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Abstract
In this paper, we establish some stochastic comparison results for largest claim amounts of two sets of independent
and also for interdependent portfolios under the setup of the proportional odds model. We also establish stochastic
comparison results for aggregate claim amounts of two sets of independent portfolios. Further, stochastic compar-
isons for largest claim amounts from two sets of independent multiple-outlier claims have also been studied. The
results we obtained apply to the whole family of extended distributions, also known as the Marshall–Olkin family
of distributions. We have given many numerical examples to illustrate the results obtained.

1. Introduction

An insurance policy is an agreement between the insurer and the insured. Consequently, there are
two thought processes in any insurance policy, namely, one from insurer side and the other one from
insured side. An insured always looks into the plan (that contains the annual premium amount, total
time period, whether it is the individual or the group insurance policy, etc.) and the key benefits
(namely, sum insured amount, withdrawal facility, tax saving facility, etc.) of a policy before having
it. On the other hand, the insurer comes up with a policy whose existence and upgradation (as and
when necessary) depend on different key factors, namely, number of claims in a given time frame,
size of the portfolio, aggregate claim amount, largest claim amount, smallest claim amount, etc. Thus,
numerous researchers have shown their keen interest in studying useful characteristics of these key
factors.

Assume that Ip1 , . . . , Ipn are independent Bernoulli random variables (r.v.’s), independent of r.v.’s
X i’s, with E(Ipi ) = pi, i = 1, . . . , n. Let X∗

i = XiIpi , i = 1, . . . , n, and denote X∗
n:n = max(X∗

1 , . . . , X∗
n).

In actuarial science, it represents the largest claim amount in a portfolio of risks [3, 7, 28], where X i’s
represent random claims that can be made by a policy in an insurance period and Ipi ’s indicate the
occurrence of these claims (Ipi = 1 if the ith policy makes random claim X i and Ipi = 0 if there is
no claim). Here

∑n
i=1 XiIpi represents the aggregate claim amount for this portfolio of risks. Similarly,

denote Y∗
n:n = max(Y∗

1 , . . . , Y∗
n ), which represents the largest claim amount in an another portfolio of

risks, where Y∗
i = YiIqi , i = 1, . . . , n. In this case,

∑n
i=1 YiIqi represents the aggregate claim amount. As

discussed, the smallest, the largest, and the aggregate claim amounts have important roles in deter-
mining the annual premium and the coverage of a policy. It is also important for an actuary to be
able to compare different portfolios of risks according to these important information. In this prospect,
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stochastic comparisons of maximum, minimum, and aggregate claim amounts arising from two sets of
portfolios have great importance in actuarial science on both theoretical and practical grounds [2–4, 6, 7,
27, 28, 30].

The proportional odds (PO) model [8, 15, 18, 23] is an important model in reliability theory and
survival analysis. Let X and Y be two r.v.’s with cumulative distribution functions (CDFs) F, G and sur-
vival functions F̄, Ḡ, respectively. If X represents a lifetime r.v., then the odds function dX (t), defined by
dX (t) = F̄ (t)/F (t), represents the odds on surviving beyond time t. Similarly, if X represents a random
claim amount, then dX (x) represents the odds that claim amount be more than a specific quantity x. Two
r.v.’s X and Y are said to satisfy the PO model if

dY (x) = U dX (x) (1)

for all admissible x, where proportionality constant U is known as odds ratio. If X and Y represent ran-
dom claims corresponding to two policies, and we consider the event “claim amount be more than
a specific quantity”, then U > (<)1 indicates that the event is more (less) likely to occur for the
first policy than the second one. From Eq. (1), we have that the survival functions of X and Y are
related as

Ḡ(x) = UF̄ (x)
1 − ŪF̄ (x)

, (2)

where Ū = 1 − U. We will say that Y is following the PO model with baseline survival function F̄
and odds ratio U denoted as Y ∼ PO(F̄,U). Let us denote the hazard rate functions of X and Y as
rX (·) = f (·)/F̄ (·), rY (·) = g(·)/Ḡ(·), respectively, where f (·) and g(·) denote the respective probability
density functions of X and Y. Then, from Eq. (2), we have the hazard ratio of the two r.v.’s X and Y
as rY (t)/rX (t) = 1/(1 − ŪF̄ (t)), which converges to unity as t tends to ∞. This is in contrast to the
proportional hazard rate model, where the hazard ratio of the two r.v.’s remains constant with time. The
convergence property of the hazard ratio makes the PO model reasonable in many practical applications
as discussed in [8, 12, 15, 19, 24]. Marshall and Olkin [20] discussed the model in Eq. (2) with 0 <

U < ∞ (tilt parameter) as a method of generating flexible new family of distributions, known as the
Marshall–Olkin family of distributions (or extended distributions) [13, 20], from an existing family of
distributions. Many researchers studied this family of distributions considering the baseline distributions
as some known distributions like exponential, Weibull, gamma, Pareto, Lomax, and linear failure-rate
(see [5] and references therein). Note that we have studied it in general setup, that is, without considering
any specific baseline distributions.

In this paper, we investigate stochastic comparisons of the largest claim amounts from two sets of
heterogeneous portfolios in the sense of some stochastic orderings under the setup of the PO model.
We also investigate stochastic comparisons of aggregate claim amounts. It is worth noting that our
results are not limited to be applied in actuarial science. For instance, our proposed results can be
used to compare the lifetimes of two parallel systems whose components are subject to random shocks
instantaneously. Suppose that the r.v. X i denotes the lifetime of the ith component of a parallel system
which may receive a random shock defined by the Bernoulli r.v. Ipi , where Ipi = 1 if the shock does
not occur with pi = P

(
Ipi = 1

)
and 0 if the shock occurs. Then X∗

n:n represents the lifetime of a parallel
system whose components are subject to random shocks instantaneously [1, 11, 16].

The rest of the paper is organized as follows. Section 2 describes some preliminary concepts.
Section 3 presents some stochastic comparison results for largest claim amounts of two sets of inde-
pendent and also for interdependent portfolios under the setup of the PO model. Section 4 presents
star ordering result for two sets of independent multiple-outlier claims. Section 5 presents comparison
results on aggregate claim amounts under two sets of independent portfolios. Finally, the concluding
remarks are given in Section 6.
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2. Preliminaries

We first give a brief overview of some preliminaries, namely, stochastic orders and majorization orders.
Let U ⊆ R denote a subset of the real line. Further, let, for any vector : = (o1, o2, . . . , on) ∈

Rn, o(1) ≤ o(2) ≤ . . . ≤ o(n) denote the increasing arrangement of components in :.

Definition 2.1. [21] Let : = (o1, o2, . . . , on) and ( = ([1, [2, . . . , [n) ∈ Un. The vector : is said to

(i) majorize the vector ( (denoted by :
m
� () if

j∑
i=1

o(i) ≤
j∑

i=1
[ (i) , ∀ j = 1, 2, . . . , n − 1, and

n∑
i=1

o(i) =
n∑

i=1
[ (i) .

(ii) weakly supermajorize ( (denoted by :
w
� () if

j∑
i=1

o(i) ≤
j∑

i=1
[ (i) , ∀ j = 1, 2, . . . , n.

(iii) weakly submajorize ( (denoted by : �w () if

n∑
i=j

o(i) ≥
n∑

i=j
[ (i) , ∀ j = 1, 2, . . . , n.

It is to be noted that :
w
� ( (: �w () =⇒ :

m
� (, but the reverse is not true. Later, we give some

definitions related to multivariate majorization (Marshall et al. [21], Chap. 15).

Definition 2.2. Let A and B be two m × n matrices. Further, let aR
1 , . . . , aR

m and bR
1 , . . . , bR

m are the rows
of A and B, respectively. Then A is said to be

(i) row majorize B (denoted by A >row B) if aR
i

m
� bR

i , i = 1, . . . , m.

(ii) row weakly supermajorize (submajorize) B (denoted by A >w (>w)B) if aR
i

w
� (�w) bR

i , i = 1, . . . , m.

