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Abstract

We study the set D(M, N) of all possible mapping degrees from M to N when M and N are quasitoric
4-manifolds. In some of the cases, we completely describe this set. Our results rely on Theorems proved
by Duan and Wang and the sets of integers obtained are interesting from the number theoretical point of
view, for example those representable as the sum of two squares D(CP2]CP2,CP2) or the sum of three
squares D(CP2]CP2]CP2,CP2). In addition to the general results about the mapping degrees between
quasitoric 4-manifolds, we establish connections between Duan and Wang’s approach, quadratic forms,
number theory and lattices.
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1. Introduction

The mapping degree is one of the oldest topological invariants and almost every
textbook has a section devoted to the definition and the calculation of this invariant.
Given two oriented n-manifolds M and N, every map f : M → N induces a
homomorphism

f∗ : H∗(M)→ H∗(N).

The degree of f is defined as an integer k such that

f∗([M]) = k [N],

where [M] ∈ Hn(M) and [N] ∈ Hn(N) are the fundamental classes of M and N,
respectively. It is a natural question to find all integers that occur as the mapping
degree of some f : M → N.
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Definition 1.1. Given two closed oriented n-manifolds M and N, D(M,N) is the set of
integers that could be realized as the degree of a map from M to N

D(M,N) = {deg f | f : M → N}.

The problem of determining D(M, N) is extensively examined in topology. In
dimension two, the problem is completely solved (see [19] and [13]). In dimension
three, the problem has been studied by several authors and it is solved for numerous
classes of 3-manifolds (see [3] and [17]). Results about 3-manifolds usually assume
some additional geometrical or topological structure on the manifolds. The most
important results about 3-manifolds can be found in the survey article of Wang [27]. In
dimensions higher than three, there are only a few relevant results obtained for some
special classes of manifolds (see [2, 10, 26] and [14]). It is clear, even from the results
in dimension two and three, that D(M,N) significantly depends on the homotopy types
of both M and N. Significant progress in the problem has been achieved by Haibao
Duan and Shicheng Wang in [11], who gave algebraic conditions for the existence of
certain map degree between two given closed (n − 1)-connected 2n-manifolds. Their
algebraic conditions are obtained from the topology of this wide class of manifolds.
However, even in the simplest case of dimension four, it is not easy to check these
conditions.

The goal of this article is to improve the known results in dimension four. We
identify the sets D(M, N) when N is CP2, CP2]CP2, CP2]CP2 and S 2 × S 2 and M
is a quasitoric 4-manifold. By Orlik and Raymond [24], four-dimensional quasitoric
manifolds are connected sums of some copies of CP2, CP2 and S 2 × S 2. The sets
D(M,N) are also obtained in some other more general cases. Among other results, the
following theorems are proved.

Theorem 1.2. There is a degree k map f : (CP2)] 4n → (CP2)] 4n if and only if k is a
nonnegative integer.

Theorem 1.3. Let l, m and n be positive integers such that l ≥ m + n. Then there is a
degree k map

f : (S 2 × S 2)]l → (CP2)]n](CP2)]n](S 2 × S 2)]m

if and only if k is an even number.

Theorem 1.4. Let m and n be positive integers such that m ≥ 3n. Then there is no
nonzero degree map

f : (CP2)]m → (CP2)]n](S 2 × S 2)]n.

Our efforts lead us to a compelling result that, for every quasitoric 4-manifold N,
each integer can appear as the mapping degree of a map f : M→ N for all ‘sufficiently
complicated’ quasitoric 4-manifolds M. The following theorem states this more
precisely.
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Theorem 1.5. Let M be a given quasitoric 4-manifold. Then there exist integers a0, b0

and c0 such that, for any integers a, b and c, a ≥ a0, b ≥ b0 and c ≥ c0,

D((CP2)]a](CP2)]b](S 2 × S 2)]c,M) = Z.

However, although the intersection forms of the manifolds that we consider are
relatively simple, the description of D(M, N) for arbitrary quasitoric 4-manifolds
remains an open problem. The main obstacle in solving the problem using our methods
is that the algebraic conditions that we are checking are too complicated even for this
class of manifolds.

In Section 2, we give a review of the known facts about the mapping degrees and,
in particular, of the work of Duan and Wang. Theorem 2 from [12] is reproved and
slightly improved. The latter result is crucial for the results of the next sections.

Section 3 focuses on the complete calculation of D(M,N) when N isCP2, CP2]CP2,
CP2]CP2 and S 2 × S 2 and M is a quasitoric 4-manifold. In Section 4, we study
the mapping degrees between connected sums of CP2 and their relationship to the
problems about the lattice discriminants. The proof of Theorem 1.2 is given in this
section.

Theorems 1.3, 1.4 and 1.5 are proved in Section 5.

2. The mapping degree

From the standard topology course ([16] and [4]) we know several effective methods
for calculating the mapping degree. Proposition 2.30 and Exercises 8, page 258 in [16]
can be easily generalized and summarized in the following theorem.

Theorem 2.1. For a map f : M→ N between connected closed orientable n-manifolds
and a point y ∈ N such that f −1(y) = {x1, . . . , xk} and for which there is ball B ⊂ N,
y ∈ B such that f −1(B) is the union of k disjoint balls B1, . . . , Bk, xi ∈ Bi for every i,
1 ≤ i ≤ k, and the mapping degree deg f is the sum

deg f =

k∑
i=1

deg f | xi,

where deg f | xi is the local map degree, that is, the degree of map f : ∂Bi → ∂B.

