 and the saddle point S1 are rebuilt (leading
back to topology A).

The time-averaged flow field of the outer cube’s wake, as depicted in figure 16(b,e,g),
never occurs in the phase-averaged flows of figure 19, which are closer to the
instantaneous flow. While there are three vortices and two saddle points in the
time-averaged flow field, there are at most two vortices and one saddle point in the
phase-averaged flow field. In the time-averaged flow field, no flow crosses the cavity,
because of the separatrice between the two half-saddle points S’1 and S’4, which closes
the cavity. Yet, in the phase-averaged flow, the cavity is always open, and for some phases,
strong cross-flows are present (e.g. phase 18 with topology C).

To estimate the intensity of the cross-flow across the cavity, the net lateral velocity in the
same plane z/k = 0.5, averaged in the streamwise direction over the cavity length at y/B =
−0.08, vcavity, is shown in figure 18(b) as a function of the phase i. Important cross-flow
variations dominate the cavity dynamics, with velocity fluctuations of ±5 cm s−1, i.e. even
higher than the v-fluctuations at y = 0 (figure 18a). An asymmetry can also be observed
between the positive and negative phase of vcavity: the negative phase (corresponding to
sweeps, flow towards the canopy) is longer and associated with lower velocities, whereas
the positive phase (corresponding to ejections, flow towards the smooth region) is shorter
and associated with much higher velocities.

Finally, it can be noted that the bifurcation between topology A and B corresponds to
the passage of the vortex core of the Kelvin–Helmholtz structure (phase 3), whereas the
bifurcation between topology B and C corresponds approximately to the passage of the
saddle point (phase 16).

7. Conclusion

Open-channel flows with a lateral variation of bed roughness were investigated
experimentally using a newly developed telecentric scanning 3-D-2-C PIV technique.
The roughness elements consisted in an array of cubes placed on a smooth bottom and the
water levels were set to two lowly submerged conditions and one emergent condition. With
this particular roughness geometry, the measurement technique used was able to measure
and resolve nearly the full width of the flow, including the flow in the interstices between
the roughness elements. The mean flow and turbulence could be characterised in terms of
double-averaged quantities, and coherent structure eduction could be carried out by means
of a pattern recognition technique. In addition, a phase-average between the large-scale
structures and the interstitial flow around the cubes was implemented. The flow pattern is
quite complex because several flow phenomena are present and interact with each other:
shear layers, boundary layers, wakes.

The interaction between the rough and the smooth subsections contributes strongly to
the momentum balance of the smooth subsection, except for the case with emergent cubes.
For the investigated flows, this momentum exchange is nearly exclusively due to turbulent
motion, whereas secondary currents play a minor role, and the contribution of dispersive
stress at the interface is completely negligible.

The analysis of the direction of the momentum flux across the cross-section shows
that the cube canopy itself is not fed by momentum directly from the smooth bed, as
it is isolated from it by the first row of cubes (see sketch of figure 7), through which
the momentum cannot pass. For the submerged cases, the canopy is only supplied by
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Figure 20. x-Averaged vertical turbulent normal stress in the yz-plane for test cases SUB2, SUB1 and EMG.

momentum from the flow above it. For the emergent case, the canopy is completely
isolated from the smooth part (except the first cavity).

Special attention was paid on the large-scale structures that are present in the shear layer
at the interface between the two subsections. These large-scale structures were educed
using a pattern recognition technique (PRT) in horizontal planes. The Kelvin–Helmholtz
topology (succession of vortices and saddle points) was observed from the water surface
to very close to the bottom (1 cm above the bed). It was established that the structures
are coherent over the whole water column. However, they travel with a strong vertical
inclination, such that the higher part has a phase advance compared with the lower part.

The coherent structures are quasi-periodic, with a broad range in the size of the
individual structures (typically a factor 3 to 4 between the largest and the smallest). This
is reflected by a broad peak in the power spectra. The scatter in the length of the structures
is likely due to dynamical mechanisms such as merging and splitting of the individual
structures (Winant & Browand 1974), as well as entrainment effects and nibbling (da Silva
et al. 2014). These dynamical mechanisms are also usually put forward to explain the
overall growth of the large-scale structures, which was observed in the present case all
along the channel (figure 2).