Next we give the definitions of some stochastic orders (see [26]).

Definition 2.3. Let X1 and X2 be two absolutely continuous nonnegative r.v.’s with the CDFs FX1 (·)
and FX2 (·), the survival functions F̄X1 (·) and F̄X2 (·), the probability density function (p.d.f.’s) fX1 (·) and
fX2 (·), and the reversed hazard rate functions r̃X1 (·) = fX1 (·)/FX1 (·) and r̃X2 (·) = fX2 (·)/FX2 (·), respec-
tively. Further, let F−1

X1
(·) and F−1

X2
(·) be the right continuous inverses of FX1 (·) and FX2 (·), respectively.

Then X1 is said to be smaller than X2 in the

(i) usual stochastic order, denoted by X1 ≤st X2, if F̄X1 (t) ≤ F̄X2 (t) ∀t ≥ 0;
(ii) reversed hazard rate order, denoted by X1 ≤rh X2, if FX2 (t)/FX1 (t) is increasing in t ≥ 0, or

equivalently if r̃X1 (t) ≤ r̃X2 (t) ∀t ≥ 0;
(iii) star order, denoted by X1 ≤★ X2, if F−1

X2
(FX1 (t))/t is increasing in t> 0 or equivalently X1 ≤★ X2

iff F−1
X2

(t)/F−1
X1

(t) is increasing in t ∈ (0, 1). �
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In what follows, we introduce a notation. Let

Un =

{
(:, () =

(
o1 · · · on

[1 · · · [n

)
: oi > 0, [i > 0, and

(oi − oj) ([i − [j) ≥ 0, ∀ i, j = 1, . . . , n
}
.

Notation. Let us denote the following notations:

(i) D = {(o1, o2, . . . , on) : o1 ≥ o2 ≥ · · · ≥ on ≥ 0}
(ii) E = {(o1, o2, . . . , on) : 0 ≤ o1 ≤ o2 ≤ · · · ≤ on}

Lemma 2.4. [17, 21] Let i : E → R is continuously differentiable on the interior of E . Then, for
:, ( ∈ E ,

:
m
� ( =⇒ i(:) ≥ (resp. ≤) i(()

iff i (k) (z) is increasing (respectively, decreasing) in k = 1, . . . , n, where i (k) = mi(z)/mzk denotes the
partial derivative of i with respect to its kth argument.

Lemma 2.5. [21] Let i : S → R be a function, S ⊆ Rn. Then, for :, ( ∈ S,

: �w ( =⇒ i(:) ≥ (resp. ≤) i(()

iff i is increasing (respectively, decreasing) and Schur-convex (respectively, Schur-concave) on S.
Similarly,

:
w
� ( =⇒ i(:) ≥ (resp. ≤) i(()

iff i is decreasing (respectively, increasing) and Schur-convex (respectively, Schur-concave) on S. �

Lemma 2.6. [14, 21] Let i : D(E) → R be a continuous function and continuously differentiable on
the interior of D(E). Then

i(:) ≥ i(() whenever : �w ( on D (E)

iff i (k) (z) is a nonnegative decreasing (increasing) function in k for all z in the interior of D(E).
Similarly,

i(:) ≥ i(() whenever :
w
� ( on D (E)

iff i (k) (z) is a nonpositive decreasing (increasing) function of k for all z in the interior of D(E).

We conclude this section by giving the following useful definition (for details, see [22]).

Definition 2.7. [22] Let C1 and C2 be two copulas. Then C1 is said to be less positively lower orthant
dependent (PLOD) than C2, denoted by C1 ≺ C2, if C1(v) ≤ C2(v), for all v ∈ [0, 1]n.
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3. Stochastic comparisons of largest claim amounts

In this section, we derive some stochastic comparison results for largest claim amounts of two different
portfolios of risks. Unless otherwise specified, we assume that X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn)
are two sets of independent r.v.’s.

Assume that Ipi , i = 1, . . . , n, are independent Bernoulli r.v.’s, independent of X i’s, with E(Ipi ) = pi.
Denote multivariate Bernoulli random vector I =

(
Ip1 , . . . , Ipn

)
. Let X∗

i = XiIpi , i = 1, . . . , n, and
denote X∗

n:n = max(X∗
1 , . . . , X∗

n). Then X∗
n:n corresponds to the largest claim amount in a portfolio of

risks, where X i’s represent random claim amount that can be made by a policy in an insurance period,
and Ipi ’s indicate the occurrence of these claims. Further, suppose odds function of each X i in X is
proportional to that of a baseline r.v. with proportionality constant (odds ratio) Ui > 0, that is, Xi ∼
PO(F̄,Ui), i = 1, . . . , n, where F̄ denotes the survival function of the baseline r.v. Let us denote X◦

n:n =

max(X◦
1 , . . . , X◦

n ), where X◦
i = XiIqi and Iqi , i = 1, . . . , n, are independent Bernoulli r.v.’s, independent

of X i’s, with E(Iqi ) = qi.
Similarly suppose Yi ∼ PO(F̄, Vi), Vi > 0, i = 1, . . . , n. Denote Y∗

n:n = max(Y∗
1 , . . . , Y∗

n ), where
Y∗

i = YiIpi , and Y◦
n:n = max(Y◦

1 , . . . , Y◦
n ), where Y◦

i = YiIqi , i = 1, . . . , n.
Theorem 3.1 established that more heterogeneity among the odds of claim in terms of the weakly

supermajorization order results in less largest claim amount in the sense of the usual stochastic orders
when both portfolios have common occurrence of claim p. By the symbol a sign

= b, we mean that a and
b have the same sign.

Theorem 3.1. Let ^ : [0, 1] → R+ be a differentiable and strictly decreasing function. Then, for
(^(p),") ∈ Un and (^(p), #) ∈ Un,

"
w
� # =⇒ X∗

n:n ≤st Y∗
n:n.

Proof. We have FX∗
n:n (x) =

∏n
i=1(1 − ^−1(ui)F̄Xi (x)), where F̄Xi (x) =

UiF̄ (x)
1− ŪiF̄ (x) , and ui = ^(pi),

i = 1, 2, . . . , n. Note that F̄Xi is increasing and concave in Ui. Now,

mFX∗
n:n (x)
mUi

=
−^−1(ui)

mF̄Xi
mUi

1 − ^−1(ui)F̄Xi (x)
FX∗

n:n (x) = −
^−1 (ui) F̄ (x)F (x)

(1− ŪiF̄ (x) )2

1 − ^−1 (ui) UiF̄ (x)
1− ŪiF̄ (x)

FX∗
n:n (x)

= − ^−1(ui)F̄ (x)F (x)
(1 − ŪiF̄ (x))2 − ^−1(ui)Ui (1 − ŪiF̄ (x))F̄ (x)

FX∗
n:n (x)

= −g(zi,Ui)F̄ (x)F (x)FX∗
n:n (x) (say),

where zi = ^−1(ui). Again,

mg
mUi

sign
= −^−1(ui)F̄ (x)

[
(2 − ^−1(ui)) (1 − F̄ (x)) + 2(1 − ^−1(ui))UiF̄ (x)

]
≤ 0.

So g(zi,Ui) is decreasing in Ui. Further,

mg
mzi

sign
= (1 − ŪiF̄ (x))2 ≥ 0,

so g(zi,Ui) is increasing in zi = ^−1(ui), and so it is decreasing in ui as zi = ^−1(ui) is decreasing
in ui. Without loss of generality, we assume that U1 ≥ U2 ≥ · · · ≥ Un so that (+(p),") ∈ Un implies
^(p1) ≥ ^(p2) ≥ · · · ≥ ^(pn). Now for any pair i, j such that 1 ≤ i < j ≤ n, we have Ui ≥ Uj and
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Figure 1. Plots of Z1(t) and Z2(t), t ∈ [0, 1].

ui ≥ uj. Thus, we have

g(zi,Ui) ≤ g(zj,Ui) ≤ g(zj,Uj) =⇒
mFX∗

n:n (x)
mUj

≤
mFX∗

n:n (x)
mUi

≤ 0. (3)

So from Lemma 2.6, we get

"
w
� # =⇒ X∗

n:n ≤st Y∗
n:n.

