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VARIETIES OF ORTHOMODULAR LATTICES
GUNTER BRUNS AND GUDRUN KALMBACH

0. Introduction. In this paper we start investigating the lattice of varieties
of orthomodular lattices. The varieties studied here are those generated by
orthomodular lattices which are the horizontal sum of Boolean algebras. It
turns out that these form a principal ideal in the lattice of all varieties of
orthomodular lattices. We give a complete description of this ideal; in par-
ticular, we show that each variety in it is generated by its finite members. We
furthermore show that each of these varieties is finitely based by exhibiting a
(rather complicated) finite equational basis for each variety.

Our methods rely heavily on B. Jénsson’s fundamental results in [8]. This,
however, could be avoided by starting out with the equations given in sections 3
and 4. Some of our arguments were suggested by Baker [1].

Acknowledgement. Our thanks for useful conversations about orthomodular
lattices go (in alphabetical order) to M. K. Bennett, D. Foulis, S. Holland,
M. Janowitz and C. Randall. We are grateful to the referee for pointing out
that our Lemma 6 is a special case of much more general known results. It
follows, for example, from [6, Theorems 2.1 and 4.3]. For the convenience of the
reader we include a direct proof of Lemma 6.

1. Generalities. Throughout this paper an orthomodular lattice (abbrevi-
ated: OML) is considered as a (universal) algebra (L; V, A,’, 0, 1) with two
binary operations V and A, one unary operation’, and two nullary operations 0
and 1, such that (L; V, A) is a lattice with smallest element (zero) 0 and
largest element (unit) 1, such that’ is an anti-monotone complementation on L
and such that the orthomodular lawa vV ({(¢ V b) A @¢’) = a V b holds for all
a,b € L. For basic results and notations concerning OMLs see [2, p. 551f; 3; 7].
Regarding notions from universal algebra we follow the terminology of [4],
with the only exception that we write Py (instead of P,) for the operation of
taking ultraproducts of a class of algebras.

A block [5]inan OML L is a maximal Boolean subalgebra of L. Let & (L) be
the set of all blocks of L. Every element of L belongs to at least one block of L
and every block contains 0 and 1. If L {0, 1}, then every block of L is
different from {0, 1}. A subset M of L is contained in some block B of L if and
only if any two elements of M commute. An OML L is said to be the horizontal
sum of its blocks [10] if and only if A M B = {0, 1} holds for any two
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(different) blocks 4 and B of L. If & is a non-empty set of Boolean algebras,
all having the same zero 0 and unit 1, such that 4 M B = {0, 1} holds for any
two (different) 4, B € &/ and such that if {0, 1} € &, then .2/ consists of
{0, 1} only, then there exists exactly one OML L which is the horizontal sum
of its blocks and which satisfies &/ = & (L). If L is the horizontal sum of its
blocks and if .S is a subalgebra of L, then S is the horizontal sum of its blocks.
If, moreover, S 5 {0, 1}, then

BS)={BNS|BeBL),BNS 10,1}

Conversely, if L; and L, are the horizontal sums of their blocks, then L; is
isomorphic with a subalgebra of L, if and only if there exists a one-one mapping
fr B (L) — % (L) such that for every B € % (L), B is isomorphic with a
subalgebra of f(B). If B is finite, this simply means that [B| < | f (B)[. (|X] is
the cardinal number of a set X.) If L is the horizontal sum of its blocks, then
every finitely generated subalgebra of L is finite. If L is the horizontal sum of at
least two blocks, then L is simple (i.e., has exactly two congruence relations);
in particular it is directly and subdirectly irreducible. Let HOR be the class of
all OMLs which are the horizontal sum of their blocks and which are simple.
Then HOR consists of all OMLs which are the horizontal sum of at least two
blocks and of all two-element Boolean algebras. Let [HOR] be the variety of
OMLs generated by HOR. As usual we write aCb if the elements ¢ and b of an
OML commute and we write aCb if they do not commute.

LemMma 1. For an OML L the following two conditions are equivalent:

(1) L is the horizontal sum of its blocks,

(2) foralla,b € L, if aCb, then a V b = 1 (and hencea V V' = a' V b =
a' Vb =1).

Proof. (1) = (2). Given ¢,b € L, the elements a,a V b belong to some
block 4 and the elements b, @ \V b belong to some block B. If (b, then A = B
and hence A M B = {0,1}.Since0 = a V b € 4 N Bitfollowsthate V b = 1.