The coherent structure pattern that was educed using the pattern recognition technique
accounts by itself for the lateral profile of the time-averaged velocity 〈ū〉x( y) in the
interface region. From this point of view, the large-scale structures (educed with a constant
convection velocity) are not sheared by the lateral gradient of velocity, since this velocity
gradient is due to the large-scale structures themselves. The educed coherent structure is
also responsible for a large part of the turbulent stresses. In particular, it contributes to
approximately 60 % to the turbulent shear stress.

A coupling was identified between the passage of the coherent structures and the
flow around the cubes at the interface with the smooth bed (outer cubes). The coherent
structures induce a quasi-periodic cross-flow in the cavity, characterised by strong lateral
movements in both directions, repeatedly washing out the cavity. The phase-averaged flow
is therefore very different from the time-averaged flow, for which the cavity appears as a
dead-water zone.

This interaction between the large-scale structures and the cubes’ wake leads to an
unexpected phenomenon, which was observed in the double-averaged streamwise velocity
for the test case with emergent cubes (figure 4): in the cube array, the velocity decreases
when approaching the high-speed smooth bed. The given explanation is that the large-scale
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Figure 21. x-Averaged vertical turbulent shear stress in the yz-plane for test cases SUB2, SUB1 and EMG.
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Figure 22. (a,b) Longitudinal turbulent normal stress, (c,d) vertical turbulent normal stress and (e, f ) vertical
turbulent shear stress at z/k = 0.5 for (a–c) test case SUB2 and (d–f ) test case EMG.

structures are perturbing the flow within the free alley between the first two rows of cubes.
In this alley, no straight fast flow can develop, unlike what occurs away from the interface.

In these complex flows, three sources of turbulence production can be identified: the
boundary layer on the walls, the wake of the cubes and the shear layer. However, it would
be impossible and have little sense to determine the contribution of each of them to
the overall turbulence. First because even if these turbulence sources are associated with
different length scales, the spectral ranges of these turbulent length scales overlap largely,
such that they cannot be separated by signal analysis. Second, these turbulent sources
interact with each other, as illustrated by the coupling between shear layer and wake
flow (the Kelvin–Helmholtz structures generating an extra cross-flow around the cube,
which therefore enhances the wake turbulence), such that they are not independent sources.
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Figure 23. (a) Longitudinal turbulent normal stress, (b) lateral turbulent normal stress and (c) lateral
turbulent shear stress at z/k = 0.5 for test case SUB2.

The contribution that could be separated was that due to the large-scale Kelvin–Helmholtz
structures. This separation was facilitated by the spectral separation with the other
turbulence sources. Yet, the shear layer, and the Kelvin–Helmholtz structures themselves,
are also inducing smaller-scale turbulence, especially through secondary instabilities,
which also contributes to the turbulent stresses.

A limitation of the eduction methods of coherent structures is that they deliver a static
image of the coherent structure. In reality, these structures, as mentioned above, evolve
with the flow by growing, decaying or interacting with neighbouring structures.
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Appendix. Additional fields of turbulent quantities

In this appendix, some plots of turbulent quantities, which were not directly analysed in
the article, but could be of interest for the reader, are presented.
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Interaction between a rough bed and an adjacent smooth bed

Figures 20 and 21 show respectively the cross-sectional distribution of the x-averaged
vertical turbulent normal stress 〈w′2〉x and of the vertical turbulent shear stress 〈u′w′〉x.

Figures 22 and 23 show different turbulent stresses in the horizontal xy-plane at
mid-height of the cube z/k = 0.5. Figure 22 comes from the lateral scanning and spans
therefore a broader flow region than figure 23, which comes from the vertical scanning. It
can be observed in particular that the effect of the flow impingement against the upstream
face of the cube is to create high lateral and vertical turbulence intensity (while the
longitudinal turbulence intensity is very low). This effect of flow impingement on the
turbulence was already observed by Meinders & Hanjalić (1999) and in the DNS of a
single cube of Yakhot, Liu & Nikitin (2006).

Similarly, the high longitudinal and vertical turbulence intensity (and low lateral
turbulence intensity) on the high-speed-side side-face of the outer cube can be explained
by impingement of sweeps against this face (cross-flow towards the cube array) generated
by the shear layer.
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