The following example demonstrates Theorem 3.1.

Example 3.2. Suppose that {X1, X2, X3, X4} and {Y1, Y2, Y3, Y4} are two sets of independent nonnega-
tive r.v.’s with Xi ∼ PO(F̄ (x),Ui) and Yi ∼ PO(F̄ (x), Vi), i = 1, 2, 3, 4, where F̄ (x) = e−(0.5x)2 , x > 0.
Further, suppose that {Ip1 , Ip2 , Ip3 , Ip4 } is a set of Bernoulli r.v.’s, independent of X i’s and Y i’s.
Set (U1,U2,U3,U4) = (0.2, 0.6, 1.5, 2.8), (V1, V2, V3, V4) = (0.5, 0.8, 2.5, 4.8), (p1, p2, p3, p4) =

(0.95, 0.65, 0.5, 0.35), and ^(p) = 1/p2, satisfying all the conditions of Theorem 3.1. We consider
the transformation x = t/(1− t) so that, for t ∈ [0, 1), we have x ∈ [0,∞). Then denote the distribution
functions of X∗

n:n and Y∗
n:n by FX∗

n:n (t/(1 − t)) = Z1(t) and FY∗
n:n (t/(1 − t)) = Z2(t). Figure 1 shows that

Z1(t) ≥ Z2(t), for all t ∈ [0, 1), and hence, X∗
n:n ≤st Y∗

n:n

.
�

Next we provide a counterexample to show that the stochastic ordering result in Theorem 3.1 may
not hold if we relax the weakly supermajorize condition under a strictly decreasing function.

Counterexample 3.3. In Example 3.2, let us take (U1,U2,U3,U4) = (0.2, 0.9, 1.5, 4.5),
(V1, V2, V3, V4) = (0.35, 0.4, 2.9, 3.8) so that "

w
� #. In Figure 2, we have plotted Z1(t) − Z2(t) for

all t ∈ [0, 1), from which it is clear that stochastic ordering result of Theorem 3.1 does not hold.

Theorem 3.4 establishes that largest claim amounts of two portfolios of risks might be increased
in terms of the usual stochastic order with the increased heterogeneity among the probabilities of
occurrence of claims when both the portfolio of risks have common odds of claim vector ".

https://doi.org/10.1017/S0269964823000104 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000104


Probability in the Engineering and Informational Sciences 251

Figure 2. Plot of Z1(t) − Z2(t), t ∈ [0, 1].

Theorem 3.4. Let ^ : [0, 1] → R+ be a differentiable and strictly increasing concave function. Then,
for (+(p),") ∈ Un and (+(q),") ∈ Un,

(^(p1), ^(p2), . . . , ^(pn)) �w (^(q1), ^(q2), . . . , ^(qn)) =⇒ X∗
n:n ≥st X◦

n:n.

Proof. Here FX∗
n:n (x) =

∏n
i=1 (1− ^−1(ui)F̄Xi (x)), where F̄Xi (x) =

UiF̄ (x)
1− ŪiF̄ (x) . It is to be noted that F̄Xi (x)

is increasing in Ui. Also, ^−1 is strictly increasing and convex. Let q(u) = −FX∗
n:n (x). We have

mq(u)
mui

=
F̄Xi (x)

d^−1 (ui )
dui

1 − ^−1(ui)F̄Xi (x)
FX∗

n:n (x) ≥ 0

according to ^−1(.) is increasing.

Let ℓ(gi, ui) =
gi

d^−1 (ui )
dui

1−^−1 (ui )gi
, where gi = F̄Xi (x). Then

mℓ

mui

sign
= gi (1 − gi^

−1(ui))
d2^−1(ui)

du2
i

+ g2
i

(
d^−1(ui)

dui

)2

≥ 0,

which holds as ^−1(ui) is convex. So, ℓ(gi, ui) is increasing in ui. Further,

mℓ

mgi

sign
= (1 − gi^

−1(ui))
d^−1(ui)

dui
− gi

d^−1(ui)
dui

(−^−1(ui)) =
d^−1 (ui)

dui
≥ 0,

since ^−1(ui) is increasing in ui. Then ℓ(gi, ui) is increasing in gi (i.e., in F̄Xi (x)), so that it is increasing
in Ui as F̄Xi (x) is increasing in Ui.

Without loss of generality, we assume that U1 ≥ U2 ≥ · · · ≥ Un, so that (+(p),") ∈ Un implies
^(p1) ≥ ^(p2) ≥ · · · ≥ ^(pn). Now for any pair i, j with 1 ≤ i < j ≤ n, we have Ui ≥ Uj and ui ≥ uj.

https://doi.org/10.1017/S0269964823000104 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000104


252 A. Panja et al.

Figure 3. Plots of b1(t) and b2(t), t ∈ [0, 1] .

Then, if ^−1(ui) is increasing and convex in ui, we have

ℓ(gi, ui) ≥ ℓ(gj, ui) ≥ ℓ(gj, uj),

i.e.
mq(u)
mui

≥ mq(u)
muj

≥ 0. (4)

So from Lemma 2.6, we have

(^(p1), ^(p2), . . . , ^(pn)) �w (^(q1), ^(q2), . . . , ^(qn)) =⇒ X∗
n:n ≥st X◦

n:n.

We illustrate Theorem 3.4 with the following example.

Example 3.5. Suppose that {X1, X2, X3, X4} is a set of independent nonnegative r.v.’s with Xi ∼
PO(F̄ (x),Ui), i = 1, 2, 3, 4, where F̄ (x) = e−(x/2)1.5 , x > 0. Set " = (U1,U2,U3,U4) =

(0.9, 1.36, 2.55, 3.5), (p1, p2, p3, p4) = (0.35, 0.5, 0.8, 0.9), (q1, q2, q3, q4) = (0.2, 0.4, 0.65, 0.8), and
^(p) = p/(1 + p), satisfying all the conditions of Theorem 3.4. We consider the transformation
x = t/(1 − t) so that, for t ∈ [0, 1), we have x ∈ [0,∞). After this substitution, let us denote the
respective distribution functions of X∗

n:n and X◦
n:n by FX∗

n:n (t/(1− t)) = b1(t) and FX◦
n:n (t/(1− t)) = b2(t).

From Figure 3, it is clear that b1(t) ≤ b2(t), ∀t ∈ [0, 1), and hence, X∗
n:n ≥st X◦

n:n

.
�

Next we provide a counterexample to show that the stochastic ordering result in Theorem 3.4 may
not hold if we relax the weakly submajorize condition under an increasing concave function.

Counterexample 3.6. In Example 3.5, let us take (p1, p2, p3, p4) = (0.1, 0.2, 0.85, 0.95) and
(q1, q2, q3, q4) = (0.5, 0.55, 0.75, 0.8) so that (^(p1), ^(p2), ^(p3), ^(p4)) �w
(^(q1), ^(q2), ^(q3), ^(q4)). In Figure 4, we have plotted b1(t) − b2(t) ∀t ∈ [0, 1), from which it
is clear that none of these distribution functions dominate each other.