(2) = (1). Let B be a block and let ¥ be an element of L. Define
By = {b € B|bCx}and B, = {b € B|bCx} \J {0, 1}. Then By is a subalgebra
of B and B, is closed under orthocomplementation. We show that ¢, b € B,
implies that @ V b € B, and hence that B is also a subalgebra of B. If atleast
one of @, b is zero or one, or if & V bCx, this is obvious. If not, we have aCx, bCx
anda V bCx. By (2), thisimpliesthata Vb = (a VbV x) A (e VDV x') =
1€ B, Since Bi N\ B;={0,1} and B;\UB, =B, it follows that
B; = {0, 1} or By = {0, 1}, i.e., that either x commutes with all elements of B
or with no element of B — {0, 1}. Let 4 and B be blocks of L and assume that
there exists an element x 5 0, 1 such thatx € 4 M B. Then every element of B
commutes with x € 4 — {0, 1}. By what we have just proved it follows that
every element of 4 commutes with every element of B and hence that 4 = B,
which was to be proved.
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2. The lattice of subvarieties of [HOR]. Let HORF be the class of all
finite algebras in HOR. We consider (possibly empty) subclasses .# of HORF
which satisfy the following condition:

(2.1) If L € A, if M is isomorphic with a subalgebra of L and if M € HOR,
then M € M.

The “entity” of all classes # < HOREF satisfying (2.1), partially ordered by
class inclusion, form (modulo the foundations of set theory) a complete lattice

Z. We show that this lattice is isomorphic with the lattice of subvarieties of
[HOR].

TaEorREM 1. The mapping M — HSP (M) (M ¢ L) is a lattice isomorphism
between & and the lattice of subvarieties of [HOR]. The inverse of this mapping is
given by 4 —A N HORF (£ a subvariety of [HOR]).

Proof. 1f M ¢ &£, then HSP (&) is clearly a subvariety of [HOR] and if ¢
is a subvariety of [HOR], then 2" M HORF ¢ .%. Furthermore, both map-
pings are obviously monotone. It remains to show that their composites are the
identity maps of & and of the lattice of subvarieties of [HOR], respectively.

In order to prove the first we have to show that .# = HSP(.#) N HORF
holds for all A& € .%. This is obvious if .# is empty. Hence we may assume
without loss of generality that .# ¢ @; in particular, that .# contains all
two-element Boolean algebras. Clearly .# C HSP (.#) M HORF. To prove
the converse, assume that there exists Ly € HSP (#) M HORF with L, ¢ .
Since Ly € HORF, it is subdirectly irreducible. Since L, is subdirectly irredu-
cible and belongs to HSP (.#), it follows from [8, Corollary 3.2], that L,
belongs to HSPy(.#). The property of an OML L not to contain an iso-
morphic copy of Ly as a subalgebra, is a first order property. Likewise, by
Lemma 1, the property of an OML L to be the horizontal sum of its blocks, is a
first order property. It follows that every L € SPy(.#) is the horizontal sum
of its blocks and that no L € SPy(-#) is isomorphic with L. If L € SPy(#)
contains at least two blocks, then L is simple and hence does not have L, as a
homomorphic image. Since L, € HSPy(#), L, must be the homomorphic
image of an OML L containing one block only, i.e., the homomorphic image of a
Boolean algebra. Since L, € HOR, this means that L, is a two-element
Boolean algebra, contradicting Lo ¢ 4. This proves that # = HSP (#) N
HORF.

We complete the proof by showing that#" = HSP (¢ M HORF) holds for
every subvariety ¢ of [HOR]. This is obvious if 2/  is the trivial variety con-
sisting of all one-element OMLs. Hence we may assume that ¢ contains at
least all Boolean algebras. Again it is obvious that2¢" D HSP (¥ M HORF).
In order to show the inverse inclusion it is enough to show that every sub-
directly irreducible L € ¢ belongs to HSP(# M HORF). Let L € 2# be
subdirectly irreducible. Then, as noted earlier, L is the horizontal sum of its
blocks. Let F be a finitely generated (and hence finite) subalgebra of L. Then F
is either Boolean or belongs to 2#" M HORF. In both cases it belongs to
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HSP (# M HORF). Since every finitely generated subalgebra of L belongs to
HSP (¥ N HORF), L itself belongs to this class.

As a consequence of this theorem we note:

CoOROLLARY 1. Every subvariety of [HOR] is generated by its finite members
(even by its finite subdirectly irreducible members).