Theorem 2.1 states that deg f evaluates the number of times the domain manifold M
‘wraps around’ the range manifold N under the mapping f . This geometrical principle
is the guiding idea in most papers studying the mapping degrees. From Theorem 2.1 it
is easy to produce the map of any given degree into the sphere S n. We take k disjoint
balls on M and map their interiors by an orientation-preserving homeomorphism onto
S n − {pt} and the rest of M maps to the point {pt} (see Figure 1). Thus D(Mn, S ) = Z.
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Figure 1. The degree k map from Mn to S n.

Every map f : M → N induces homomorphisms on homology f∗ and cohomology
f ∗. From the following commutative diagram (see [16, page 241]),

Hn(M;Z) × Hk(M;Z)

f∗
��

∩ // Hn−k(M;Z)

f∗
��

Hn(N;Z) × Hk(N;Z)

f ∗
OO

∩ // Hn−k(N;Z)

we conclude that for a nonzero degree map f , every f ∗ : Hk(N;Z)→ Hk(M;Z) is a
monomorphism if Hk(N;Z) is torsion free.

It is easy to produce maps of zero degree, so 0 ∈ D(M,N). The identity map shows
that 1 ∈ D(M, M). In general, it is not known if there exists any degree one map from
M to N for arbitrary manifolds. The following simple result predicts that M must have
‘more complexity’ than N.

Lemma 2.2. Let f : M]N → M be a map obtained by pinching N to a point. Then
deg f = 1.

Proof. Take a point p ∈ M outside the part which got pinched. Consider its inverse
image f −1(p) in M]N, which is the unique point. The map f is an orientation-
preserving local homeomorphism. By Theorem 2.1 the claim is therefore proved. �

We proceed with an exciting corollary of Lemma 2.2.

Corollary 2.3. If there is a degree k map f : M → N between two closed oriented
n-manifolds, then there is a degree k map from M]Q to N, where Q is a closed oriented
n-manifold.

Proof. Consider the composition of maps

M]Q
g // M

f // N,

where g is the map pinching Q to a point.
Then deg( f ◦ g) = deg f · deg g = 1 · k = 1. �
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The following simple examples show that, in general, the sets D(M,N) are distinct
and depend on both manifolds. Even for Problem 2, it is hard to say when the answer
is positive or negative.

Proposition 2.4. For a simply connected closed orientable manifold M2n−1, the set

D(M,RP2n−1) = 2Z.

Proof. The sphere S 2n−1 is the universal covering for RP2n−1. Let p be the covering
map. Let f : M → RP2n−1 be a map. We consider the following diagram.

S 2n−1

p
��

M

f̃
;;

f // RP2n−1

Because π1M is trivial, there is a lifting map f̃ : M → S 2n−1 of f . From the
functoriality of homology f∗ = p∗ f̃∗ and thus deg f = deg p · deg f̃ . But deg p = 2
when n is odd and so deg f is even.

However, it is not hard to produce a degree 2k map. Take any degree k map from M
to S 2n−1 and compose it with p. �

Proposition 2.5. Let P be the Poincaré homology sphere. Then

D(S 3, P) = 120Z.

Proof. Here S 3 is the universal cover of P and the degree of p is 120. The argument
is the same as in the previous proof. �

In articles [12] and [11], theorems are given which significantly contribute to our
knowledge about mapping degrees between closed orientable 2n-manifolds. In this
section, we prove Theorem 2 from [12], and extend Corollary 3 of Wang and Duan’s
result.

Let M be a 2n-dimensional closed, connected and orientable manifold where n > 1
and let H̄n(M;Z) be the free part of Hn(M;Z). Then the cup product operator

H̄n(M;Z) ⊗ H̄n(M;Z)→ H2n(M;Z)

defines the intersection form XM over H̄n(M;Z), which is bilinear and unimodular by
Poincaré duality (see [16, Proposition 3.38]). This form is n-symmetric in the sense
that

XM(x ⊗ y) = (−1)nXM(y ⊗ x).

Let α = (α1, . . . , αm) be a basis for H̄n(M;Z). Then XM determines an m ×m matrix
A = (ai j), where ai j is given by

ai j = αi ∪ α j[M]

and [M] is the fundamental class of H2n(M).
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Let f : M → L be a map between two connected, closed and orientable 2n-
manifolds M and L and let f ∗ and f∗ be the induced homomorphisms on the
cohomology rings and homology groups. Let α = (α1, . . . , αm) and β = (β1, . . . , βl)
be the basis of H̄n(M;Z) and H̄n(L;Z), respectively. The induced homomorphism f ∗

determines m × l matrix P = (pi j) such that

f ∗(βi) =

m∑
j=1

pi jα j

for every i, 1 ≤ i ≤ l.

Theorem 2.6 (Duan and Wang). Suppose that M and L are closed oriented 2n-
manifolds with intersection matrices A and B under some given bases α for H̄n(M;Z)
and β for H̄n(L;Z). If there is a map f : M→ L of degree k such that f ∗(β) = αP, then

PtAP = kB.

Moreover, if k = 1, then XL is isomorphic to a direct summand of XM .

Proof. For a map f : M→ L it holds that f∗([M]) = k[L]. From the functoriality of the
cup and the cap product functor,

XM( f ∗(x) ⊗ f ∗(y)) = f ∗(x) ∪ f ∗(y)[M]
= f ∗(x ∪ y)[M] = (x ∪ y) f∗([M]) = (x ∪ y)k[L] = kXL(x ⊗ y)

for every x, y ∈ H̄n(L;Z). Thus the following diagram commutes.