Cai and Wei [10] proposed some multivariate dependence notions based on stochastic arrangement
increasing (SAI) notion, including weakly SAI through left tail probability (LWSAI), to model multivari-
ate dependent risks. Since then it has been applied in finance and actuarial science to model dependent
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Figure 4. Plot of b1(t) − b2(t), t ∈ [0, 1]

stochastic returns and risks [10, 29, 30]. For a random vector X = (X1, X2, . . . , Xn), one of the ways to
define or describe its dependence notion is to characterize the expectations of the transformations of the
random vector [9]. For any (i, j) with 1 ≤ i < j ≤ n, denote

Gi,j
LWSAI(n) =

{
g(x) : g(x) − g(cij (x)) is decreasing in xi ≤ xj

}
,

where ci,j is the special permutation of transposition defined as ci,j (x) = (x1, . . . , xj, . . . , xi, . . . , xn).
A random vector X = (X1, X2, . . . , Xn) or its distribution is said to be the LWSAI [10] if E[g(X)] ≥
E[g(gi,j (X))]for any g(x) ∈ Gi,j

LWSAI (n) and any 1 ≤ i < j ≤ n.
Next, we present a stochastic ordering result when the occurrence probabilities are interdependent

in terms of LWSAI. Let us denote Sk = {6 |ji = 0 or 1, i = 1, 2, . . . , n, j1 + · · · + jn = k}, k = 0, . . . , n,
and Si,j

k ([i, [j) = {6 ∈ Sk |ji = [i, jj = [j, [i, [j ∈ {0, 1}}, for any 1 ≤ i ≠ j ≤ n, k = 1, . . . , n − 1.
Then Sk =

⋃
[i,[j∈{0,1} Si,j

k ([i, [j). Also denote p(6) = P(I = 6) = P
(
Ip1 = j1, . . . , Ipn = jn

)
.

Lemma 3.7. (Cai and Wei [10]; Balakrishnan et al. [3]) A multivariate Bernoulli random vector I is
LWSAI iff p(6) ≥ p(cij (6)) for all 6 ∈ Si,j

k (0, 1), 1 ≤ i < j ≤ n, and k = 1, . . . , n − 1.

Theorem 3.8. Suppose that I =
(
Ip1 , . . . , Ipn

)
is LWSAI. If

"
m
� # such that U1 ≤ U2 ≤ · · · ≤ Un and V1 ≤ V2 ≤ · · · ≤ Vn,

then X∗
n:n ≤st Y∗

n:n.

Proof. From Theorem 4.1 of Kundu et al. [18], it follows that "
m
� # =⇒ Xn:n ≤st Yn:n, that is,

FXn:n (t) ≥ FYn:n (t) for all t, where Xn:n = max(X1, X2, . . . , Xn). We desire to show that FX∗
n:n (t) ≥ FY∗

n:n (t)
for all t ∈ <+. By the nature of majorization order, it suffices to prove the result when (Ui,Uj)

m
� (Vi, Vj)

for some pair 1 ≤ i < j ≤ n and Ur = Vr for all r ≠ i, j. Now, we have

FX∗
n:n (t) = P

(
max{Ip1X1, . . . , IpnXn} ≤ t

)
https://doi.org/10.1017/S0269964823000104 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000104


254 A. Panja et al.

=

n∑
k=0

∑
j∈Sk

P
(
max{Ip1X1, . . . , IpnXn} ≤ t |I = 6

)
p(6)

= p(0) + p(1)P(max{X1, . . . , Xn} ≤ t) +
n−1∑
k=1

∑
6∈Sk

p(6)P(max{j1X1, ..., jnXn} ≤ t)

= p(0) + p(1)FXn:n (t) +
n−1∑
k=1


∑

6∈Si,j
k (0,0)

p(6)
n∏

r≠i,j
P(jrXr ≤ t)

+
∑

6∈Si,j
k (0,1)

p(6)FXj (t)
n∏

r≠i,j
P(jrXr ≤ t) +

∑
6∈Si,j

k (0,1)

p(gi,j (6))FXi (t)
n∏

r≠i,j
P(jrXr ≤ t)

+
∑

6∈Si,j
k (1,1)

p(6)FXi (t)FXj (t)
n∏

r≠i,j
P(jrXr ≤ t)

 .

Similarly,

FY∗
n:n (t) = p(0) + p(1)FYn:n (t) +

n−1∑
k=1


∑

6∈Si,j
k (0,0)

p(6)
n∏

r≠i,j
P(jrYr ≤ t)

+
∑

6∈Si,j
k (0,1)

p(6)FYj (t)
n∏

r≠i,j
P(jrYr ≤ t) +

∑
6∈Si,j

k (0,1)

p(gi,j (6))FYi (t)
n∏

r≠i,j
P(jrYr ≤ t)

+
∑

6∈Si,j
k (1,1)

p(6)FYi (t)FYj (t)
n∏

r≠i,j
P(jrYr ≤ t)

 .

Upon using the condition that P(jrXr ≤ t) = P(jrYr ≤ t) for all r ≠ i, j, we have

FX★
n:n
(t) − FY∗

n:n (t) = p(1) [FXn:n (t) − FYn:n (t)]

n−1∑
k=1


∑

6∈Si,j
k (0,1)

p(6) [FXj (t) − FYj (t)]
n∏

r≠i,j
P(jrXr ≤ t)+

∑
6∈Si,j

k (0,1)

p(gi,j (6)) [FXi (t) − FYi (t)]
n∏

r≠i,j
P(jrXr ≤ t)+

∑
6∈Si,j

k (1,1)

p(6) [FXi (t)FXj (t) − FYi (t)FYj (t)]
n∏

r≠i,j
P(jrXr ≤ t)


≥

n−1∑
k=1


∑

6∈Si,j
k (0,1)

p(gi,j (6)) [FXj (t) − FYj (t)]
n∏

r≠i,j
P(jrXr ≤ t)+
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∑
6∈Si,j

k (0,1)

p(gi,j (6)) [FXi (t) − FYi (t)]
n∏

r≠i,j
P(jrXr ≤ t)+

∑
6∈Si,j

k (1,1)

p(6) [FXi (t)FXj (t) − FYi (t)FYj (t)]
n∏

r≠i,j
P(jrXr ≤ t)


=

n−1∑
k=1


∑

6∈Si,j
k (0,1)

p(gi,j (6)) [FXi (t) + FXj (t) − FYi (t) − FYj (t)]
n∏

r≠i,j
P(jrXr ≤ t)+

∑
6∈Si,j

k (1,1)

p(6) [FXi (t)FXj (t) − FYi (t)FYj (t)]
n∏

r≠i,j
P(jrXr ≤ t)


≥ 0,

where the first inequality follows from the fact that FXn:n (t) ≥ FYn:n (t), Lemma 3.7, and the fact that
FXi (t) =

F (t)
1− ŪiF̄ (t) is decreasing in Ui. For the last inequality, we have the following explanation. Since

FXi (t) is convex in Ui, it follows that FXi (t) + FXj (t) ≥ FYi (t) + FYj (t). Let

q(Ui,Uj) = FXi (t)FXj (t) =
F2(t)

(1 − ŪiF̄ (t)) (1 − ŪjF̄ (t))
.

Then, for 1 ≤ i < j ≤ n,

mq

mUi
− mq

mUj
=

(Ui − Uj)F̄ (x)
(1 − ŪiF̄ (t))2(1 − ŪjF̄ (t))2 ≤ 0.

So, from Lemma 2.4, we get that (Ui,Uj)
m
� (Vi, Vj) ⇒ q(Ui,Uj) ≥ q(Vi, Vj), and thus the proof is

completed. �

Remark 3.9. Here it is to be noted that in Theorem 3.11 of Balakrishnan et al. [7], they derived similar
results under the assumption that the survival function F̄ (x;U) is decreasing and convex in U > 0, which
is not satisfied by the PO model. Here our established results in Theorem 3.8 can be generalized for any
semi-parametric model for which F̄ (x;U) is increasing and concave in U > 0.

We illustrate Theorem 3.8 with the following example.

Example 3.10. Suppose that {X1, X2} and {Y1, Y2} are two sets of independent nonnegative r.v.’s with
Xi ∼ PO(F̄ (x),Ui), i = 1, 2, and Yi ∼ PO(F̄ (x), Vi), i = 1, 2, where F̄ (x) = e−(0.08x)0.08 , x > 0. Set
(U1,U2) = (0.55, 1.45), (V1, V2) = (0.65, 1.35), p(0, 0) = P(Ip1 = 0, Ip2 = 0) = 0.14, p(0, 1) =

0.47, p(1, 0) = 0.25, andp(1, 1) = 0.14. Then I = {Ip1 , Ip2 } is LWSAI. We consider the transformation
x = t/(1−t) so that for t ∈ [0, 1), we have x ∈ [0,∞). After this substitution, let us denote the respective
distribution functions of X∗

n:n and Y∗
n:n by FX∗

n:n (t/(1− t)) = i1(t) and FY∗
n:n (t/(1− t)) = i2(t). Figure 5

shows that i1 (t) ≥ i2(t) for all t ∈ [0, 1). Hence, X∗
n:n ≤st Y∗

n:n. �

Theorems 3.11–3.13 compare the largest claim amounts of two interdependent heterogeneous
portfolios of risks where the joint distribution functions are modeled using copulas.
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Figure 5. Plots of i1(t) and i2(t), t ∈ [0, 1].