To further investigate the lattice of subvarieties of [HOR] we represent the
OMLs L € HORF by certain characteristic functions. Let IV be the set of all
natural numbers (20) and let N, be the set of all natural numbers z = 2. We
consider the set Q@ of all mappings ¢: Ny — N which satisfy the following
conditions:

(2.2) ¢ is decreasing, i.e., # < m implies that ¢y (m) < ¢ (n),
(2.3) ¥ (») = 0 holds for all but finitely many #,
(2.4) $(2) # 1.

The set @ with the argumentwise ordering is obviously a lattice. Given an
OML L € HORF, we define the characteristic function 7: Ny — N of L by
putting 7z (n) equal to the number of blocks B of L which satisfy 2" < |B|.
Obviously, 7, € @ and for every ¢ € Q there exists up to isomorphism exactly
one L € HORF such that ¢ = ;. Note that the function y: Ny — {0} belongs
to @ and corresponds to the two-element Boolean algebra. Furthermore, it is
easy to see that for OMLs L; and L, in HORF one has:

(2.5) Tr, = T,

if and only if L; is isomorphic with a subalgebra of L,. Under the correspondence
L — =, the lattice & corresponds to the lattice # (Q) of all order-ideals of Q.
By an order-ideal we mean here a subset M of Q satisfying:

(2.6) If y € M and ¢ < ¢, then ¢ € M.

Theorem 1 thus yields the following:

COROLLARY 2. The mapping M — HSP ({L € HORF|r, € M})(M € ¥ (Q))
is a lattice isomorphism between F (Q) and the lattice of subvarieties of [HOR]. The
inverse of this mapping is given by A — {x|L € 2¢ N HORF}.

3. Some equations. The basic polynomial in our equations is
cl,y) = @ VYA VYA G VY AEVY).

The elements x and y of an OML L commute if and only if ¢(x, y) = 0. From
Lemma 1 it follows that if L is the horizontal sum of its blocks, then ¢(x, y)
takes in L the values 0 and 1 only.

LEMMA 2. For a subdirectly irreducible OML L the following two conditions are
equivalent:

(1) L € HOR,

(2) L satisfies c(x, ¢(v,2)) = 0.
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Proof. (1) = (2). If L € HOR, then ¢(y, z) takes in L the values 0 and 1
only, hence c(x, ¢c(v, 2)) = 0 holds for all x,y,z € L.

(2) = (1). Let y, z be elements of L such that yCz. Then ¢(y, 2) # 0 and by
(2), c(y, 2) commutes with every x € L and is thus in the center of L. Since L is
subdirectly (and hence directly) irreducible, the center of L consists of 0 and 1
only. It follows that ¢(y,2) = 1; in particular that y V 2 = 1. This by
Lemma 1 gives L € HOR.

Let d(x,v,2) = (v,2) A clxe, (v V3) A (' V2)), where ¢'(y, 2z) is the
orthocomplement of ¢(y, z). Let # = 2 be a natural number and let % stand for

the 2"-! + 2 variables x, x¢, x1, . . . , xen~1. Define
Pn(g_c) = /\ d(xy X1y x]’)'
0= g j=2an—1

Note that for L € HOR the polynomial p, takes the values 0 and 1 only and
that, provided xCy, the expression (x V y) A (&’ V »’) is 0 if and only if
x =y and is 1 if and only if x = y'.

LemuMa 3. Let L be the horizontal sum of at least two blocks and let n = 2 be a
naiural number. Then the following two conditions are equivalent:

(1) every block of L contains at most 2" elements,
(2) L satisfies p, (&) = 0.

Proof. (1) = (2). Let x, xo, . . ., x9o—1 be arbitrary elements of L. We show
thatd (x, x;, x;) = 0for some pair (7,7) with0 £ ¢ < j £ 2L If¢ (x4, ;) =0
holds for at least one pair (7, 7) there is nothing left to prove. If not, any two
of the x; commute and there exists a block B of L containing all x;. Since this
block B contains by assumption at most 2" elements, there exist indices ¢ < j
such that either x; = x; or x; = x;/. For these indices

clx, s Vx) A (xd V) =0,

i.e., our equation is satisfied.

(2) = (1). Let B be an arbitrary block of L. Since L contains at least two
blocks there exists x € L — B and we can choose elements x;(0 < 7 £ 2" 1) in
B — {0, 1}. Since ¢/ (x;, x;) = 1{for all 7, j, our equation p, (&%) = 0 implies that
there exist indices 7+ < j such that ¢(x, (x; V x;) A &/ V x/)) = 0. Since
(x; V x;) A (x/ V x,) belongs to B and x belongs to L — B, it follows that
(x; Vx;) A (x/ V xy) is either 0 or 1, i.e., that either x; = x, or x; = x/.
Since the x; are arbitrary elements of B — {0, 1} it follows that B has at most
2,21 + 2 < 2" elements, i.e., that B has at most 2" elements.