H̄n(L;Z) × H̄n(L;Z)
XL //

f ∗⊗ f ∗
��

Z

×k
��

H̄n(M;Z) × H̄n(M;Z)
XM // Z

Consequently, for the bases α for H̄n(M;Z) and β for H̄n(L;Z), this fact is written in
the form PtAP = kB, where f ∗(β) = αP.

In particular, when k = 1, the restriction of XM on the subgroup

f ∗(H̄n(L;Z)) ⊂ H̄n(M;Z)

is isomorphic to XL and unimodular. By the orthogonal decomposition lemma
[22, page 5],

XM = X f ∗(H̄n(L;Z)) ⊕ XH⊥ = XL ⊕ XH⊥ ,

where H⊥ is the orthogonal complement of f ∗(H̄n(L;Z)) and XH⊥ is the restriction of
XM on H⊥. �

In the same paper, Duan and Wang proved the following theorem that gives the
complete criteria for the existence of a degree k map from a 4-manifold M to a simply
connected 4-manifold L.
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Theorem 2.7. Suppose that M and L are closed oriented 4-manifolds with intersection
matrices A and B under given bases α for H̄2(M;Z) and β for H̄2(L;Z). If L is simply
connected, then there is a map f : M→ L of degree k such that f ∗(β) = αP if and only
if

PtAP = kB.

Moreover, there is a map f : M → L of degree one if and only if XL isomorphic to a
direct summand of XM .

Duan and Wang proved Theorem 2.6 in [12, Corollary 3]. Implicitly, it is clear from
their paper that this corollary could be generalized.

Corollary 2.8. Suppose that M and L are closed oriented 2n-manifolds such that
rank H̄n(M;Z) = rank H̄n(L;Z) = 2r + 1. Then, for any map f : M → L, the absolute
value of the degree of f is a square of an integer.

Proof. Let P be the matrix realized by f . By Theorem 2.6,

PtAP = kB,

where P, A and B are square matrices of order 2r + 1. By taking the determinant,
|P|2|A| = k2r+1|B|. Since A and B are unimodular, |P|2 = |k|2r+1. Thus |k| is a perfect
square. �

Theorem 2.9. Let M and N be closed, connected and oriented 2n-manifolds such that
1 ≤ rank H̄n(M;Z) < rank H̄n(N;Z). Then there is no nonzero degree map f : M→ N.

Proof. This is a corollary of the Cauchy–Binet formula applied to matrices Pt and
A · P. According to the formula,

0 = krank H̄n(N;Z) det B

and, from the unimodularity of the intersection form, k = 0. �

In the same fashion, we give an algebraic proof of the subsequent enthralling result.

Theorem 2.10. If there are degree k maps f : M→ N and g : M′→ N′ between closed
oriented 4-manifolds and if N and N′ are simply connected, then there is a degree k
map from M]M′ to N]N′.

Proof. Let A and A′ be the intersection matrices for M and M′ and B and B′ for N and
N′, and let P and P′ be matrices such that

PtAP = kB,
P′tA′P′ = kB′.

By Theorem 2.7, it is sufficient to check that[
Pt 0
0 P′t

]
·

[
A 0
0 A′

]
·

[
P 0
0 P′

]
= k

[
B 0
0 B′

]
.

This concludes the proof. �
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In papers [12] and [11], Duan and Wang developed a technique for studying nonzero
degree maps between (n − 1)-connected closed and oriented 2n-manifolds. They
demonstrated applications on various concrete examples of manifolds.

3. Mapping degrees between quasitoric 4-manifolds
Quasitoric manifolds appeared as a topological generalization of nonsingular

projective toric varieties in [9]. A nice introduction to the subject is given in the
monograph [5].

We are particularly interested in the case of 4-dimensional quasitoric manifolds. In
this special case, the classification problem for 4-quasitoric manifolds is completely
solved by Orlik and Raymond in [24]. Their result states that a quasitoric manifold
of dimension four is diffeomorphic to the connected sum of several copies of CP2,
CP2 and S 2 × S 2. Many important 4-manifolds are quasitoric, such as the Hirzebruch
surfaces introduced by Hirzebruch in [18]. A Hirzebruch surface Hk is a quasitoric
manifold whose orbit space is a combinatorial square. As complex manifolds they are
pairwise distinct while, as smooth manifolds, there are only two diffeomorphism types
(see also [20]).

Quasitoric manifolds are simply connected, so they are perfect test examples for
the application of Theorem 2.7. The mapping degree between some quasitoric 4-
manifolds is studied in [12] where some simple examples illustrate the application of
Theorems 2.6 and 2.7. However, the results they obtain in the simplest cases are not
trivial. Our goal is to study the topic further and to obtain even more exciting sets of
integers realizing the mapping degree.

We specify Corollary 2.3 for application in the rest of the paper.

Corollary 3.1. If there is a degree k map f : M → N between two quasitoric 4-
manifolds M and N, then there is a degree k map from M]Q to N for every quasitoric
4-manifold Q.

Quasitoric 4-manifolds are topologically classified as the connected sums of several
copies of CP2, CP2 and S 2 × S 2 and we could easily determine their intersection
forms. The matrices representing the intersection form for CP2, CP2 and S 2 × S 2

are [
1
]
,

[
−1

]
and

[
0 1
1 0

]
,

respectively. Thus the intersection form for CP2]CP2 has the matrix representation[
1 0
0 −1

]
.