Theorem 3.11. Let X1, X2, . . . , Xn (Y1, Y2, . . . , Yn) be nonnegative r.v.’s with Xi ∼ PO(F̄,Ui) (Yi ∼
PO(F̄, Vi)), i = 1, 2, . . . , n, and let the associated copula be C. Further, suppose that {Ip1 , Ip2 , . . . , Ipn }
is a set of independent Bernoulli r.v.’s, independent of Xi’s (Yi’s). Then

Ui ≤ Vi,∀i = 1, 2, . . . , n =⇒ X∗
n:n ≤st Y∗

n:n.

Proof. The distribution function of X∗
n:n can be written as

GX∗
n:n (t) = P(X∗

1 ≤ t, X∗
2 ≤ t, . . . , X∗

n ≤ t)
= P(Ip1X1 ≤ t, . . . , IpnXn ≤ t)
=

∑
6∈{0,1}n

P
(
Ip1X1 ≤ t, . . . , IpnXn ≤ t |I = 6

)
p(6)

=
∑

6∈{0,1}n

p(6)P (j1X1 ≤ t, . . . , jnXn ≤ t)

=
∑

6∈{0,1}n

p(6)C
(
[FX1)]j1 , . . . , [FXn]jn

)
.

Since FXi (x) =
F (x)

1− ŪiF̄ (x) is decreasing in Ui and the copula is component-wise increasing, we have that
GX∗

n:n (x) is decreasing in Ui, for i = 1, 2, . . . , n. Hence, the desired result follows. �

Theorem 3.12. Let X1, X2, . . . , Xn be nonnegative r.v.’s with Xi ∼ PO(F̄,Ui), i = 1, 2, . . . , n, and let the
associated copula be C (C′). Further, suppose that {Ip1 , Ip2 , . . . , Ipn } is a set of independent Bernoulli
r.v.’s, independent of Xi’s. Then

C′ ≺ C =⇒ X∗
n:n ≤st X∗′

n:n,

where the r.v.’s X∗
n:n and X∗′

n:n represent the largest claim amount with the associated copula C (C′).

Proof. The proof follows from Theorem 3.11 and the fact “C′ is less PLOD than C”. �

For the next theorem, proof follows from Theorems 3.11 and 3.12 and, hence, omitted.

Theorem 3.13. Let X1, X2, . . . , Xn (Y1, Y2, . . . , Yn) be nonnegative r.v.’s with Xi ∼ PO(F̄,Ui) (Yi ∼
PO(F̄, Vi)), i = 1, 2, . . . , n, and let the associated copula be C (C′). Further, suppose that
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Figure 6. Plots of a1(t) and a2(t), t ∈ [0, 1].

{Ip1 , Ip2 , . . . , Ipn } is a set of independent Bernoulli r.v.’s, independent of Xi’s (Yi’s). Then

Ui ≤ Vi, ∀i = 1, 2, . . . , n, and Ui ≤ Vi, ∀i = 1, 2, . . . , n, and C′ ≺ C =⇒ X∗
n:n ≤st Y∗

n:n.

The following example demonstrates the result given in the above theorem.

Example 3.14. Suppose {X1, X2} and {Y1, Y2} are two sets of independent nonnegative r.v.’s with
Xi ∼ PO(F̄ (x),Ui), i = 1, 2, and Yi ∼ PO(F̄ (x), Vi), i = 1, 2, where F̄ (x) = e−(0.05x)0.5 , x > 0.
Set (U1,U2) = (0.5, 1.25), (V1, V2) = (0.75, 1.55), p(0, 0) = 0.89, p(0, 1) = 0.06, p(1, 0)
= 0.04, p(1, 1) = 0.01 . Here we take C(x1, x2) = e−

{
(log(x1 ) ) \1+(log(x2 ) ) \1

}1/\1 and C′ (x1, x2) =

e−
{
(log(x1 ) ) \2+(log(x2 ) ) \2

}1/\2 , where \1 = 2 and \2 = 5. We consider the transformation x = t/(1 − t), so
that for t ∈ [0, 1), we have x ∈ [0,∞). After this substitution, we denote the distribution functions of
X∗

n:n and Y∗
n:n by FX∗

n:n (t/(1 − t)) = a1(t) and FY∗
n:n (t/(1 − t)) = a2(t), respectively. Figure 6 shows that

a1(t) ≥ a2(t) for all t ∈ [0, 1). Hence, X∗
n:n ≤st Y∗

n:n. �

The following theorem compares the largest claim amounts of two sets of heterogeneous portfolios
of risks in terms of the reversed hazard rate order. Here we assume that the odds ratios are the same but
the probabilities of occurrences of claims are different.

Theorem 3.15. Let X1, X2, . . . , Xn be independent r.v.’s with Xi ∼ PO(F̄,U), i = 1, . . . , n, and let
Ipi (Iqi ), i = 1, . . . , n, be independent Bernoulli r.v.’s, independent of Xi’s. Further, let X∗

i = XiIpi and
X◦

i = XiIqi , i = 1, . . . , n. Let ^ : [0, 1] → R+ be a differentiable function. Then

(i) (^(p1), ^(p2), . . . , ^(pn))
w
� (^(q1), ^(q2), . . . , ^(qn)) =⇒ X∗

n:n ≥rh X◦
n:n,

if ^(x) is strictly decreasing and convex in x;
(ii) (^(p1), ^(p2), . . . , ^(pn)) �w (^(q1), ^(q2), . . . , ^(qn)) =⇒ X∗

n:n ≥rh X◦
n:n,

if ^(x) is strictly increasing and concave in x.

Proof. We have FX∗
n:n (t) =

∏n
i=1(1−^−1(ui)F̄U (t)), where ^(pi) = ui, i = 1, . . . , n. Since Xi ∼ PO(F̄,U)

for i = 1, . . . , n. We have F̄U (x) = UF̄ (x)
1− ŪF̄ (x) .

Now fX∗
n:n (t) =

∑n
i=1

(
^−1 (ui )fU (t)

1−^−1 (ui )F̄U (t)

)
FX∗

n:n (t) and therefore

r̃X∗
n:n (t) =

n∑
i=1

^−1(ui)fU (t)
1 − ^−1(ui)F̄U (t)

.
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So, we have

mr̃X∗
n:n (t)
mui

=

d^−1 (ui )
dui

fU (t)
(1 − ^−1(ui)F̄U (t))

+
d^−1 (ui )

dui
^−1(ui)fU (t)F̄U (t)

(1 − ^−1(ui)F̄U (t))2

and

mr̃X∗
n:n (t)
muj

=

d^−1 (uj )
duj

fU (t)
(1 − ^−1(uj)F̄U (t))

+
d^−1 (uj )

duj
^−1(uj)fU (t)F̄U (t)

(1 − ^−1(uj)F̄U (t))2 .

Now, consider the following two cases.
Case I: Let ^ be strictly decreasing and convex. Then ^−1 is strictly decreasing and convex.

Consequently, r̃X∗
n:n (t) is decreasing in ui. Further,

(ui − uj)
(
mr̃X∗

n:n (t)
mui

−
mr̃X∗

n:n (t)
muj

)
sign
= (ui − uj)


©­­«

d^−1 (ui )
dui

1 − ^−1(ui)F̄U (t)
−

d^−1 (uj )
duj

1 − ^−1(uj)F̄U (t)
ª®®¬ +

©­­«
^−1(ui) d^−1 (ui )

|rmdui

1 − ^−1(ui)F̄U (t)
−

^−1(uj)
|rmd^−1 (uj )

duj

1 − ^−1(uj)F̄U (t)
ª®®¬
 ≥ 0,

which follows from the fact that ^−1 is decreasing and convex. Consequently, we have that r̃X∗
n:n (t) is

decreasing and Schur-convex in ui. So, from Lemma 2.5, the first part of the theorem follows.
Case II: Let ^ be strictly increasing and concave. Then ^−1 is strictly increasing and convex.