We next define for every pair (k, #) of natural numbers with1 £ kand2 < #»
a polynomial g, in (& 4+ 1)(2*2 4+ 1) variables which for notational con-
venience we write x;, x,;(0 7=k, 1 £ £ 272), Let &, stand for the variables
Xy Xg1y X725 ¢« oy Xyoh—2 and let
G1®) = N d(w, % %) for0=is k.

15 1I<m<2n—2
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Let z stand for the (k¢ + 1) (22 4 1) variables above. Then we define

@@ = N @) A N i xm).
0= i<k 0= i< jSk
1STmEn—2
Note again that in an OML L which is the horizontal sum of its blocks, the
polynomial ¢, takes the values 0 and 1 only.

LemMA 4. Let L be an OML which is the horizontal sum of at least two blocks
and let k and n be natural numbers such that 1 < k and 2 £ n. Then the following
conditions are equivalent:

(1) L has at most k blocks B with 2* < |B|,

(2) L satisfies g, () = 0.

Proof. (1) = (2).Letxy, x40 =72 = k, 1 =1 < 22) be arbitrary elements
of L. If atleast one of the elements ¢’ (X1, ¥ m) OF ¢ (X3, %) is 0 there is nothing
left to prove. If not, we have

(3.1) 2Cxm(0 =12k, 1 21 <m = 2772,
(3.2) $0uCom(0 =1 <j=S k1= 1,m= 202),
From (3.1) it follows that for every 7 = 0, 1, ..., %k there exists a block B,

containing all x;;. Since 1 < k and 2 = # it follows from (3.2) that B, = B; if
1 # j and that all x;; are different from 0 and 1. By condition 1, there exists an
index ¢ (0 £ 4 < k) such that |B;| £ 2" 1 For this index 1 there exist indices /
and m with1l £ 7 < m £ 2" ?such that either x;; = x;, or x;; = %4,’. In both
cases we have c¢(x; (XuvXim) o (¢4’ vXu')) = 0. This means that our
equation is satisfied.

(2) = (1). If L contains at most & blocks there is nothing to prove. If not,
let By, By, ..., By be arbitrary pairwise different blocks of L. If 2" < |B,|
choose elements 1, %49, . . ., X49n-2 € B; — {0, 1} insuch a way thatx; 5 x,, and
Xq 7 X4 hold foralll,m with 1 £ 1 <m = 22 and choose %, € B, — {0, 1}
arbitrarily otherwise. Since L contains at least two blocks we may choose
x; € L—B;(i=0,1,...,k). Our equation then implies that there exist 1,7, m
VO=2isk12l<m=E2"?) with c(xy (u vEm) A & vag)) = 0.
This as before implies that x;; = x4, or that x;; = x4,/ which in view of the
choice of the x;, gives |B,| < 2*-1,

4. Equational bases for the subvarieties of [HOR]. For a given ¢ € @
with ¢ (2) ## 0, let ny be the smallest natural number # = 2 for which
Y(m 4+ 1) =1 and let n, be the smallest natural number # = 2 for which
Y(#n + 1) = 0. We introduce a polynomial ¢, depending on the following vari-
ables: x (2 =5 Snp;0 =4 = ¢Y(s) — 1), x°a(2=Ss =m0 S0 = y(s) — 15
12712292, x2%5mp < s £my) and 5w <s=Zn;0=k £ 252). To sim-
plify notation we let v, stand for the variables x.%, x*;,(0 £ 7 =< ¢(s) — 1;

https://doi.org/10.4153/CJM-1971-089-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1971-089-1

808 G. BRUNS AND G. KALMBACH

12715272 if 2<s=<mn and we let v, stand for the wvariables

x5, 0%, 1%, . .., X%9s-2 1f mp < 5 = m1. We then define
ey(vs;2 S5 Smyp) = ( N gyp-1.s@,) )/\ ( A Ps—l(vs)> .
2<s=no no<ssni

LEMMA 5. Assume that ¢ € Q, ¢(2) =2 2, L € HORF and L not Boolean.
Then the following conditions are equivalent:

(1) ¢ $ Ly

(2) L satisfies ey = 0.

Proof. (1) = (2). If ¢ £ m, there exists a natural number s such that
7w (s) S ¢(s) — 1. If 2 <5 < ny we have, by Lemma 4, gyy_1.:(,) = 0. If
no < s = n; we have, by Lemma 3, p,_1(v;) = 0. In both cases we have
ey = 0.