Consequently, the intersection form for a quasitoric 4-manifold diffeomorphic to

(CP2)]a](CP2)]b](S 2 × S 2)]c

= CP2] · · · ]CP2︸           ︷︷           ︸
a times

]CP2] · · · ]CP2︸           ︷︷           ︸
b times

] S 2 × S 2] · · · ]S 2 × S 2︸                     ︷︷                     ︸
c times
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is represented by the (a + b + 2c)-square matrixIa×a 0 0
0 −Ib×b 0
0 0 Ac×c

 ,
where Ac×c is a 2c-square matrix

0 1 0 0 · · · 0 0
1 0 0 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · 1 0


.

Let

M = (CP2)]a](CP2)]b](S 2 × S 2)]c and

N = (CP2)]d](CP2)]e](S 2 × S 2)] f

be two quasitoric manifolds and let A and B be the matrices of their intersection forms,
respectively. From Theorem 2.7 it follows that there is a degree k map between M and
N if and only if there is a (a + b + 2c) × (d + e + 2 f ) matrix P such that PtAP = kB.
Direct calculation gives that elements of (d + e + 2 f )-square matrix C = PtAP are

ci j =

a∑
r=1

pri pr j −

b∑
r=1

pa+r i pa+r j +

c∑
r=1

(pa+b+2r−1 i pa+b+2r j + pa+b+2r i pa+b+2r−1 j).

Solving the equation PtAP = kB means to solve the corresponding system of
Diophantine equations. There is no algorithm for solving a Diophantine equation,
so there is no standard way to approach this problem. Note that only d + e + f out of
these ((d + e + f )(d + e + f + 1))/2 expressions is equal to ±k and the others are zero.

3.1. Maps to CP2. We study the maps from quasitoric manifolds to CP2 (and CP2).
Let M be a quasitoric manifold diffeomorphic to

(CP2)]a](CP2)]b](S 2 × S 2)]c.

Theorem 2.7 reduces problem to the existence of a nontrivial solution of
Diophantine equation

a∑
i=1

p2
i 1 −

b∑
i=1

p2
a+i 1 + 2

c∑
i=1

pa+b+2i−1 1 pa+b+2i 1 = k. (3.1)

Theorem 3.2.

(i) If a ≥ 1 (or b ≥ 1) and c ≥ 1, then Equation (3.1) has a solution for every k ∈ Z.
(ii) If a ≥ 4 and b = c = 0, then Equation (3.1) has a solution for every nonnegative

integer k and no solution for negative k.
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(iii) If b ≥ 4 and a = c = 0, then Equation (3.1) has a solution for every integer k ≤ 0
and no solution for positive k.

(iv) If a = 3 and b = c = 0, then Equation (3.1) has a solution for every nonnegative
integer k , 4p(8q + 7) and no solution for positive integers k = 4p(8q + 7) and
negative integers.

(v) If b = 3 and a = c = 0, then Equation (3.1) has a solution for every integer
k , −4p(8q + 7) and no solution for negative integers k = −4p(8q + 7) and
positive integers.

(vi) If a = 2 and b = c = 0, then Equation (3.1) has a solution for every nonnegative
integer k such that every prime number 4p − 1 that divides k occurs an even
number of times in the prime factorization of k and no solutions in other cases.

(vii) If b = 2 and a = c = 0, then Equation (3.1) has a solution for every integer k ≤ 0
such that every prime number 4p − 1 that divides |k| occurs an even number of
times in the prime factorization of |k| and no solutions in other cases.

(viii) If a = b = 1 and c = 0, then Equation (3.1) has a solution for every integer
k , 4p + 2 and no solution for k = 4p + 2.

(ix) If a = 1 and b = c = 0, then Equation (3.1) has a solution for every integer that
is a square of an integer and no solution in other cases.

(x) If b = 1 and a = c = 0, then Equation (3.1) has a solution for every integer that
is a square of an integer multiplied by −1 and no solution in other cases.

(xi) If a = b = 0 and c ≥ 1, then Equation (3.1) has a solution for every even integer k.

Proof. We observe that every integer can be represented in the form u2 + 2vw for
some integers u, v and w. This guarantees the existence of a k-degree map f :
CP2](S 2 × S 2)→ CP2. Corollary 3.1 extends the result for cases a ≥ 1 and c ≥ 1.
Since every nonnegative integer has a decomposition into the sum of four perfect
squares, there is a k-degree map for every k ≥ 0 when a ≥ 4 and b = c = 0.

The cases a = 3 and b = c = 0 are curios. It follows from the nontrivial result of
Legendre [21] and Gauss [15] that a nonnegative integer has presentation as the sum
of three squares of integers if and only if it is not of the type 4p(8q + 7).

If a = 2 and b = c = 0, then, for any map f : CP2]CP2 → CP2, deg f must have
a representation as the sum of two perfect squares. It is a well known fact that a
nonnegative integer k can be written as the sum of two perfect squares if and only if
every prime number 4p − 1 that divides k occurs an even number of times in the prime
factorization of k (see [7] and [23]). For k = u2 + v2, we take the matrix

P =

[
u v
v −u

]
and get the map of degree k.

In the case a = b = 1 and c = 0, the map degree must be the difference of two squares
and this is possible if and only if the integer is not equal to two modulo four. Again, it
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is straightforward to check that

P =

[
u v
v −u

]
gives map of degree u2 − v2.

In the same manner, we can verify the other cases, so we omit the rest of the
proof. �

An explicit realization of the maps from Theorem 3.2 in most of its cases is fairly
easy. The best approach to the construction of such maps is via geometric topology.
The reader can easily convince themselves that the map fk : CP2 → CP2 given by
[x : y : z] 7→ [xk : yk : zk] has the mapping degree equal to k2. For example, a map
f : CP2]CP2 → CP2 of degree n = a2 + b2 can be constructed using the maps fa and
fb and a homeomorphism h : CP2 \ D4 → CP2 \ [1 : 0 : 0]. At first, the S 3 belonging
to both of the CP2 in the connected sum is pinched to [1 : 0 : 0]. The rest of the first
CP2 is mapped to CP2 by fa ◦ h, and the same is done for the second copy using fb ◦ h.
From Theorem 2.1, it follows that a map constructed in this way has degree equal to
a2 + b2.