Consequently, r̃X∗
n:n (t) is increasing in ui. Further,

(ui − uj)
(
mr̃X∗

n:n (t)
mui

−
mr̃X∗

n:n (t)
muj

)
sign
= (ui − uj)


©­­«

d^−1 (ui )
dui

1 − ^−1(ui)F̄U (t)
−

d^−1 (uj )
duj

1 − ^−1(uj)F̄U (t)
ª®®¬ +

©­­«
^−1(ui) d^−1 (ui )

dui

1 − ^−1(ui)F̄U (t)
−

^−1(uj)
d^−1 (uj )

duj

1 − ^−1(uj)F̄U (t)
ª®®¬
 ≥ 0,

which follows from the fact that ^−1 is increasing and convex. Consequently, we have that r̃X∗
n:n (t) is

increasing and Schur-convex in ui. So, from Lemma 2.5, the second part of the theorem follows. �

We illustrate Theorem 3.15 with the following example.

Example 3.16. Suppose that {X1, X2, X3, X4} is a set of independent nonnegative r.v.’s with Xi ∼
PO(F̄ (x),U), i = 1, 2, 3, 4, where F̄ (x) = e−(0.5x)1.5 , x > 0, and U = 0.75. Further, suppose that
{Ip1 , Ip2 , Ip3 , Ip4 } and {Iq1 , Iq2 , Iq3 , Iq4 } are two sets of Bernoulli r.v.’s, independent of X i’s, i = 1, 2, 3, 4.
Set (p1, p2, p3, p4) = (0.35, 0.65, 0.85, 0.96), (q1, q2, q3, q4) = (0.15, 0.35, 0.55, 0.82). Let ^(x) =

log(1 + x), which is strictly increasing and concave. We consider the transformation x = t/(1 − t) so
that for t ∈ [0, 1), we have x ∈ [0,∞). After this substitution, let us denote the respective reverse
hazard functions by r̃X∗

n:n (t/(1 − t) = r̃1(t) and r̃X◦
n:n (t/(1 − t)) = r̃2(t). From Figure 7, we see that

r̃1(t) ≥ r̃2(t) for all t ∈ [0, 1). Hence, X∗
n:n ≥rh X◦

n:n. �
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Figure 7. Plots of r̃1(t) and r̃2(t), t ∈ [0, 1].

Figure 8. Plot of r̃1(t) − r̃2(t), t ∈ [0, 1].

Next, we provide a counterexample to show that the ordering result in Theorem 3.15 may not hold
if we relax the stated majorization conditions.

Counterexample 3.17. In Example 3.16, let us take (p1, p2, p3, p4) = (0.1, 0.2, 0.85, 0.95) and
(q1, q2, q3, q4) = (0.5, 0.65, 0.8, 0.85) so that (^(p1), ^(p2), ^(p3), ^(p4)) �w
(^(q1), ^(q2), ^(q3), ^(q4)). In Figure 8, we have plotted r̃1(t) − r̃2(t) for all t ∈ [0, 1), which
shows that the hazard rate ordering result of Theorem 3.15(ii) does not hold in this case.

4. Star order for multiple-outlier claim

Let X i, i = 1, 2, . . . , r, have a common distribution F, and X j, j = r + 1, r + 2, . . . , n, have a common
distribution G, where r = 1, 2, . . . , n−1. This type of model is known as outlier model, where F is called
the original distribution, whereas the G is called the outlier distribution. For r = 1, 2, . . . , n − 2, it is
called multiple-outlier model. In actuarial practice, even for a portfolio of risks consisting of similar kind
of insureds, it may happen that some insureds have different (higher/lower) probabilities of occurrence
of claims, claim sizes or odds of claims than the rest. Then this phenomena falls in the multiple-outlier
claims model.
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Star order is one of the most important transform order used to compare the skewness of probability
distributions. Since in general the insurance claims follow positively skewed and heavy-tailed distribu-
tions, it is therefore of interest to establish sufficient conditions for star order between them to analyze
the effects of the heterogeneity among occurrence probabilities and claim severity parameters (e.g., the
odds ratio in our considered model) on the skewness of their distributions.

In Theorem 4.2, we derive stochastic comparisons on the largest claim amounts in case of multiple-
outlier claims model with respect to star order.

The following lemma is derived from Saunders and Moran [25], which will be used in proving
Theorem 4.2.

Lemma 4.1. Let {G_ |_ ∈ R+} be a class of distribution function such that G_ is supported on some

interval I ⊆ R+. Then, G_ ≥★ G_★ for _ ≤ _★ iff
mG_ (x)

m_

xg_ (x) is increasing in x, where the density g_ of G_

does not vanishe on any subinterval of I.

Theorem 4.2. Let Xi ∼ PO(F̄,U1) (Yi ∼ PO(F̄, V1)) for i = 1, 2, . . . , n1, and let Xj ∼ PO(F̄,U2) (Yj ∼
PO(F̄, V2)) for j = n1 + 1, n1 + 2, . . . , n1 + n2 (= n). Assume that Xi’s are independent and that the Yj’s
are independent. Further, let Ipi , i = 1, 2, . . . , n1, be independent Bernoulli r.v.’s such that E[Ipi ] = p1,
and let Ipj , j = n1 + 1, . . . , n, be another set of independent Bernoulli r.v.’s such that E[Ipj ] = p2. Then,
for n1p1 ≥ n2p2, p1 ≥ p2, U1 ≤ U2, and V1 ≤ V2,

U1

U2
≤ V1

V2
=⇒ X∗

n:n ≥★ X∗
n:n.

Proof. Consider the following two cases.
Case I: Let U1 + U2 = V1 + V2 = c (say). Further, let U1 = U ≤ U2 and V1 = V ≤ V2, so that

U ∈ [0, c/2]. Then the distribution function of X∗
n:n is given by

Fn,U (x) =
[
1 − p1F̄U (x)

]n1 [
1 − p2F̄c−U (x)

]n2
. (5)

Here F̄U (x) = UF̄ (x)
1−UF̄ (x) and F̄c−U (x) = (c−U)F̄ (x)

1−(c−U)F̄ (x)
.

The density function corresponding to Eq. (5) is

fn,U (x) =
[
1 − p1F̄U (x)

]n1−1 [
1 − p2F̄c−U (x)

]n2−1 f (x)

×
[
n1p1U(1 − p2F̄c−U (x))

(1 − ŪF̄ (x))2 + n2p2(c − U) (1 − p1F̄U (x))
(1 − (c − U)F̄ (x))2

]
.

Now,

mFn,U (x)
mU

= F (x)F̄ (x)
[
1 − p1F̄U (x)

]n1−1 [
1 − p2F̄c−U (x)

]n2−1

×
[
−n1p1(1 − p2F̄c−U (x))

(1 − ŪF̄ (x))2 + n2p2(1 − p1F̄U (x))
(1 − (c − U)F̄ (x))2

]
.

Let Λ1(x) =
1−p2F̄c−U (x)
(1− ŪF̄ (x) )2 and Λ2(x) =

1−p1F̄U (x)
(1−(c−U)F̄ (x) )2 . Then, by using Lemma 4.1, it suffices to prove

that

mFn,U (x)
mU

xfn,U (x)
=

F (x)F̄ (x)
xf (x)

[
−n1p1Λ1(x) + n2p2Λ2(x)

n1p1UΛ1(x) + n2p2(c − U)Λ2(x)

]
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=
F (x)F̄ (x)

xf (x) × Λ(x)

is increasing in x ∈ R+, for U ∈ [0, c/2], where

Λ(x) =

[
n1p1UΛ1(x) + n2p2(c − U)Λ2(x)

−n1p1Λ1(x) + n2p2Λ2(x)

]−1

=

[
cn2p2Λ2 (x)

n2p2Λ2(x) − n1p1Λ1(x)
− U

]−1

=

[
c
(
1 − n1p1

n2p2

Λ1(x)
Λ2(x)

)−1
− U

]−1

.