(2) = (1). If ¢ £ 7z, again by Lemma 3 and Lemma 4, the variables can be
chosen in such a way that ¢;(v,; 2 < s £ ;) = 1, i.e., that (2) is violated.

We are now in a position to give equational bases for all subvarieties of
[HOR]. We start out with the variety [HOR] itself. From Lemma 2, follows
immediately:

THEOREM 2. The variety [HOR] consists of exactly those OMLs which satisfy
c(x,c(y,2)) = 0.

The next theorem characterizes arbitrary subvarieties of [HOR].

THEOREM 3. Let 4~ C [HOR] be a variety of OMLs different from the variety
consisting of all one-element OMLs. Define M = {n |L € 2 M HORF}. Then
for every orthomodular lattice L the following two conditions are equivalent:

(1) LeXA,

(2) L satisfies c(x,¢c(y,2)) =0 and ey = 0 for all minimal elements ¢ of
Q— M.

Proof. Take M € & (the lattice used in Theorem 1), # # @ and put
M = {x|L € M}. By Theorem 1 and Theorem 2 it is enough to show that an
OML L € HOREF belongs to .# if and only if it satisfies ¢, = 0 for all minimal
elements ¢ of @ — M. If L € 4 and if ¢ is a minimal element of & — M then
¢ £ m. But then L satisfies ¢, = 0. This follows from Lemma 5 if L is not
Boolean and is obvious otherwise. Assume conversely that L € HORF and
L ¢ . Then =, ¢ M. Since Q satisfies the descending chain condition there
exists a minimal element ¢ of @ — M with ¢ < 7. Since 4 # @ it follows that
¢¥(2) = 1 and that L contains at least two blocks. By Lemma 5, L does not
satisfy e, = 0.

The equations given in Theorem 3 to characterize the subvarieties of [HOR]
are by no means the most economic ones in every special case. We mention only
one important example.
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It is easy to see that a lattice L € HORF is modular if and only if all its
blocks have at most 4 elements, i.e., if their characteristic function satisfies
¥ (3) = 0. Such an OML is completely determined by the number of its
blocks. But it follows from Lemma 4, and could easily be checked directly, that
an OML L € HORF has at most # blocks if and only if it satisfies

A c(xyx;) = 0.
0= i< j=n
We thus obtain that the variety of modular ortholattices generated by the
(2n + 2)-element ortholattice of dimension 2 is characterized by modularity
and the equations

clx,c(y,2)) =0

AN c(x4 %) = 0.

0= i< j=n

and

The lattice-varieties generated by these lattices have been characterized in [9],

5. The finite basis problem. We show now that there are only finitely many
equations occurring in Theorem 3. We start out with the following:

LeMMA 6. Every infinite subset .S of Q has comparable elements.

Proof. Define a: No— N \U {0} by a(n) = sup{y(n)|¢ € S}. Assume first
that a(n) = o for all . Take ¢ € S arbitrarily. Then ¢ (#) = 0 for some #.
Since a(rn) = o there exists ¢ € S such that ¢(n) > ¢(2). It follows that
¥ < ¢. Assume next that a(z) < co holds for at least one %n. For every such
there exists £ € IV such that ¢ (z) = k holds for infinitely many ¢ € S. Let n,
be the smallest number # € N, for which such a number & exists and let %, be
the smallest k. Define Sq = {¢ € S|y (no) = ko}. Starting with (S, ko) we
define recursively a sequence (S,, k,) (# = 0,1, ...) as follows. If # = 1 then
k, is the smallest natural number & such that ¢ (#o + #) = k holds for infinitely
many ¢ € S,_1 and S, = {¢ € S,.1|¢ (e + n) = k,}. Then the S, form a
decreasing sequence of infinite subsets of .S and the %, form a decreasing
sequence of natural numbers. It follows that there exists #; = 0 such that
k, = ky, for all n = n,. Take ¢ € S,,. Then ¢ (ny + #) = 0 for some n > n;.
Assume that #y = 2. Then k,, 5 0 since .S,, is infinite. Therefore ¢ > ¢ holds
for all ¢ € S,. If ny, > 2 then by definition of 7., ¢(#y — 1) < ¢(2) holds for
finitely many ¢ € S, only. Hence there exists ¢ € S, with ¢(ny — 1) > ¢(2).
For every such ¢, one clearly has ¢ < o.

Any two minimal elements of a subset .S of Q are incomparable. Hence by
Theorem 3 and Lemma 6 we have:

THEOREM 4. Every subvariety of [HOR] s finitely based.
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