3.2. Maps to S2 × S2. Maps from CP2]CP2 and CP2]CP2 to S 2 × S 2 are studied
in [12]. We are interested in the mapping degrees from an arbitrary quasitoric manifold
to S 2 × S 2.

Proposition 3.3. There is no nonzero degree map from (CP2)]k

((CP2)]k) to S 2 × S 2.

Proof. For every matrix P induced by a map f : (CP2)]k → S 2 × S 2,

PtP =

[
0 k
k 0

]
.

Thus P must be the zero matrix and hence k = 0. �

Proposition 3.4. For every integer k, there is a k-degree map from (S 2 × S 2)]n to
S 2 × S 2.

Proof. According to Corollary 3.1, it is enough to show that there is a k-degree map
f : S 2 × S 2 → S 2 × S 2. However, the matrix P given by

P =

[
0 k
1 0

]
guarantees the existence of such a map by Theorem 2.7. �

Proposition 3.5. For every integer k, there is a k-degree map from (CP2)]2]CP2

(CP2](CP2)]2) to S 2 × S 2.
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Proof. We directly check that the matrix

P =

0 0
1 k
1 k


satisfies the condition of Theorem 2.7. �

Theorem 3.6. Let M be a quasitoric manifold such that c ≥ 1. Then there is a k-degree
map from M to S 2 × S 2 for every integer k.

Proof. We easily check that matrix P, such that

P =

 0
0 1
k 0

 ,
satisfies Theorem 2.7. �

Theorem 3.7. Let M be a quasitoric manifold such that a ≥ 2 and b ≥ 1 (or a ≥ 1 and
b ≥ 2). Then there is a k-degree map from M to S 2 × S 2 for every integer k.

Proof. We easily check that matrix P, such that

P =


0(a−2)×2

k 0
0 1
−k 1

0(b+2c−1)×2

 ,
satisfies Theorem 2.7. �

3.3. Maps to CP2]CP2. There is no nonzero degree map from CP2]CP2 and
S 2 × S 2 to CP2]CP2, according to the examples presented in [12]. For other
quasitoric manifolds, the sets D(M,CP2]CP2) are much more attractive because they
are described by some intriguing number theoretical conditions. The appearance of
quadratic forms is not unusual as they play an important role in modern mathematics
(see [8] and [22]).

Proposition 3.8. There is a k-degree map f : (CP2)]2 → (CP2)]2 if and only if k ≥ 0
and every prime number 4p − 1 that divides k occurs an even number of times in the
prime factorization of k.

Proof. Let P =
[a b

c d
]

be a matrix induced by f . The corresponding system of equations
is

a2 + c2 = b2 + d2 = k,

ab + cd = 0.
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It is obvious that k should have a representation in the form k = u2 + v2 for some
integers u and v.

However, for every such k, the matrix P =
[u v

v −u
]

implies the existence of a k-degree
map. �

Proposition 3.9. There is a k-degree map f : (S 2 × S 2)]n → (CP2)]2, n ≥ 2 if and only
if k is an even integer.

Proof. Let

P =


a1 b1
a2 b2
...

...
a2n bsn


be a matrix induced by f .

2a1a2 + · · · + 2a2n−1a2n = 2b1b2 + · · · + 2b2n−1b2n = k,
a1b1 + · · · + a2nb2n = 0.

Hence k is even.
It is sufficient to prove that there is a map f : (S 2 × S 2)]2 → (CP2)]2 having the

mapping degree equal to k = 2t. But it exists due to the matrix

P =


t 0
1 0
0 t
0 1

 .
This concludes the proof. �

Proposition 3.10. For every integer k, there is a k-degree map f : CP2]CP2](S 2 × S 2)
→ (CP2)]2.

Proof. Suppose that k , 4t + 2. Then k has a representation in the form u2 − v2 for
some integers u and v. But the matrix

P =


u u
v v

u2 − v2 0
0 −1


satisfies the condition of Theorem 2.7.

If k = 4t + 2, we take

P =


t + 2 t

t t
1 2t + 1
−1 −1

 .
This concludes the proof. �
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Theorem 3.11. There is a k-degree map f : (CP2)](S 2 × S 2)→ CP2]CP2 if and only
if k ≥ 0 and every prime number 4p − 1 that divides k occurs an even number of times
in the prime factorization of k.

Proof. Let P be a matrix induced by f , given by

P =

a b
c d
e f

 .
We need to find out all integers k such that the system

a2 + 2ce = b2 + 2d f = k, (3.2)
ab + de + c f = 0 (3.3)

has solutions in integers. Multiplying (3.3) by 2cd,

0 = 2abcd + d2(2ce) + c2(2d f ) = 2abcd + d2(k − a2) + c2(k − b2).

It follows that
k(c2 + d2) = (ad − bc)2.

Thus k ≥ 0 and k has the form u2 + v2.
It is left to show that there is a map whose mapping degree is equal to u2 + v2 for

every two integers u and v. It is sufficient to take the matrix

P =

u + v u − v
−u v
v u

 .
This concludes the proof. �

Theorem 3.12. There is a k-degree map f : (CP2)]2](S 2 × S 2)→ CP2]CP2 if and only
if k ≥ 0 and every prime number 4p − 1 that divides k occurs an even number of times
in the prime factorization of k.