Further, let

Λ3(x) =
Λ1(x)
Λ2(x)

=

(
1−p2F̄c−U (x)
(1− ŪF̄ (x) )2

)(
1−p1F̄_ (x)

(1−(c−U)F̄ (x) )2

)
=

(
[1 − (c − U)F̄ (x) − p2 (c − U)F̄ (x)]

(1 − ŪF̄ (x))

) (
(1 − ŪF̄ (x)) (1 − (c − U)F̄ (x))2

[1 − ŪF̄ (x) − p1UF̄ (x)]

)
=

(
[F (x) + (1 − p2) (c − U)F̄ (x)]

[F (x) + (1 − p1)UF̄ (x)
]
) (

1 − (c − U)F̄ (x)
1 − ŪF̄ (x)

)
= Δ1(x) × Δ2(x).

It is clear that Δ1(x) ≥ 0 and Δ2(x) ≥ 0 ∀x ∈ R+. Now we have

Δ′
1(x)

sign
= [1 − (1 − p2) (c − U)] [F (x) + U(1 − p1)F̄ (x)]

− [1 − U(1 − p1)] [F (x) + (1 − p2) (c − U)F̄ (x)]
sign
= [U(1 − p1) − (1 − p2) (c − U)] (F̄ (x) + F (x))

sign
= [U(1 − p1) − (1 − p2) (c − U)]

≤ 0,

which holds as U ≤ c − U and p1 ≥ p2. Further,

Δ′
2(x)

sign
= (c − U) (1 − ŪF̄ (x)) (1 − ¯c − UF̄ (x))

sign
= ( ¯c − U) − Ū ≤ 0.

Hence, ultimately we have Λ′
3(x) ≤ 0. Consequently, Λ3(x) is nonnegative and decreasing in x.

Now U ≤ (c − U)

=⇒ 1 − (c − U)F̄ (x)
1 − ŪF̄ (x)

≥ 1

and (c − U) ≥ U, p1 ≥ p2
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Figure 9. Plots of derivative of F−1
X∗

n:n
(t)/F−1

Y∗
n:n
(t) with respect to t for t ∈ (0, 1).

=⇒ F (x) + (1 − p2) (c − U)F̄ (x) ≥ F (x) + (1 − p1)UF̄ (x),
and hence, Λ3(x) ≥ 1.

Now if n1 ≥ n2, then n1p1 ≥ n2p2. On combining all of these results, we have

n1p1

n2p2
Λ3 (x) ≥ 1

=⇒
(
1 − n1p1

n2p2
Λ3(x)

)
≤ 0.

Hence,
(
1 − n1p1

n2p2
Λ3(x)

)
is increasing in x, which implies

[(
1 − n1p1

n2p2
Λ3(x)

)−1
− U

]−1
is increasing in x.

So ultimately we have Λ(x) is increasing in x. This completes the proof.
Case II: Let U1 + U2 ≠ V1 + V2. In this case, there exists some ^ > 0 such that U1 + U2 = ^(V1 + V2).

Now, let Zn:n be the largest claim amount from I1Z1, . . . , In1Zn1 , In1+1Zn1+1, . . . , InZn, where Z1, . . . , Zn1

have the distribution F^`1 and Zn1+1, . . . , Zn have the distribution F^`2 . Finally, on using the result of
Case I and the scale invariant property of the star order, the desired result follows.

Example 4.3. Suppose that {X1, X2} and {Y1, Y2} are two sets of independent nonnegative r.v.’s with
Xi ∼ PO(F̄ (x),Ui), i = 1, 2, and Yi ∼ PO(F̄ (x), Vi), i = 1, 2, where F̄ (x) = e−x, x > 0. Set (U1,U2) =
(0.5, 1.9), (V1, V2) = (0.8, 1.2), (p1, p2) = (1/4, 1/8), and (n1, n2) = (3, 2). Then all the conditions
of Theorem 4.2 are satisfied. In Figure 9, we have plotted the derivative of F−1

X∗
n:n
(t)/F−1

Y∗
n:n
(t) with respect

to t from which it is clear that F−1
X∗

n:n
(t)/F−1

Y∗
n:n
(t) is increasing for t ∈ (0, 1). Hence, X∗

n:n ≥★ Y∗
n:n. �

5. Aggregate claim amount

The aggregate claim of a portfolio is the sum of all amounts payable during the reference period.
Our next theorem derives sufficient conditions that the aggregate claim amount increases on reducing
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the heterogeneity in the sense of majorization among the concerned parameters of a considered semi-
parametric family of distributions when they are in ascending order. Here we assume that occurrence
probabilities are arranged according to LWSAI.

Theorem 5.1. Suppose that I =
(
Ip1 , . . . , Ipn

)
is LWSAI. Let XUi ∼ F̄ (x;Ui) (XVi ∼ F̄ (x; Vi)), i =

1, . . ., n, be independent r.v.’s. Suppose that the following conditions hold:

(i) F̄ (x;U) is increasing and concave in U > 0; and
(ii) the survival function of X`1 + X`2 is Schur-concave in (`1, `2), `1, `2 > 0.

If "
m
� # such that U1 ≤ U2 ≤ · · · ≤ Un and V1 ≤ V2 ≤ · · · ≤ Vn, then

∑n
i=1 IpiXUi ≤st

∑n
i=1 IpiXVi .

Proof. Let A(I,U) =
∑n

i=1 IiXUi and A(I, #) =
∑n

i=1 IiXVi . We have to prove that FA(I,") (t) ≥
FA(I,#) (t) ∀t ∈ <+. By the nature of majorization order, it suffices to prove it when (Ui,Uj)

m
� (Vi, Vj)

for some pair 1 ≤ i < j ≤ n, and Ur = Vr for all r ≠ i, j. Note that

FA(I,") (t) = P

(
n∑

i=1
IpiXUi ≤ t

)
=

n∑
k=0

∑
6∈Sk

P

(
n∑

i=1
IpiXUi ≤ t | I = 6

)
p(6)

= p(0) + p(1)P
(

n∑
i=1

XUi ≤ t

)
+

n∑
k=1

∑
6∈Sk

p(6)P
(

n∑
i=1

jiXUi ≤ t

)

= p(0) + p(1)P
(

n∑
i=1

XUi ≤ t

)
+

n−1∑
k=1


∑

j∈Si,j
k (0,0)

p(6)P
(

n∑
r≠i,j

jrXUr ≤ t

)
+

∑
j∈Si,j

k (0,1)

p(6)P
(
XUj +

n∑
r≠i,j

jrXUr ≤ t

)
+

∑
j∈Si,j

k (0,1)

p(gi,j (6))P
(
XUi +

n∑
r≠i,j

jrXUr ≤ t

)
+

∑
j∈Si,j

k (1,1)

p(6)P
(
XUi + XUj +

n∑
r≠i,j

jrXUr ≤ t

) .

Similarly,

FA(I,#) (t) = P

(
n∑

i=1
IiXVi ≤ t

)

= p(0) + p(1)P
(

n∑
i=1

XVi ≤ t

)
+

n−1∑
k=1


∑

j∈Si,j
k (0,0)

p(6)P
(

n∑
r≠i,j

jrXVr ≤ t

)
+
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∑
j∈Si,j

k (0,1)

p(6)P
(
XVj +

n∑
r≠i,j

jrXVr ≤ t

)
+

∑
j∈Si,j

k (0,1)

p(gi,j (6))P
(
XVi +

n∑
r≠i,j

jrXVr ≤ t

)
+

∑
j∈Si,j

k (1,1)

p(6)P
(
XVi + XVj +

n∑
r≠i,j

jrXVr ≤ t

) .