Proof. Let

P =


a b
c d
e f
g h

 .
We are solving the system

a2 + c2 + 2ge = b2 + d2 + 2 f h = k,
ab + cd + e f + gh = 0.

It is clear that when k = m2 + n2 there is a solution a = d = m, b = n, c = −n and
g = e = h = k = 0.

We are going to prove that k has the form m2 + n2.
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Multiply the equation ab + cd + e f + 1gh = 0 by 2 f g and use the other two to get

2 f g(ab + cd) + f 2(k − a2 − c2) + g2(k − b2 − d2) = 0.

It follows that
k( f 2 + g2) = (a f − bg)2 + (c f − dg)2.

Thus it is clear that k must be of the form u2 + v2. �

Using the same approach, we obtain the following theorems.

Theorem 3.13. There is a k-degree map f : (CP2)]3 → CP2]CP2 if and only if k ≥ 0
and every prime number 4p − 1 that divides k occurs an even number of times in the
prime factorization of k.

Proof. According to Proposition 3.8, there is a map f : CP2]CP2→ CP2]CP2 with the
mapping degree equal to u2 + v2. So it is only left to prove that k has a representation
as the sum of two perfect squares.

Let the induced matrix be

P =

a1 b1
a2 b2
a3 b3

 .
We are solving the system

a2
1 + a2

2 + a2
3 = b2

1 + b2
2 + b2

3 = k, a1b1 + a2b2 + a3b3 = 0.

We can suppose that GCD(a1, a2, a3, b1, b2, b3) = 1, since, if GCD(a1, a2, a3, b1, b2, b3)
= d, we can switch to the same system of Diophantine equations with k/d2 instead
of k.

Expressing a2
3b2

3 in two different ways,

a2
3b2

3 = (k − a2
1 − a2

2)(k − b2
1 − b2

2),
a2

3b2
3 = (a1b1 + a2b2)2,

yields
k2 − k(a2

1 + a2
2 + b2

1 + b2
2) − (a1b2 + a2b1)2 = 0.

We shall prove that there is no prime q = 4r − 1 such that q2s+1 | k and q2s+2 - k, which
clearly implies our claim. If such q exists, then q2s+1 | (a1b2 + a2b1)2, and hence
qs+1 | (a1b2 + a2b1). Thus q2s+2 | k(a2

1 + a2
2 + b2

1 + b2
2) and q | a2

1 + a2
2 + b2

1 + b2
2. But

2k = a2
1 + a2

2 + a2
3 + b2

1 + b2
2 + b2

3

yields q | a2
3 + b2

3, and q | a3 and q | b3. Analogously, we prove that q | a1, q | b1, q | a2
and q | b2. This contradicts the assumption that GCD(a1, a2, a3, b1, b2, b3) = 1! �

Theorem 3.14. There is a k-degree map f : (CP2)]n → CP2]CP2, n ≥ 4, if and only if
k is a nonnegative integer.
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Proof. From the condition of Theorem 2.7, k has a representation as the sum of n
perfect squares. Thus k ≥ 0.

According to Lagrange’s theorem, every nonnegative integer has a representation
as the sum of four perfect squares. Let k = a2 + b2 + c2 + d2 for some integers a, b, c
and d. So the matrix

P =


a b c d
b −a −d c
c d −a −b
d −c b −a


guarantees the existence of a degree k map. �

Theorem 3.15. There is a k-degree map f : (CP2)]3](S 2 × S 2)→ CP2]CP2 for every
nonnegative integer k.

Proof. Let the induced matrix be

P =


a1 b1
a2 b2
a3 b3
a4 b4
a5 b5

 .
Then the corresponding system is

a2
1 + a2

2 + a2
3 + 2a4a5 = b2

1 + b2
2 + b2

3 + 2b4b5 = k, (3.4)
a1b1 + a2b2 + a3b3 + a4b4 + a5b5 = 0. (3.5)

Multiplying (3.5) by 2a4b5 and using (3.4) in a similar way as in the proof of
Theorem 3.12 yields

k(a2
4 + b2

5) = (a4b1 − b5a1)2 + (a4b2 − b5a2)2 + (a4b3 − b5a3)2.

It is clear that k ≥ 0.
Since k ≥ 0, k has the form k = u2 + v2 + w2 + z2. Then the matrix

P =


u −w
v −z

w − z u − v
w v
z u


implies the existence of a k-degree map. �

Theorem 3.16. There is a k-degree map f : (CP2)]2]CP2 → CP2]CP2 if and only if
k ≥ 0 and every prime number 4p − 1 that divides k occurs an even number of times in
the prime factorization of k.
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Proof. Let

P =

a b
c d
e f

 .
The corresponding system of equations is

a2 + c2 − e2 = b2 + d2 − f 2 = k, ab + cd − e f = 0. (3.6)

From (3.6), we deduce that

k2 − (a2 + b2 + c2 + d2)k + (bc − ad)2 = 0.

By Vièta’s formulas, we obtain k ≥ 0.
Without loss of generality, we suppose that GCD(a, b, c, d, e, f ) = 1. We shall

prove that there is no prime q = 4p − 1 such that q2r+1 | k and q2r+2 - k. If such q
exists, from the quadratic equation above, qr+1 | bc − ad and q | a2 + b2 + c2 + d2.
It is not hard to deduce that q | (a + d)2 + (b − c)2 and q | (a − d)2 + (b + c)2. Thus
a + d ≡ b − c ≡ 0 mod q and a − d ≡ b + c ≡ 0 mod q. Finally, a ≡ b ≡ c ≡ d ≡ 0 mod q
yields q | e and q | f . This contradicts GCD(a, b, c, d, e, f ) = 1!