Under assumption (ii), it holds that

P

(
n∑

i=1
XUi ≤ t

)
≥ P

(
n∑

i=1
XVi ≤ t

)
(6)

and, for any 6 ∈ Si,j
k (1, 1), k = 1, . . . , n − 1,

P

(
XUi + XUj +

n∑
r≠i,j

jrXUi ≤ t

)
≥ P

(
XVi + XVj +

n∑
r≠i,j

jrXVi ≤ t

)
. (7)

Then combining above two, we have

FA(I,") (t) − FA(I,#) (t)

= p(1)
[
P

(
n∑

i=1
XUi ≤ t

)
− P

(
n∑

i=1
XVi ≤ t

)]

+
n−1∑
k=1


∑

6∈Si,j
k (0,1)

p(6)
[
P

(
XUj +

n∑
r≠i,j

jrXUr ≤ t

)
− P

(
XVj +

n∑
r≠i,j

jrXUr ≤ t

)]

+
∑

6∈Si,j
k (0,1)

p(gi,j 6)
[
P

(
XUi +

n∑
r≠i,j

jrXUr ≤ t

)
− P

(
XVi +

n∑
r≠i,j

jrXUr ≤ t

)]

+
∑

j∈Si,j
k (1,1)

p(6)
[
P

(
XUi + XUj +

n∑
r≠i,j

jrXUi ≤ t

)
≥ P

(
XVi + XVj +

n∑
r≠i,j

jrXVi ≤ t

)]
≥

n−1∑
k=1


∑

6∈Si,j
k (0,1)

p(6)
[
P

(
XUj +

n∑
r≠i,j

jrXUr ≤ t

)
− P

(
XVj +

n∑
r≠i,j

jrXUr ≤ t

)]

+
∑

6∈Si,j
k (0,1)

p(gi,j 6)
[
P

(
XUi +

n∑
r≠i,j

jrXUr ≤ t

)
− P

(
XVi +

n∑
r≠i,j

jrXUr ≤ t

)]
≥

n−1∑
k=1


∑

6∈Si,j
k (0,1)

p(gi,j 6)
[
P

(
XUj +

n∑
r≠i,j

jrXUr ≤ t

)
− P

(
XVj +

n∑
r≠i,j

jrXUr ≤ t

)]
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+
∑

6∈Si,j
k (0,1)

p(gi,j 6)
[
P

(
XUi +

n∑
r≠i,j

jrXUr ≤ t

)
− P

(
XVi +

n∑
r≠i,j

jrXUr ≤ t

)]
=

n−1∑
k=1


∑

6∈Si,j
k (0,1)

p(gi,j 6)
∫

· · ·
∫
Rn−2
+

[
P

(
XUi ≤ t −

n∑
r≠i,j

jrxUr

)
+ P

(
XUj ≤ t −

n∑
r≠i,j

jrxUr

)

− P
(
XVi ≤ t −

n∑
r≠i,j

jrxUr

)
− P

(
XVj ≤ t −

n∑
r≠i,j

jrxUr

)]
n∏

r≠i,j
gXUr (xUr ) dxUr

}

=

n−1∑
k=1


∑

6∈Si,j
k (0,1)

p(gi,j 6)
∫

· · ·
∫
Rn−2
+

[
F̄XVi

(
t −

n∑
r≠i,j

jrxUr

)
+ F̄XVj

(
t −

n∑
r≠i,j

jrxUr

)

−F̄XUi

(
t −

n∑
r≠i,j

jrxUr

)
− F̄XUj

(
t −

n∑
r≠i,j

jrxUr

)]
n∏

r≠i,j
gXUr (xUr ) dxUr

}
≥ 0,

where gXUr (x) is the density function of XUr . The first inequality follows from Eqs. (6) and (7), the
second inequality from Lemma 3.7, and finally the last inequality is due to the fact that F̄XU

is concave
in U ∈ R+ as per assumption (i).

Remark 5.2. Theorem 5.1 hold true for the PO model, that is, for XUi ∼ PO(F̄,Ui) (XVi ∼
PO(F̄, Vi)), i = 1, . . . , n, with F̄ (t) = e−_t , _ > 0. This family of distribution is known as
Marshall–Olkin extended exponential distribution. Note that F̄XU

(t) = UF̄ (t)/1 − ŪF̄ (t) is increas-
ing and concave in U. The condition (ii), that is, the survival function of X`1 + X`2 is Schur-concave in
(`1, `2) follows from the Corrollary F.12.a. (p. 235) of [21] with the fact that both the survival function
F̄X`

(t) = `e−_t/1 − ¯̀e−_t and p.d.f. fX`
(t) = ` · _e−_t/(1 − ¯̀e−_t)2 are concave in `.

It is to be noted that exponentiated Weibull distribution having the distribution function F (t;U, V)) =(
1 − e−tV

)U
, U, V > 0, also satisfies both the conditions (i) and (ii) of Theorem 5.1 with respect to the

parameter U.

Remark 5.3. It is worth to be mention that in Theorem 4.7 of Zhang et al. [30], they compared aggregate
claim amounts of two sets of heterogeneous portfolios under the assumption that the survival function
F̄ (x;U) is decreasing and convex in U > 0.

The following example illustrates the result given in Theorem 5.1.

Example 5.4. Suppose that {X1, X2} and {Y1, Y2} are two sets of independent nonnegative r.v.’s with
Xi ∼ PO(F̄ (x),Ui), i = 1, 2, and Yi ∼ PO(F̄ (x), Vi), i = 1, 2, where F̄ (x) = e−0.3x, x > 0. Set
(U1,U2) = (0.4, 2.6), (V1, V2) = (0.8, 2.2), p(0, 0) = P(Ip1 = 0, Ip2 = 0) = 0.15, p(0, 1) =

0.46, p(1, 0) = 0.34, and p(1, 1) = 0.05. Then, I = {Ip1 , Ip2 } is LWSAI. We consider the trans-
formation x = t/(1 − t) so that, for t ∈ [0, 1), we have x ∈ [0,∞). After this substitution, we
denote the distribution functions of

∑2
i=1 IpiXUiand

∑2
i=1 IpiXVi by FA(I,U) and FA(I,V) , respectively.

FA(I,U) (t/(1 − t)) = k1(t) and FA(I,V) (t/(1 − t)) = k2(t), respectively. From Figure 10, it is clear
that k1(t) ≥ k2(t) for all t ∈ [0, 1). Hence,

∑2
i=1 IpiXUi ≤st

∑2
i=1 IpiXVi . �
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Figure 10. Plots of k1(t) and k2(t), t ∈ [0, 1].

6. Concluding remarks

In this paper, we study some stochastic comparison results for the largest and the aggregate claim
amounts under the setup of PO model. We derive the results with respect to the usual stochastic order, the
reversed hazard rate order, and the star order. Further, some numerical examples are given to illustrate
the derived results.

As discussed, the PO model is one of the important semi-parametric models. It has a large number
of applications in different disciplines including financial engineering and actuarial science. It is worth
mentioning that the results obtained by us apply to the whole family of extended distributions, for exam-
ple, extended–exponential, Weibull, gamma, Pareto, Lomax, and linear failure-rate distribution, which
have been studied by many researchers in different areas of applications (see [5] and references therein).
Further, the largest claim and the aggregate claim amounts contain useful information in determining
the key factors in a given insurance policy. For instance, the largest claim amount is referred to as the
probable maximum loss, which helps to determine the amount of funds required to pay future claims
on policies. Thus, the proposed study may be helpful to the actuaries in determining which portfolio
of risks is better (in some stochastic sense) among a list of portfolios with respect to the largest and
aggregate claim amounts. Apart from this, our theoretical results can be used to compare the lifetimes
of two parallel systems whose components are subject to random shocks instantaneously.

Even though we discussed a lot of results, there are still many open problems that may be explored.
Here the results are mostly developed for the usual stochastic order. Thus, the study of the same prob-
lem, as in here, for other stochastic orders (namely, likelihood ratio order, convex order, etc.) can be
considered as a potential problem.
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