For the existence of a degree k = u2 + v2 map, we can take the matrix

P =

 u v
−v u
0 0

 .
This concludes the proof. �

Theorem 3.17. There is a degree k map f : (CP2)]3]CP2 → CP2]CP2 if and only if
k ≥ 0 and every prime number 4p − 1 that divides k occurs an even number of times in
the prime factorization of k.

Proof. Due to the previous theorem, it is enough to prove that k has the form u2 + v2.
Let

P =


a b
c d
e f
g h

 .
Then the corresponding system is

a2 + c2 + e2 − g2 = b2 + d2 + f 2 − h2 = k, (3.7)
ab + cd + e f − gh = 0. (3.8)

Substitute e = g + m and f = h + n in (3.7) and (3.8) and consider the equivalent system

a2 + c2 + m2 + 2gm = b2 + d2 + n2 + 2hn = k,
ab + cd + mn + gn + f m = 0.
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Using the same approach as in previous proofs we get

2mnab + 2mncd + 2m2n2 + n2(k − a2 − c2 − m2) + m2(k − b2 − d2 − n2) = 0.

So
(m2 + n2)k = (mb − an)2 + (md − cn)2,

and the claim clearly follows. �

Theorem 3.18. There is a degree k map f : (CP2)]n]CP2 → CP2]CP2, n ≥ 4 if and
only if k ≥ 0.

Proof. We shall prove that k is nonnegative.
Let the induced matrix be

P =


a1 b1
a2 b2
...

...
an bn


and the corresponding system be

a2
1 + a2

2 + · · · + a2
n−1 − a2

n = b2
1 + b2

2 + · · · + b2
n−1 − b2

n = k,
a1b1 + · · · + an−1bn−1 − anbn = 0.

Similarly to the previous proofs,

k2 − k(a2
1 + a2

2 + · · · + a2
n−1 + b2

1 + b2
2 + · · · + b2

n−1) +

( ∑
1≤i< j≤n−1

(aib j − a jbi)2
)

= 0.

By Vièta’s formulas, it must hold that k ≥ 0.
According to Theorems 3.14 and Corollary 3.1, there is a k-degree map for every

nonnegative k. �

Theorem 3.19. There is a k-degree map f : (CP2)]2](CP2)]2 → CP2]CP2 for every
integer k.

Proof. If k = 2t + 1 is an odd number, we can take

P =


t + 1 0

0 t + 1
0 t
t 0

 .
If k = 2t is even, we can take

P =


t + 1 0

0 t + 1
1 t
t −1

 .
This concludes the proof. �
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The above Theorem, together with Corollary 3.1, implies the following corollary.

Corollary 3.20. Let M be a quasitoric 4-manifold such that rank H̄2(M;Z) ≥ 5 and
b + 2c ≥ 2. Then, for every integer k, there is a k-degree map f : M → CP2]CP2.

3.4. Maps to CP2]CP2.

Proposition 3.21. There is no nonzero degree map f : (CP2)]n → CP2]CP2.

Proof. Let

P =


a1 b1
a2 b2
...

...
an bn

 .
The corresponding system is

a2
1 + a2

2 + · · · + a2
n−1 + a2

n = k,
b2

1 + b2
2 + · · · + b2

n−1 − b2
n = −k,

a1b1 + · · · + an−1bn−1 + anbn = 0.

From the first equation, we deduce that k ≥ 0 but, from the second, we deduce that
k ≤ 0. So k = 0. �

Proposition 3.22. There exists a k-degree map f : CP2]CP2 → CP2]CP2 if and only if
k . 2 mod 4.

Proof. Let the induced matrix be

P =

[
a b
c d

]
.

Then the corresponding system is

a2 − c2 = b2 − d2 = k,
ac − bd = 0.

Obviously, k . 2 mod 4.
Every integer k . 2 mod 4 has a representation in the form u2 − v2 for some integers

u, v, so it is sufficient to take the matrix P =
[u u

v v
]
. �

Theorem 3.23. For every integer k, there is a k-degree map f : (CP2)]2]CP2 →

CP2]CP2.

Proof. Let

P =

a b
c d
e f

 .
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We are looking for the solutions of

a2 + c2 − e2 = f 2 − b2 − d2 = k,

ab + cd − e f = 0.

For k , 4t + 2, it is known that there are integers m and n such that k = m2 − n2. In
this case, a = b = 0, c = f = m and d = e = n finish the proof. For k = 4t + 2, we could
take a = 1, b = 2, c = 2t + 1, d = 2t + 2, e = 2t and f = 2t + 3. �

Theorem 3.24. For every integer k, there is a k-degree map f : CP2](S 2 × S 2)→
CP2]CP2.

Proof. Let

P =

a b
c d
e f

 .
We are looking for the solutions of the system

a2 + 2ce = k,

b2 + 2d f = −k,

ab + c f + de = 0.

For k = 2t, we could take a = b = 0, c = d = t, e = 1 and f = −1. For k = 2t + 1, we
could take a = b = c = d = 2t + 1, e = −t and f = −t − 1. �

As a corollary of the above theorems, we summarize our findings in the next
corollary.

Corollary 3.25. For every quasitoric 4-manifold M such that a · b ≥ 2 or ac ≥ 1 and
for every integer k, there is a degree k map f : M → CP2]CP2.

4. Orthogonal lattices and maps between connected sums of CP2

In this section, we focus on the maps between connected sums of CP2. Our main
interest is in the mapping degrees of all maps

f : (CP2)] n → (CP2)] n.

Proposition 4.1. There is a k-degree map f : (CP2)] 2n−1 → (CP2)] 2n−1, n ≥ 1 if and
only if k is a square of an integer.

Proof. From Corollary 2.8, we deduce that k is a perfect square. For the matrix P, we
take (2n − 1) × (2n − 1) square matrix kI, where I is the identity matrix. �

Theorem 4.2. There is a k-degree map f : (CP2)] 4 → (CP2)] 4 if and only if k is a
nonnegative integer.
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Proof. We use the fact that every nonnegative integer can be written as the sum of four
perfect squares

k = a2 + b2 + c2 + d2.

Then the matrix

P =


a b c d
b −a −d c
c d −a −b
d −c b −a


guarantees the existence of a k-degree map. �

Theorem 4.2, together with Theorem 2.10, implies Theorem 1.2.
The remaining case to determine the mapping degrees

f : (CP2)] 4n+2 → (CP2)] 4n+2, n ≥ 1

is still an open problem. Proposition 3.8 implies that the set of all integers that can be
written as the sum of two squares belongs to D((CP2)] 4n+2, (CP2)] 4n+2). We cannot
give the answer even in the case f : (CP2)] 6 → (CP2)] 6, but we checked directly that
there is no degree 3, 7, 11, 15, 19 and various other cases that justify the conjecture that
D((CP2)] 6, (CP2)] 6) is the set of integers that can be written as a sum of two perfect
squares. Generally, we make the following conjecture.

Conjecture 4.3. The set D((CP2)] 4n+2, (CP2)] 4n+2) is the set of nonnegative integers
such that every prime number 4p − 1 that divides k occurs an even number of times in
the prime factorization of k.

Conjecture 4.3 could be reformulated in the following way. Is there an integer

matrix P = [pi j] 1 ≤ i, j ≤ 4n + 2 such that
4n+2∑
j=1

p2
i j = k

for every i = 1, . . . , 4n + 2 and
4n+2∑
t=1

pit p jt = 0

for every i , j if and only if k can be written as the sum of two squares?

We can think about the columns of P as the vectors inR4n+2. Observe that the matrix
P satisfies the equality case in the famous Hadamard’s inequality (see [6, page 108]).
This means that if we look at the columns of P as generators of the lattice (which is the
sublattice of Z4n+2), then the integer k is its discriminant. Our question is: What are
the values of discriminants of orthogonal integer lattices in R4n+2 with equal lengths of
generators? The matrices that satisfy the equality case of Hadamard’s inequality are
frequently seen in mathematics. Those with entries −1 and 1 are called Hadamard’s
matrices (see [1]). There are no (4n + 2) × (4n + 2) Hadamard’s matrices by the result
of Paley [25]. We believe that Conjecture 4.3 is very much connected to studying the
orthogonal lattices and their discriminants.

https://doi.org/10.1017/S1446788716000598 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000598


310 Ð. B. Baralić [22]

5. Some observations about maps between quasitoric 4-manifolds

In previous sections, we saw several examples of the sets D(M, N) when M and
N are quasitoric 4-manifolds. We are not able to determine this set in general for
quasitoric 4-manifolds but, due to Theorem 2.10 and Corollary 3.1 and special cases
from Section 4, we can detect it for various manifolds and, in most cases, find an
infinite subset of D(M,N).

We approach the general problem by starting with decomposing M and N into
the connected sums of CP2, CP2 and S 2 × S 2. From the system of Diophantine
equations, we look for some general restriction on the mapping degree k if it exists.
As has already been seen, the conditions that might be imposed on k are usually of
the type that it should be a positive or a negative integer, or have a representation
as a sum of a certain number of perfect squares. Then we are working backwards.
We completely described the mapping degrees from arbitrary quasitoric manifolds
in CP2, CP2, S 2 × S 2, CP2]CP2, CP2]CP2. These results, by repeatedly applying
Theorem 2.10 and Corollary 3.1, might produce a k-degree map f : M → N. It is not
evident that this strategy can work successfully in an arbitrary case but, certainly, it is
an algorithm for generating new nontrivial examples.

Now we give the proofs of the main theorems that we formulated in the introductory
section.

Proof of Theorem 1.3. It is obvious that k should be even. From the results in [11],
there are degree k maps f : S 2 × S 2→ CP2](CP2) and g : S 2 × S 2→ S 2 × S 2 for every
even k. The claim follows by Theorem 2.10. �

Proof of Theorem 1.4. If there exists a map f of nonzero degree k, then the
composition of this map with a degree one map g : (CP2)]n](S 2 × S 2)]n → S 2 × S 2

would have mapping degree equal to k, which would contradict the claim of
Proposition 3.3! �

Proof of Theorem 1.5. Let M be diffeomorphic to

(CP2)]m](CP2)]n](S 2 × S 2)]p.

By Theorems 3.2 and 2.10, there exist mappings f1 : (CP2](S 2 × S 2))]m → (CP2)]m,
f2 : (CP2](S 2 × S 2))]m → (CP2)]m and f3 : (S 2 × S 2))]m → (S 2 × S 2))]m of any given
degree k. Take a0 = m, b0 = n and c0 = m + n + p. According to Theorem 2.10, there
exists a map

f : (CP2)]a0](CP2)]b0](S 2 × S 2)]c0 → M.

The claim now follows from Corollary 3.1. �

This theorem states that there are infinitely many manifolds that could be mapped
to M of any degree.
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